
Avoiding Resource Conflicts in Intelligent Agents
John Thangarajah and Michael Winikoff and Lin Padgham and Klaus Fischer

Abstract. An intelligent agent should berational, in particular it
should at least avoid pursuing goals which are definitely conflict-
ing. In this paper we focus onresource conflictin agents that use a
plan library organised around goals. We characterise different types
of resources and define resource requirements summaries. We give
algorithms for deriving resource requirements, using resource re-
quirements to detect conflict, and maintaining dynamic updates of
resource requirements. We also discuss ways of resolving resource
conflict. Our approach does not represent time, rather it keeps re-
source summaries current. This enables an agent’s decisions to be
made on the basis of up-to-date information and allows us to develop
efficient runtime (online) algorithms.

1 Introduction

An intelligent agent should berational. Part of being rational is to
avoid actions that interfere with each other. A rational agent should
not simultaneously pursue a goalG1 and a goalG2 if G1 prevents the
achievement ofG2. Typically an intelligent complex agent will have
multiple goals which are active simultaneously. In adopting goals it
should be aware of conflicts that make it clearly irrational to pursue
certain goals simultaneously [11].

One important type of conflict isresourceconflict. In traditional
planning resource issues are managed as part of a complete planning
process. However, in agent systems the plan to be used is chosen
at runtime, based on the current context. This approach is important
because in general agents operate in dynamic environments where
things outside the agent’s control are likely to change the environ-
ment - and thus the possible ways to achieve a goal that the agent is
pursuing.

Different ways of accomplishing a goal may use different re-
sources. Consequently we cannot always say in advance precisely
what resources will be needed to accomplish a given goal. How-
ever we could represent and reason aboutpossibleresource needs for
achieving a goal. If particular resources are needed in every way that
the agent knows how to achieve a given goal, then we can conclude
that these arenecessaryresources.1

Resources may be consumable, i.e. they are no longer available
following use, or reusable, i.e. following usage they are again avail-
able. For example energy is a typical consumable resource, whereas
a communication channel is a typical reusable resource.

We present in this paper mechanisms that allow agents to be aware
of necessary and possible resource needs when adopting a goal, and
how these interact with resource needs of goals already being pur-
sued. We define ways in which rational agents should act with re-

1 Note that having all necessary resources does not mean that sufficient re-
sources are available to achieve the goal. For example, if plan A for achiev-
ing G requires resources X and Y, and plan B requires resources Y and Z,
then we can conclude that Y is a necessary resource. However sufficient
resources for successful achievement of G would be (Y and (X or Z)).

spect to goal adoption and resource needs, and also define additional
reasoning which intelligent agents may do to more successfully man-
age potential conflicts over resources. For example consider an au-
tonomous robot with 10 units of energy, and two goals, one of which
requires 8 energy units, the other 5. It would not be rational if the
robot pursued both of these goals, as it is obvious that one must fail.
If this same robot had two goals, each requiring a communications
channel, (and only one communications channel was available) an in-
telligent robot may conclude that it could pursue both, but that there
may be scheduling issues around this resource.

The approach we use involves a notion of resource summaries sim-
ilar to that used by Clement et al [2, 4, 3], though with some differ-
ences2. The algorithms they present in [2] allow for expansion and
scheduling of appropriate plans prior to execution, whereas our ap-
proach allows for online assessment and if necessary monitoring and
scheduling. Their approach is not suitable for the kind of agent sys-
tems which we work with, which operate in dynamic domains where
in general it is not possible to decide which plans to use in advance
as they depend on (changing) environmental conditions.

2 Plan & Goal Representation in Agents

For the purposes of this paper we assume that agents have a library of
programmer-provided plans. Each plan consists of (i) an indication
of the goal for which it is relevant, (ii) a context condition which de-
scribes the situations in which the plan is applicable, and (iii) a plan
body which specifies what the plan does. We assume that plan bod-
ies can contain subgoals and actions. These are combined by either
sequencing them (e.g. “achieve goalG1 and then perform actionA”
written as “G1; A”) or by performing them in parallel (e.g. “achieve
goalsG1 andG2” written as “G1‖G2”).

Formally, we have a mapping from a goalG to the set of rele-
vant plansP (G) for that goal. Each planP has a context condition
context(P) that is a logical formula over the agent’s beliefs; and a
plan bodybody(P) wherebody(P) ::= A | G | P1 ‖ P2 | P1; P2.
A plan which is relevant to goalG, has contextC and bodyP is
written asG : C ← P . We shall sometimes writeπi = G : C ← P
to indicate thatπi is an abbreviation for the plan in subsequent dis-
cussion. An empty context (C) is equivalent to true.

The execution cycle of an agent consists of the steps:

1. Match a goal instance against plans in the plan library obtaining a
set ofrelevantplan types.

2. For each relevant plan type, evaluate its context condition giving
a plan instance for each context condition which evaluates to true.

2 Clement et al. attach resource summaries to actions and propagate upwards
to the level of abstract plans, while we attach resources to goals and plans,
with no distinction between abstract and concrete plans.

3. Remove any plan instances which are equivalent to previously
failed plan instances for this goal instance. The remaining set of
plans are theapplicable plans.

4. Select an applicable plan and execute it.

If a plan fails, the goal instance remains active and new applicable
plans are calculated and tried. If there are no applicable plans left,
the goal fails.

The assumptions made correspond to a class of agent systems. One
particular type of agent system that fits in with these assumptions
is those based on the Belief-Desire-Intention (BDI) model [9]. For
example, PRS [7], JAM [6], dMARS [5], and JACK [1].

2.1 Example

Consider a rover robot which is deployed on the Martian surface.
The robot obtains energy from solar panels and is given requests to
perform various experiments (Exp) on various substances (A,B).
The following are some resources arising naturally in this domain:

• Energy is a consumable resource (which can be renewed by bask-
ing in the sun at suitable hours of the day).

• Communication channelsfor communicating with other rovers
and transmitting results back to the control station. They are a
reusable resource.

The rover may have the following among its set of plans:

π1 = Exp(A&B) : ← Exp(A) ; Exp(B) ; Merge&StoreData

π2 = Exp(A&B) : FreeRover(x)←
(Exp(A)‖ Delegate(x, Exp(B))) ; Merge&StoreData

π3 = Exp(A) : ← Collect(A) ; Analyse(A)

π4 = Exp(B) : ← Collect(B) ; Analyse(B)

π5 = Delegate(x,Exp(B)) : ← TransmitRequest(x, Exp(B)) ;

WaitResponse(x, Exp(B))

We will use this example to illustrate the kinds of reasoning our agent
can do regarding resource conflicts and pursuit of goals.

3 Characterisation of Resources

In order to reason about resource needs and how these affect the pur-
suit of goals, we must develop a representation of resources which
supports the desired reasoning.

We assume a set of resource typesT = {t1, . . . , tn}. For example
Trover = {energy, ComCh}.

A resource requirementis a pair of a resource type and a num-
ber, (t, n), wheren ≥ 0. For example(energy, 200). The number
represents an amount of the resource.

We define a resource setR as a set of resource require-
ments. In our formal definitions we shall assume that re-
source sets arenormalised so that each resource type ap-
pearsexactly once. For example, given the resource types above
the resource set{(energy, 20), (energy, 30)} is normalised to
{(energy, 50), (ComCh, 0)}. In future we assume the presence of
the resource types that have a value of 0 in the normalised resource
set and do not explicitly include them for clarity.

We denote thereusable resourcesof resource setR by Rr and the
consumable resourcesby Rc (R = Rc ∪Rr, Rc ∩Rr = ∅).

Resource setR1 is smaller than resource setR2 (written R1 v
R2) if any resource type that appears inR1 also appears inR2 and

if whenever a resource typet appears inR1, the amount required is
less than the amount required inR2. Formally (recall that we assume
normalised resource sets)R1 v R2 iff ∀t.R1(t) ≤ R2(t) where
R(t) denotes the amount of resource typet in R. Note thatv is a
partial order (reflexive, transitive, antisymmetric). We useR1 < R2

to denoteR1 v R2 ∧ R1 6= R2.
We use two types of resource sets:necessary(N) and possible

(P). A resource summaryS consists of these two sets of resource
requirements: FormallyS = 〈N, P 〉. Note thatP is always greater
thanN : any resource which is necessary for successful execution is
also possibly required (formallyN v P). ThereforeN gives a lower
bound of the resources required whileP gives an upper bound.

3.1 Deriving Resource Requirements

We now describe how we can determine the resource summaryS for
each plan and each goal within our system. This resource summary
can then be used to determine various levels of potential conflicts, or
when it is safe to pursue given goals in parallel.

We derive the resource requirements for a goal by combining the
resource requirements of all the relevant plans for that goal. The re-
source requirements of a plan are calculated by combining the re-
source requirements of the subgoals and actions within the plan body.

We do not attach resources to each individual action but rather
allow the programmer to specify for a plan the resource summary
(PR) which captures the necessary resource requirements for the
actions in that plan3. For example the Martian rover agent’s plans
might be annotated to indicate thatπ4 uses{(energy,100)} andπ5

uses{(energy,10), (ComCh,1)}.
We now define a number of operators over resource sets and re-

source summaries to facilitate the computation of resource sum-
maries of goals and plans at all levels. We definet which com-
putes the upper bound (maximum) of two resource sets. IfR1 =
{(a, 10), (b, 15)} and R2 = {(a, 5), (b, 17)} then (assumea and
b are reusable)R1 t R2 = {(a, 10), (b, 17)}. Dually, u com-
putes the lower bound (minimum) and is used when merging nec-
essary conditions: if the relevant plans forG are{P1, P2} and the
necessary resource forP1 and P2 are respectively{(a, 12)} and
{(a, 7), (b, 2)} then thenecessaryresources forG are {(a, 7)}.4
When determining the resource needs of a plan we need to dis-
tinguish between sub-goals within a plan that are achieved in se-
quence and in parallel. IfG1 and G2 are done in parallel then
the resources can be simply added (⊕) together. If they are done
in sequence, addition would suffice for resources that are consum-
able, but for resources that are reusable we need to merge the re-
sources together using the upper bound (t) since afterG1 com-
pletes it would release the resources which can then be reused
by G2. For example, ifG1 requires{(ComCh, 1), (energy, 100)}
and G2 requires {(ComCh, 1), (energy,50)} then G1‖G2 re-
quires {(ComCh, 2), (energy, 150)} whereas G1; G2 requires
{(ComCh, 1), (energy, 150)}.

R1 tR2 = {(t, max(R1(t),R2(t))) | t ∈ T }
R1 uR2 = {(t, min(R1(t), R2(t))) | t ∈ T }
R1 ⊕R2 = {(t, R1(t) + R2(t)) | t ∈ T }
R1 ⊗R2 = (Rc

1 ⊕Rc
2) ∪ (Rr

1 tRr
2)

3 The reason for this is that it gives a better mapping to implementations,
where a plan may consist of arbitrary code plus subgoals, rather than the
simpler formalisation given here. It also relieves the programmer from the
need to specify resource requirements at the level of each action.

4 Note that{(a, 7)} is necessary, however, it is not sufficient.

In computing the (maximum) resource requirements for a goal we
must consider the fact that more than one plan may be executed in
order to achieve a goal. Consumable resources that have been used
in this process cannot be recovered. Consequently the possible re-
source needs of the goal must combine the resource needs ofall rel-
evant plans, as if each were to be executed sequentially. However the
treatment of necessary resources requires that only resources that are
necessary inall relevant plans are necessary for the goal. We define
the operator] which combines the resources as follows:

〈N1, P1〉] 〈N2, P2〉 = 〈N1 uN2, P1 ⊗ P2〉

For example, if R1 = 〈{(energy, 30)}, {(ComCh, 1),
(energy, 50)}〉 and R2 = 〈{(energy, 20)}, {(energy, 20),
(ComCh, 1)} 〉 thenR1] R2 = 〈 {(energy, 20)}, {(energy, 70),
(ComCh, 1)}〉. In the above case the necessary energy is 20 be-
cause that is the minimum energy required to achieve the goal (i.e.
by choosing the plan requiring resourcesR2). The possible energy
required is 70 because if the plan requiring resourcesR2 is chosen
and fails, followed by execution of the plan requiring resourcesR1,
then the total possible energy required is 70 units. Since the resource
ComCh is a reusable resource, even though it is required by both
R1 andR2 it is required only once overall.

We can now formally define a functionS which takes a goal or
program and computes the resource summary by combining the re-
source summaries of its components. We define the lifting of the op-
erators⊕,⊗,u, andt to operate on pairs of resources in the obvious
way, for example〈N1, P1〉 ⊕ 〈N2, P2〉 = 〈N1 ⊕N2, P1 ⊕ P2〉. We
denote the resource requirements of a goalG and a planP by S(G)
andS(P) respectively. Note that they are each a two tuple〈N, P 〉.
We denote the set of relevant plans for a goalG by P (G).

S(P) = 〈PR, PR〉 ⊕ S(body(P))

S(A) = 〈∅, ∅〉

S(G) =
⊎

p∈P (G)

S(p)

S(P1‖P2) = S(P1)⊕ S(P2)

S(P1; P2) = S(P1)⊗ S(P2))

Let us now consider our example. The Mars Rover has a goal
exp(A&B) to perform experiments on substancesA andB. Recall
that the rover has two plans for this. The first,π1, performs experi-
ments onA, followed by experiments onB and then stores the re-
sults. The second plan,π2, performs experiments onA while simul-
taneously delegating the experiments onB to another rover that is
free. Let us assume the following resource summaries forπ3, π4,
andπ5, and assume the actionMerge&StoreDatadoes not require
any resources:

S(π3) = 〈{(energy, 100)}, {(energy, 100)}〉
S(π4) = 〈{(energy, 100)}, {(energy, 100)}〉
S(π5) = 〈{(energy, 10), (ComCh, 1)},

{(energy, 10), (ComCh, 1)}〉

we then compute the resource summaries ofπ1 andπ2 as follows:

S(π1) = S(π3)⊗ S(π4) = 〈{(energy, 200)}, {(energy, 200)}〉
S(π2) = S(π3)⊕ S(π5) = 〈{(energy, 110), (ComCh, 1)},

{(energy, 110), (ComCh, 1)}〉

We compute the resource summary forexp(A&B) as follows:

S(exp(A&B)) = S(π1)] S(π2)

= 〈{(energy, 110)},
{(energy, 310), (ComCh, 1)}〉

4 Resource Conflicts

We can use the resource summary information to detect if a set of
goals can be executed concurrently with no resource conflicts. Given
a set of goals{G1, . . . , Gn} with associated resource summaries
〈Ni, Pi〉 we define thesequential upper bound

⊗
Pi, the paral-

lel upper bound
⊕

Pi, thesequential lower bound
⊗

Ni, and the
parallel lower bound

⊕
Ni. The sequential cases correspond to the

resource requirements with maximal reuse (of reusable resources)
whereas the parallel cases assume no reuse. These quantities are re-
lated as follows5 (see also the diagram below)

⊗
Ni v

⊕
Ni v⊕

Pi and
⊗

Ni v
⊗

Pi v
⊕

Pi, however
⊗

Pi and
⊕

Ni are
not, in general, comparable. Thus there are three primary cases: the
available resources,R, can be either less than the sequential lower
bound, greater than or equal to the parallel upper bound, or in be-
tween the two. The first case,R <

⊗
Ni, indicates that it is im-

possible to achieve all of the goals given the available resources. The
second case,

⊕
Pi v R, indicates that even if no resource reuse

takes place, there are sufficient resources. That is, the goals can be
simultaneously executed in any way.

⊕Pi

⊗Ni

⊗Pi ⊕Ni

co
nf

li
ct

sa
fe

schedule-

dependent

schedulable

The third case (
⊗

Ni v
R <

⊕
Pi) indicates uncertainty.

However, there are two interest-
ing sub-cases. The first is where⊗

Pi v R <
⊕

Pi. In this
case there are enough resources
to achieve the goals, but resource
reuse is required. That is, the goals
areschedulable: by scheduling ap-
propriately we canguaranteethat
there will be enough resources.
The second interesting sub-case is
where

⊗
Ni v R <

⊕
Ni. In

this case we know that if we do
not reuse resources appropriately, then there will not be enough re-
sources. We term this caseschedule-dependent.

These cases define how a set of goals6 can be compared to avail-
able resources to determine whether there are enough resources and
whether scheduling is necessary and/or possible. Note that it is possi-
ble for a set of goals to be both schedulable and schedule-dependent
if

⊗
Pi <

⊕
Ni, in this case we know that reuse is both necessary

and possible, i.e. that we succeed if and only if resources are suitably
reused. We denote the status7 (according to the cases above) of a set
of goalsG with respect to the available resourcesR asstatus(G,R).

Let us return to our example. Suppose that the agent has two goals
G1 and G2 with the following resource requirements:S(G1) =
〈{(energy, 110), (ComCh, 1)}, {(energy, 310), (ComCh, 1)}〉
and S(G2) = 〈{(energy, 50), (ComCh, 1)},
{(energy, 90), (ComCh, 1)}〉. Thenstatus({G1, G2},R) is:

5 Observe thatA ⊗ B v A ⊕ B for anyA andB, that⊗ and⊕ are both
monotonic, and thatN v P .

6 A special case is where the “set” of goals consists of a single goal, in this
case “conflicting” means that there are not enough available resources for
the goal to succeed.

7 We use “schedulable&schedule-dependent” to denote the case where both
sub-cases apply.

• Safe8 if
⊕

Pi = {(energy, 400), (ComCh, 2)} v R
• Schedulableif

⊗
Pi = {(energy, 400), (ComCh, 1)} v R <⊕

Pi

• Schedule-dependentif
⊗

Ni = {(energy, 160), (ComCh, 1)}
v R <

⊕
Ni = {(energy, 160), (ComCh, 2)}

• Conflictingif R < {(energy, 160), (ComCh, 1)} =
⊗

Ni

• Uncertainotherwise.

However, instead of assessing the safety of a set of goals, what
we wish to do most often is to determine the risks associated with
adding a new goal or goal setG to an existing goal setE. However,
we cannot simply apply the definitions above. The problem is that
if status(E,R) is not safe thenstatus(E ∪ G,R) will not be safe
even ifG uses no resources and so we cannot determine whether or
not G requires scheduling. The solution is to determine the risk of
adoptingG by only considering the resource types which are used
by G. Formally, we define a notion of restriction – given resource
setsR1 andR2 the restriction ofR1 by R2 (written R1 ↓ R2) is
those resources inR1 that are also used inR2:

R1 ↓ R2 = {(t, if R2(t) > 0 thenR1(t) else0) | t ∈ T }

We then use the definitions given above but restrict resource sets be-
fore comparing them. In comparisons involvingPi we restrict by the
possible set of the goalsG. In comparisons involvingNi we restrict
by the necessary set of the goals. So, for example, if we have existing
goalsE = {G1, G2} as above and the new goal being considered is
Gnew whereS(Gnew) = 〈NGnew , PGnew 〉, then the test for safety
is whether(PGnew ⊕

⊕
PE) ↓ PGnew v R and the check for

conflict isR < (NGnew ⊗
⊗

NE) ↓ NGnew .

4.1 Algorithm

The algorithm below computes the status of adding a new set of goals
G to an existing set of goalsE where the resourcesR are avail-
able. The algorithm considers each resource type separately. After
all resource types are computed the results are joined yielding a sta-
tus for the goal setG. We definestatust(G,R) to be the same as
status(G,R) except that all resource types other thant are ignored.

function status(G,E,R)
〈NG, PG〉 := S(G)
for each resource typet ∈ T

if NG(t) = 0 ∧ PG(t) = 0 then statusG[t] := safe
else ifNG(t) = 0 then

Ignore comparisons with necessary resources.
if statust(E ∪G,R)=conflict then statusG[t]:=uncertain
else ifstatust(E ∪G,R)=schedulable&schedule-dependent

then statusG[t]:=schedulable
else ifstatust(E ∪G,R)=schedule-dependentthen

statusG[t]:=uncertain
elsestatusG[t] :=statust(E ∪G,R)

elsestatusG[t] :=statust(E ∪G,R)
endfor
if ∃t : statusG[t]=conflictthen return conflict
if ∀t : statusG[t]=safethen return safe
if ∀t : statusG[t]∈ {safe,schedulable&schedule-dependent,

schedulable} then
if ∃t : statusG[t]=schedulable&schedule-dependentthen

return schedulable&schedule-dependent

8 This only means that the set of goals are safe with respect to resources –
failure can still be caused by other factors including logical conflict.

else returnschedulable
if ∃t : statusG[t] = schedule-dependentthen return schedule-dependent
else returnuncertain

The algorithm presented allows the agent to determine how safe it
is to adopt a goal with respect to its existing set of active goals. This
information allows the agent to be rational in its adoption of goal by
not adopting conflicting goal sets9.

4.2 Dealing with conflicts

If the agent determines that a new goal setG is conflicting with re-
gard to its currently active goalsE (and adoption will therefore in-
evitably cause the failure of some goal), then it is clearly not rational
to simply adopt the new goal set. The only rational behaviour is to
not adoptG, or to drop some existing goal(s) giving a revised set of
existing goalsE

′
such that

⊗
Ni v R for the setG ∪E

′
.

In the case thatG is neither conflicting nor safe with regard toE
the agent has a number of choices. It may be cautious and always
defer or reject a non-safe new goal set; or it may be optimistic and
always go ahead as long as the goals aren’t definitely conflicting. Al-
ternatively, it may do further reasoning about the remaining resource
needs of partially completed goals, and/or choose to monitor the ex-
ecution of the non-safe goals. These choices may depend on whether
the new goals were determined to be schedulable and/or schedule-
dependent, or uncertain with respect to the existing goals.

In pursuing a goalEi, once a sub-goal ofEi has completed, all
possible and necessary resources associated with that sub-goal are
no longer relevant. Reasoning about the remaining resource require-
ments of partially achieved goals can enable an agent to make more
up-to-date choices regarding its adoption of goals.

The following section describes a mechanism for maintaining in-
formation that efficiently calculates the remaining resource require-
ments for a partially completed goal.

5 Dynamic Updates of Resource Requirements

Each of an agent’s goals is represented by a tree consisting of nodes
representing goals and plans, with resource summaries attached to
each node. The initial goal-plan tree for each goal type can be created
at compile time (where resource amounts are unknown until runtime
a range of 0 to∞ is used). This tree can be updated at runtime by
deleting plans and goals as they complete and recalculating resource
summaries each time a node is deleted. For example in the figure
below, ifdelegateBis performed and deleted then summaries inexpA
andmerge & storecan be combined to provide an updated summary
for π2, which can in turn be combined with the summary ofπ1 to
provide an updated resource summary for the top level goal.

Although only the path from the root to the modified portion of
the tree needs to be traversed for each update, this may be costly if
done routinely (depending on the number of goals being pursued in
parallel and the branching factor of the tree). Consequently we can
simply flag nodes as requiring update, but delay the actual propaga-
tion of changes to resource summaries until we know that there is
some need for monitoring or recalculation. This occurs when a po-
tentially non-safe goal is being considered (requiring recalculation)
or when such a goal is adopted (requiring monitoring). We can easily
monitor only with respect to resources identified as contributing to
the goal set being non-safe.

9 It may also wish to reason about whether to drop existing goals but we do
not deal with that here.

An additional simple optimisation which we could use is to main-
tain a count at each node of the number of children which use each
resource. As a child node completes, this count can be decremented.
When it reaches zero the need for that resource can be set to zero for
goal nodes and to the value of that resource inPR for plan nodes.10

This can in some cases allow faster updating and propagation as once
a resource need is zero or the value of it inPR, remaining child nodes
can be disregarded with respect to that resource.

With these optimisations any cost beyond a couple of trivial oper-
ations is incurred only when a need is identified.

expA&B

expA expB merge&store

π1 π2

collect analyse collect analyse

π3 π3

expA delegateB merge&store

collect analyse request response

π3 π4

6 Conclusion

A rational agent should not adopt goals that clearly conflict. We have
presented mechanisms that allow an agent to be aware of the possi-
ble and necessary resource requirements of goals and to use these to
detect and avoid conflicts. We also recommend that intelligent agents
engage in reasoning behaviour about the current situation with regard
to partially achieved goals, and we provide algorithms to make this
computationally feasible.

The strengths of our approach of maintaining dynamic information
about partially achieved goals are that it allows us to avoid explicitly
representing time, and it has efficient runtime algorithms and simple
representations, amenable to use in real applications. This work con-
tributes towards achieving the consistency of goals which is a basic
assumed property of BDI agents [8] but where there is surprisingly
little existing practical work.

We have extended JACK [1] to incorporate goals, resource sum-
maries, mechanisms for creating the goal-plan tree, mechanisms for
dynamically updating this tree, and the algorithm for detecting the
status of adopting a new goal set. The resulting system has been used
to detect resource conflicts in the Mars rover example used in this
paper. Currently the agent is cautious and only executes safe goals.

Although our work targets single agents, it can be extended to a
multi-agent setting. A key issue is deciding when to communicate
changes to the resource summaries of goals: on the one hand we want
to communicate frequently so that each agent is working with up-to-
date information, on the other hand we don’t want to be sending a
message after every execution step.

Although the area of conflict in agent systems has seen significant
work (see for example [10]) the focus has been on understanding the
many types of conflict that can occur, rather than on providing algo-
rithms and data structures allowing conflict detection and resolution.
Also, much of the work has focussed on conflictsbetweenagents,
rather than on conflictwithin an agent as explored in this paper. The
latter allows for considerably richer solutions since more informa-
tion is available to the agent and since the inability to influence other
(autonomous) agents is not an issue.

In the area of databases and operating systems resource conflict is
also an issue. However, the requirements lead to different solutions:
whereas “classical” resource management prevents conflicts by using

10 recall thatPR is the user defined resource needs of the actions within a
plan.

locking, situated intelligent agents cannot always use locking, and
cannot always prevent conflict. However, since intelligent agents are
designed to detect and recover from various failures, it isnot neces-
saryto guarantee that no conflicts will occur – it is more important to
detectconflicts so that appropriate recovery steps can be taken. Note
that deadlock is not an issue since preemption is always possible (a
plan can be aborted).

Future work includes detecting and avoiding conflicts based on
issues other than resource needs, further investigation of the rep-
resentation of resources, and extending the presented algorithms to
better deal with cases where resource requirements are not known in
advance (at the moment these cases are handled by specifying infi-
nite possible resources and letting the dynamic update of resource
requirements make this more precise at runtime).

ACKNOWLEDGEMENTS

We would like to acknowledge the support of Agentis International,
of Agent Oriented Software Pty. Ltd. and of the Australian Research
Council (under grants C49906798 and CO0106934).

REFERENCES
[1] Paolo Busetta, Ralph R¨onnquist, Andrew Hodgson, and Andrew Lu-

cas, ‘JACK Intelligent Agents - Components for Intelligent Agents in
Java’, Technical report, Agent Oriented Software Pty. Ltd, Melbourne,
Australia, (1998).

[2] Bradley J. Clement, Anthony C. Barrett, Gregg R. Rabideau, and Ed-
mund H. Durfee, ‘Using abstraction in planning and scheduling’, in
Proceedings of the Sixth European Conference on Planning (ECP-01),
(September 2001).

[3] Bradley J. Clement and Edmund H. Durfee, ‘Identifying and resolv-
ing conflicts among agents with hiearchical plans’, inAAAI Workshop
on Negotiation: Settling Conflicts and Identifying Opportunities,AAAI
Technical Report WS-99-12, pp. 6–11, (1999).

[4] Bradley J. Clement and Edmund H. Durfee, ‘Performance of coor-
dinating concurrent hierarchical planning agents using summary in-
formation’, in Intelligent Agents VII : Agent Theories, Architectures,
and Languages (ATAL-2000), eds., Cristiano Castelfranchi and Yves
Lespérance, number 1986 in LNAI. Springer-Verlag, (July 2000).

[5] Mark d’Inverno, David Kinny, Michael Luck, and Michael Wooldridge,
‘A formal specification of dMARS’, inIntelligent Agents IV: Proceed-
ings of the Fourth International Workshop on Agent Theories, Architec-
tures, and Languages, eds., M.P. Singh, A.S. Rao, and M. Wooldridge,
pp. 155–176. Springer-Verlag LNAI 1365, (1998).

[6] Marcus J. Huber, ‘JAM: A BDI-theoretic mobile agent architecture’,
in Proceedings of the Third International Conference on Autonomous
Agents (Agents’99), pp. 236–243, (May 1999).

[7] F. F. Ingrand, M. P. Georgeff, and A. S. Rao, ‘An architecture for real-
time reasoning and system control’,IEEE Expert, 7(6), (1992).

[8] Anand S. Rao and Michael P. Georgeff, ‘Modeling rational agents
within a BDI-Architecture’, inPrinciples of Knowledge Representation
and Reasoning, Proceedings of the Second International Conference,
eds., James Allen, Richard Fikes, and Erik Sandewall, pp. 473–484,
(April 1991).

[9] Anand S. Rao and Michael P. Georgeff, ‘An abstract architecture for ra-
tional agents’, inProceedings of the Third International Conference on
Principles of Knowledge Representation and Reasoning, eds., C. Rich,
W. Swartout, and B. Nebel, pp. 439–449, San Mateo, CA, (1992). Mor-
gan Kaufmann Publishers.

[10] Conflicting Agents: Conflict Management in Multi-Agent Systems, eds.,
Catherine Tessier, Laurent Chaudron, and Heinz-J¨urgen Müller, Kluwer
Academic Publishers, 2000. ISBN 0-7923-7210-7.

[11] Michael Winikoff, Lin Padgham, James Harland, and John Thangara-
jah, ‘Declarative & procedural goals in intelligent agent systems’,
in Proceedings of the Eighth International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR2002), Toulouse,
France, (April 2002).

