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Abstract. We define the role and mechanisms of coordination in
Intelligent Agent Societies (IASs). We then outline our approach and
the underlying design principles aimed at the automatic generation of
a theory of coordination. Such theory would assist in designing new
IASs and provide trouble-shooting tools for suboptimally functioning
IASs. We also describe in this paper the decisions that have been
made in this endeavor. We have been able to show via a simplified
model that the approach is feasible and can produce results. The
project is one of the few examples of work in Experimental Al.

1 INTRODUCTION

Social structures may enhance the coordination of agent activity, such
as message management, and the allocation of resources and tasks.
Such structures are alliances, coalitions, teams and markets of which
only the first grouping is considered for the time being. The structures
are external to and independent of individual agents, and would allow
the scaling-down of complex systems consisting of large number of
agents. By reducing the danger of combinatorial explosion in dealing
with the problems of agent cognition, cooperation and control, we
expect to be able to manage the emergent behavior of individual
agents and of alliances of agents.

An alliance is a temporary group formed voluntarily by agents
whose goal structures (AND-OR trees) are similar enough. The
agents give up, while in the alliance, some of their own goals and
fully cooperate with the other members of the alliance. They stay in
the alliance as long as it is in their interest, after which they may join
another alliance or stay on their own. (It is possible to impose some
payment as an entry fee into and some penalty for departing from the
alliance.) Two or more alliances may also merge into one, based on a
membership vote (counting on majority or plurality).

Further, cognitive activities — in particular, decision making, plan
generation and execution — are usually performed jointly by groups
of agents relying on distributed knowledge, skills and resources.
There is, symbolically speaking, a single group to deal with and to
respond to, instead of an indefinitely large number of individual
agents. This mode of operation leads to higher efficiency as well as to
the possibility of graceful degradation; i.e., whenever a small number
of operating units become dysfunctional, other units can take over
their responsibilities while the whole system does not crash but
produces useful results, perhaps at a slower pace and of lower quality.

It will be helpful to provide a precise definition of emergent
phenomena since its interpretation varies in different disciplines. The
term refers to the appearance of patterns (of properties, actions,
results, information, knowledge) that are not apparent at lower levels.
Individual agents and groups of agents may well be aware of the
possibility of emergence and could strive to enhance or to diminish it
and its effects. We can talk about a reasoning horizon within which
agents can predict emergent phenomena and their effects. A usually
more limited domain is the control horizon within which the agents
can successfully influence higher level events by lower level activity.
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(In the project discussed, only the control horizon is relevant.) Notice
that the formation of groups of agents, the actions jointly decided
upon and the norms are emergent phenomena because they are not
under the control of individual agents.

Finally, we note that one can envisage an arbitrary number of
levels of abstraction at which emergent phenomena may occur
whereas in most traditional disciplines, such as thermodynamics,
there is a distinction between only two, a macro and a micro level.

2 THE OBJECTIVES OF COORDINATION

Coordination is understood to consist of a set of mechanisms
necessary for the effective operation of IASs. It is defined as the
process of managing dependencies between activities [1,2]. Its
fundamental components include the allocation of scarce resources,
communication between the agents about intermediate results,
coordination goals, capabilities and plans, status of the different
aspects of the environment, ordering/suggesting/accepting solution
methods to sub-problems, asking for and offering help, providing
some meta-level information (e.g., optimum message routing
strategies under different conditions), etc.

Coordination is needed and is usually available also in those cases
in which there is no full cooperation among the agents or groups of
agents. In a human society, for example, competition is constrained
by consumer protection, various government agencies and anti-trust
laws. People and organizations antagonistic to one another may
interact via prescribed legal channels. Coordination theory can be
defined as a set of axioms, mathematical and logical constructs, and
analytical techniques used to create a model of dependency
management in IASs. We have been engaged in a project to create an
experimentally obtained theory of coordination.

3 ON THE AUTOMATIC GENERATION OF A
THEORY OF COORDINATION

Our investigation is based on an easily modifiable and parametrizable
generic IAS, the P-System (P stands for production), a metaphorical
and abstract version of our earlier system, the Distributed Control of
Nationwide Manufacturing Operations [3,4,5]. The P-System, sharing
characteristic properties with most, if not all, IASs, is used for a series
of statistically designed experiments. In the course of running the P-
System under different conditions, we observe and measure data from
which certain high-level, emergent variables can be created. We infer,
from the statistical analysis of the data, characteristic and important
descriptors of the organization and functioning of IASs. It is expected
that the resulting relationships between the evaluated observations
and the respective properties of the agent societies may produce a
satisfactory theory of coordination, which in turn would generate
design tools and guidelines for the construction of new IASs, and
trouble-shooting tools for analyzing existing IASs.

The approach is analogous to theory formation in Physics where
experimental results may suggest novel conceptual frameworks that
have relevance to phenomena beyond those appearing in the original
experiments. In other words, we hope that the theory being developed
will help in understanding coordination in general, as well as form
the basis of models of coordination for specific applications. We note



that related empirical work has been done by several researchers,
such as the pioneering projects on the evolution of cooperation by
Axelrod and associates [6,7].

The prototypical P-System creates the following environment:
e There 1s a critical dependency, possible conflicts and contests

between subsystem controller agents.

¢ Communication between agents is asynchronous. Messages
can be broadcasted at large, or sent to selected groups of agents
or to an individual one on the basis of need-to-know and
qualified-to-know.

¢ The sequence of manufacturing operations of a given product
defines a hierarchical network of tasks, the P-tree, that
corresponds (is homomorphic) to the problem solving network
needed by the planning process (see Figure 1). Leaf nodes
reference raw materials or sub-components provided by other
producers. Higher-level process nodes correspond to
manufacturing/assembly operations. Each node may also be
associated with an OR-subtree (alternative tasks can accomplish
the given job), but are not shown in Figure 1.
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Figure 1. The metaphorical production plan is an AND-tree

e Planning is equivalent to assigning resources to the
(metaphorical) manufacturing and assembly operations over
space and time. An agent with a higher-priority task (see below)
can obtain a needed resource from another agent with a lower-
priority task. The latter task can be performed with a less
satisfactory resource (more expensive or slower) or shuttling a
resource between two nodes at opportune time points (see
Resource Availability cases below).

e There may be priority-oriented or deadline-oriented tasks.
The former implies that each task associated with the completion
of a component must be well-coordinated with the completion of
its sibling, ancestor and descendent components. The deadline-
oriented categories of tasks have a deadline by which they have
to be completed to satisfy the constraints of the final product.

e Availability of resources (tools for the assembly/
manufacturing operations) may change intermittently or
regularly. Idle resources already allocated and the (temporary)
storage of components also cost money. The total range of
resource availability has four subranges: (1) infeasible: the
production process cannot function for lack of indispensable
resources; (2) deficient: the production process can function only
if some resources are transferred between process nodes at
opportune moments (balancing the costs of transfer and
component storage); (3) scarce: some tasks must be allocated
suboptimal resource types; (4) abundant: every task can be
allocated the optimum resource type.

e There are three tiers in resource taxonomy: (1) resource
category (every item in it can be used for the same task or tasks);
(2) a resource category contains one or more resource types (a
given task can be performed by each but at different cost or time
levels, depending on the type chosen); (3) one or more resource

instances exist within each resource type these are the ones
actually allocated to tasks.

* Agents are associated with each process node; each resource
category and, within it, each resource type; each task category
and, within it, each task type. Communication among them, over
limited bandwidth, includes requests for and provision of
information, resource or action; allocation of task or resource to
agents; a piece of information; an acknowledgment; etc.

e Manager Agents have different responsibilities. A top-level
Monitor Manager collects and processes information from the
other Managers, and stores it in its knowledge base. The
Message Manager intercepts each message, records the agent
IDs that originate, transmit and receive it, as well as categorizes
and stores the messages according to their contents type in a
Message Database (crucial for the development of the trouble-
shooting tool.) The Coordinative Process Manager is concerned
with solution synthesis, reinforcement (e.g., the support in the
coordinator-coworker relationship), and scheduling processes
(tasks and resources). The Manager of Negotiating Processes
assesses how agreements and decisions are made and kept. The
Manager of Neutral Processes observes the cost and the effect of
learning processes. The Constraints Manager identifies the
cost/benefit ratio of inherent and imposed constraints
(capabilities, classes, timing, costs, capacities, resource
availability). The collected information is processed by the
Statistical Analyzer Manager.

¢ Two different objective functions can be used. The P-System
is to produce a given number of final products either (1) at a
minimum cost within a "reasonable" period of time, or (2) at a
"reasonable" cost within a minimum period of time. Either of
these requires an optimum allocation schedule of the
manufacturing/assembly operations and resources to individual
agents over space and time, while satisfying a set of constraints.

In order to attain a high-level of generality, we have originally
defined 25 tweakable entities (TEs) that characterize tasks, agents,
resources, skills, production processes, relative cost functions,
events and constraints. For each experiment (a run of the P-System),
particular TE values are automatically selected by the Experimental
Design Generator according to a multi-tier, balanced, incomplete,
factorial design (see Section 4.2).

4 EMPIRICAL EXPLORATIONS

Significant effort has been spent on identifying a reliable but
combinatorially not explosive technique to obtain results that can
show the method of computation and prove the feasibility of the
approach. We list some of the decisions made along this line.

4.1 The Quality Measure of Coordination

After experimenting with some preliminary choices, we have
defined the Quality Measure of Coordination (QMC), based on the
concept of synchronization and supply balancing, as

*
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Here | is the level number, | j references the j -th process node
* . . .

from the left at level | , t is the best possible time associated
with assembly/manufacturing at node | j , and t | j is the actual
time used after local and global optimization (these terms refer to
systematic resource exchanges when needed). The weighting factor
in the numerator] , expresses the fact that deficient synchronization
and supply balance has a detrimental, cascading effect on
coordination at the levels above the process node in question. Thus
the lower the node level, the more serious the effects are. The
denominator normalizes QMC to the range [0,1].



The optimization of QMC under different conditions and its
relationship to judiciously chosen functional combinations of TEs,
the emergent variables, play a central role in this project.

4.2 The Statistical Design of the Experiments

As noted before, the TEs determine the functional and operational
characteristics of the P-System and produce emergent behavior.
Each emergent variable, a particular TE or the combination of a
few, represents an aspect to be discussed later. Most TEs are
quantitative. However, there are a few categorical variables of
qualitative nature; e.g., whether resource and task allocation is
preplanned or reactively performed during the run of the P-System.
To develop a demonstration system, we have drastically reduced the
number of TEs to 12. These can be resource-, task- or inventory-
related. The choice was partly based on multiple regression and
correlation analysis. We have also left out all event- and agent-
related TEs, and postponed the study of reactive planning and
message traffic until later.

The statistical design of experiments needed some novel ideas.
The design process consists of two phases. The first phase deals
with a subset of the Total Number of Qualitative Designs of
experiments, TNQD, which we will call NQD. We identify five
equally-sized qualitative subranges of the total quantitative range of
each TE: very low, low, medium, high, very high. Thus, while
TNQD = 512 (there are 12 quantitative TEs currently), an arbitrary
subset of this can be obtained by generating NQD random numbers
between 1 and TNQD, each pointing to a qualitative design selected.
(This heuristic must be used since there are no symmetrical,
balanced, fractional experimental designs available for such high
number of control variables.) The second phase of the design
process leads to actual quantitative computer-based experiments.
Every qualitative design obtained in the first phase is used to carry
out a sufficiently large number of quantitative experiments (NQE);
i.e., runs of the P-System. We assign randomly chosen quantitative
values to each TE within their respective current qualitative
subrange. The QMC values are computed while the objective
function can be minimum total time or minimum total cost. This
approach assures a high level of generality in the findings.

An interesting heuristics leads to the meaningful ratio between
NQD and NQE. The problem boils down to the question: in order to
obtain optimum precision in the results, given the total length of
computing time, how much time should be spent in considering
different qualitative designs and how many quantitative experiments
should be performed for each qualitative design. The basis of the
heuristics is that the total variance of the resulting QMC values is
made up of three components: the first one is due to the different
qualitative designs selected, the second one is due to the different
actual quantitative experiments that belong to the same qualitative
design, and a third one is a random scatter not related to any
manageable factor. The calculation of the first two components is
now explained by the following example. Assume that we have
NQD= 4 (four qualitative deigns are selected) and NQE=3 (each
qualitative design has three actual quantitative experiments
associated with it). In the following Table 1, QMC is denoted by Q.

The variance due to different qualitative designs is Var(QD) =

4.3 Other Miscellaneous Decisions

We had to decide on the number of final products (NFP) to be
produced by the P-System in the experiments while QMC having a
fairly steady value beyond NFP. There are several factors that may
cause difficulties in this regard. Such are the "running-in" and
"running-out" times for the P-System. During the former period, the
assembly/manufacturing operations start at the bottom of the P-tree
and gradually reach its root from where the first final product
leaves. From this point on, the P-System works continuously and the
completion rate of the final product should be constant. (One must
bear in mind, the Java has some overhead time used for various
house-keeping chores and garbage collection that add a random
component to processing time at irregular intervals.) Similar issues
arise during the running-out phase when node activity gradually
disappears from the bottom of the tree upwards. We have found that
continuous and steady production is experienced after the first three
final products leave the root of the P-tree; thus NFP=4 was chosen.

It was important to characterize each member of the set of
experiments by the Resource Availability category it belongs. We
can then make relevant conclusions concerning the effects of less
than abundant resources — the infeasible, deficient and scarce cases
— on production time and cost aspects.

5 THE COMPUTATIONAL APPROACH

After several shorter trial runs, we had a realistic run over 4 full
days on an IBM PC with 500 MHz clock speed. Having identified
the ratio r=Var(QD)/Var(QE)~60, we specified NQD= 11,000 (out
of which 2,400 qualitative designs proved to be in the Infeasible
Resources category). Instead of the "expected" NQE=871,200, we
obtained 860,282. In addition to the 12 TEs considered in the
experiments, the successfully completed experiments were also
assigned a value of the categorical variable RA (Resource
Availability) as deficient=1, scarce=2 or abundant=3. The average
execution time of a qualitative experiment was 334.51 ms and the
size of the output file was 61.8 MB.

Table 2 describes the currently used list of TEs, the RA and
QMC, their notation (the x’s), and their role in the P-System. We
emphasize that the reduced set of independent variables is not
sufficient to produce acceptable results because of their numerous
latent relationships among themselves and with the dependent
variable QMC. As stated before, our major objective in the work
described is to prove the feasibility of the method.

The Principal Component/Factor Analysis program and other
parts of the SPSS statistical package have produced, among others,
the following relevant results: (1) A 14x14 Correlation Matrix of the
13 independent variables and QMC. (2) Six factors, F’s, linear
combinations of the x’s, have zero correlations among themselves
and high correlations with QMC. (3) A series of regression
functions, models, that connect QMC, on one hand, and — via the F'
factors — the x variables, on the other. The final, 24-th, model,
chosen by us, has the highest number of terms, 24, each with
statistically significant correlation with QMC and no cross-
correlation among the terms.

The six mutually orthogonal factors "explaining" the QMC are:

Var(Av(Qj)), which is the variance of the items in the third column. Fi=b; + by X3+ b3.X5 by= 0.736, by= 0.123, b;=-0.017,
Further, the variance due to different quantitative experiments is Fo=bs + bs.Xp + be.X; ba= 0.891, bs=-0.471, be=-0.010,
Var(QE) = Av(Var(Q;)), which is the average of the items in the F3=b; + bg.Xs b;= 0.775, bg=-0.004,
fourth column. The ratio Var(QD)/Var(QE) should be the ratio of  F,=by + b;o.X;1+by;.Xs bo= 0.773, bjo= 0.009, bj;=0.003,
the times allocated to QD and QE, respectively — the idea being Fs=b1,+b13.X o b2 =0.778, by;=-0.016,
that the larger the variance of an item is, the more time should be Fg=b14+ bys5.X7 b1a=0.775, bys=-0.004.
spent on its measurement.
Table 1. Illustration for the decision on how to divide up total processing time
Qualitative Design QMC Values in Quantitative Experiments Average of QMCs Variance of QMCs

1 Qi1, Qiz, Qi3 Av(Qyj) Var(Qy;)

2 Q21, Q22 Q3 Av(Qy) Var(Qy)

3 Qs1, Qaz, Q33 Av(Q3) Var(Q3;)

4 Qa1, Qa2, Qa3 Av(Qy) Var(Qy)




Table 2. The dependent variable, the independent variables and their system function

Variables | Notation System Function
TE1 X1 Number of Resource Categories
TE2 X2 Number of Resource Types per Resource Category
TE3 X3 Number of Resource Instances per Resource Type
TE4 X4 Cost of Resource Type working per task difficulty and per unit time
TES Xs Time necessary for Resource Type to accomplish work per task difficulty
TE6 X6 Time necessary to transfer a Resource Instance between two process nodes
TE7 X7 Cost necessary to transfer a Resource Instance between two process nodes
TES Xg Number of Task Categories
TE9 X9 Number of Task Types per Task Category
TE10 X10 Number of skills OR-ed per Task Type
TE11 X11 Storage cost per subcomponent piece per unit time
TE12 X172 Maximum storage size
RA X13 Resource Availability (categorical variable)
QMC Q Quality Measure of Coordination

The Regression Function of Model 24 is accepted as:

Q =1a + a.F+ a.F,+ a;.F3 + a,Fs+as.Fs+acFg+

3.7.F1/\2 + ag.FzAz + ag.F3/\2. + a|o.F4/\2 + a1|.F5/\2 + alz.F(/\Z +
a;.Fi.Fy + a4 F.F3 + a;5.F.F4 + a,.F.F5 + a,..F.Fg + a;3.Fp.F3 +
a10.F2.F4 + a3.F5.Fs + a,.F».Fg + a,,.F3.F4 + a5;.F3.F5 + a,.F3.Fg +
a5.F4.F5 + a.F4.Fg + ay,.F5.Fg

with

a= 0.784, a,=0.161, a,=-0.343, a:=0.135, a:=0.137, a,=0.150,
a,=-0.047, a,=0.007, a;=-0.059, a,=-0.033, a,;=-0.022, a,;=-0.02,
3.12:0.000, 313:-0.04, a14:0.215, a15:-0.175, 316:-0.218, 317:0.053,
a 15=0.006, a,,=0.00, a,=-0.003, a,=-0.003, a,,=0.040,
a,=0.027, 2,,=0.00, a,=-0.029, a,c=0.011, a,;=0.120.

Based on
O o(h,. ) =3 2%
ox, e ia OF, ox,
we have set each equation ( k=1, 13) to zero:
bs (a2 + ai3.Fi + 2a3.F, + a;5.F; + a30.Fs + a,.F) =0
b3 (a| + 237.F|+ 313.F2 + 314.F3 + 315.F4 + au,.F5 + 317.F(,) =0

bs (a3 + a10.F) + a.F, +2a0.F; +ay.Fy +ax.Fs) =
bis(as + ain.Fi + a,.F, + ax.Fs + ax.Fs) =
b (aA +a;5.F) + a5 F; +2a,0.Ft a.Fs + aza-Fo) =
bis (as+ aie.Fi + ax.F, +an.F; + axs.F, +2a,,.Fs + az7~F5) =0

The above equations can be solved for the F’s and, subsequently,
for the variables x; by using, for example, the mathematical
programming package Maple. Checking whether Q is maximum is a
little more complicated but several techniques are available in the
literature on numerical optimization.

A few more words should be said about certain plausible aspects
of agent behavior in Intelligent Agent Societies. Their numerical
evaluation will be possible when we introduce additional TEs that
appear to be potentially relevant to the behavior of the P-System.
The most plausible aspects in an intuitive order are:

Autonomy and power: This reflects the degree to which agents
are controlled by other agents. Exogenous factors may give certain
agents the ability to enforce their decisions on other agents (i.e.,
forced cooperation). This phenomenon is most clearly apparent in
studies of political and other social systems [8-11]. It introduces the
element of force majeure into coordination problems and makes
coordination processes somewhat simpler. Relative power affects
subtask assignment, agent strategies and interaction methods.

Accuracy of knowledge about other agents: Agents in an IAS
generally build and uses models of other agents to forecast others’
actions [12-14]. The more accurate the model, the greater the ability
of the agent to predict global requirements and tailor its own activity
accordingly. Accurate knowledge allows the adoption of effective
interaction strategies and improved conflict resolution.

Connectivity: The connectivity of an agent can be defined as the

number of other agents with which it can interact [15,16]. The
higher the connectivity of agents, the likelier they are to obtain the
help/information they need, and the better the chances of efficient
coordination and optimal solutions to problems. Connectivity thus
directly affects coordination.

Agreement between agents’ goals. The relations between the
goals of different agents are important because they underlie the
interactions between agents (interaction with the purpose of
achieving goals). Extremes may range from a cooperative problem-
solving system where all agents will cooperate on a common goal to
a purely competitive system where each agent seeks to maximize its
expected utility, at the expense of any and all other agents [9,17,18].

Coverage: The knowledge particular agents have, the processes
they can execute, and the data they have access to, all influence the
assignment of tasks to agents. The coverage of an IAS relative to a
task reflects the amount of the task that can be performed by the
society [19]. If many agents can perform a task, the coverage can be
said to be higher than if only one or a few agents can do it. The
higher the coverage, the more flexible the system and the fewer the
constraints on task assignment and similar coordination problems.

Cost versus Time: We will be able to identify the Cost function
when Total Time is minimized and the Time function when Total
Cost is minimized — an important practical issue when realistic
compromises are sought between time and cost.

6 CONCLUSIONS

In general, we can state that coordination is a combination of a
variety of mechanisms aimed at substituting for the unattainable
perfect world of complete and uptodate knowledge of goals, plans,
actions and interactions as well as of agents’ unlimited processing
and communication power. This is done by means of an appropriate
and adaptive organizational structure (well-balanced division of
labor and flexible interaction among agents), exchanging meta-level
information (e.g., control information, planning methods, credible
commitments, joint model building of the environment), and
reducing logical coupling and resource dependencies of agents
(effective techniques for task allocation, resolving resource conflicts
and logical contradictions, and the like).

In this exploratory work, we have outlined and proven the
feasibility of an approach that can lead to quasi-optimum
coordination in a characteristic subset of Intelligent Agent Societies.
Because of the limited number of control variables (TEs)
incorporated in the system at this stage, we do not present the
quantitative aspects of their role in the management of coordination.

7 RELATED WORK

Much of the existing research in DAI adopts a solution-oriented
approach, as opposed to a theory-oriented approach, and is directed
at demonstrating the validity of constructs and approaches for
modeling specific phenomena or solving specific classes of
problems. There are, however, several exceptions as follows.



Huberman and associates [20-22,13] have worked on statistical
physics-based models of IASs in relation to resource contention and
predictive behavior. Rosenschein and associates[23-26] have related
game theory to interaction protocols and coalitions. Gasser [27]
gives a detailed account of the range of DAI approaches to
coordination. Lesser and Decker [12,19,28-30] conducted research
directed at the design of coordination mechanisms using their
effectiveness on the characteristics of the tasks and the environment.
Nagendra Prasad and Lesser [31] use the "facilitates" and "enables"
relationships in agents learning coordination strategies. Malone and
Crowston have introduced basic concepts of coordination science
[1,2,9,17,18,32]. Their work is based on characterizing
dependencies and analyzing specific processes for managing them.
Durfee and Montgomery reduce coordination to search [33]. Malone
[32] discusses hierarchies and markets based on the latter three
activities. Carley and Prietula [8] emphasize the increasingly
complex nature of IASs because intelligent agents tend to act in
parallel and to adapt to the behavior of other agents. Jennings
[10,34] has proposed techniques dealing with commitments (pledges
to undertake a specific course of action) and conventions (means of
monitoring commitments in changing circumstances). Findler and
associates [35-39] examined variations in system behavior in terms
of variations of the precision of agents’ models. This work simulated
the development of patterns of behavior and the onset of chaotic
regimes. With certain specific assumptions, use was made of
interactions between agents and about individual agents” models of
the decision procedures of other agents. Coordination was taken the
process by which an agent reasons about its local actions and the
anticipated actions of others in trying to ensure community acts in a
coherent manner. This was shown to be the key to achieving the
overall objective of coordination. The raison d'étre of multi-agent
systems is that no individual agent has sufficient competence,
resources, or information to solve the entire problem by itself.

Last but not least, we single out the excellent book by Cohen on
empirical methods in Artificial Intelligence [40].
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