Polynomial algorithms for clearing multi-unit single-item
and multi-unit combinatorial reverse auctions

Viet Dung Dang and Nicholas R. Jennings!

Abstract. This paper develops new algorithms for clearing multi- find it more beneficial to accept both bids partially; that is, trade

unit single-item and multi-unit combinatorial reverse auctions.(y: < 1) units with bidder 1 at pricé> - p; and tradey: (y2 < x2)
Specifically, we consider settings where bids are submitted in th&nits with bidder 2 at pric% -p2. Moreover, if the bids are expressed
form of a supply function and the auctions have sub-additive pricinterms of the correlation between the quantity of items and the price
ing with free disposal. Our algorithms are based on a greedy stratedyather than the simple linear extrapolation above), there will be even
and we show that they are of polynomial complexity. Furthermore more choice for the auctioneer, and, consequently, even more chance
we show that the solutions they generate are within a finite bound obf maximising its payoff. When viewed from the bidder's perspec-

the optimal. tive, the atomic nature of bids and the inability to explicitly relate
price and quantity means that opportunities for trade are lost because
1 INTRODUCTION the auctioneer may not want the entire package being offered, even

though elements of it may be acceptable.

Online auctions are a key enabling component of e-commerce since T4 overcome the aforementioned shortcomings associated with
they are an efficient method of allocating goods/services in dynamigtomic propositions, Sandholm and Suri consider the case in which
situations to the agents who value them most highly [8]. Tradition-agemS can submit bids that correspond to a demand or supply curve
ally, the most common forms of online auction are the simple, singleyepending on whether it is an auction or a reverse auction respec-
sided auctions in which a single item is traded (examples of suchyely [5]. Thus, bids are expressed in terms of a curve which corre-
protocols are English, Dutch, first price sealed-bid and Vickrey aucigtes the quantity with the price of an item. For example, an agent
tions). However as more trading takes place in such environment$nay express the bid as= 2 = p + 1, which means that the agent is
we believe their inherent limitations will become more apparent. Thiswilling to trade up tog = 2 = p + 1 units if the unit price equalg.?
will, in turn, increase the demand for more sophisticated marketynfortunately, their work is limited to multi-unit single-item auctions
places in which multiple units of multiple (potentially inter-related) and does not deal with the combinatorial case. This means their al-
items are traded simultaneously. Such auctions are callét-unit gorithm cannot explicitly cope with any interdependencies that may
combinatorial auctiong8]. In this type of auction, bidders may bid ayist between the purchasing of multiple items.
for arbitrary combinations of items. For example, a single bid may |, this paper, we develop novel clearing algorithms that remove the
be forg units of item 1 and2 x ¢ units of item 2 at pricel0 « ¢ if  shortcomings associated with the atomic proposition nature of previ-
q < 20, and at price30 * ¢ if ¢ > 20. This degree of flexibility  oys combinatorial clearing algorithms and the non-combinatorial na-
in expressing requirements, we believe, will be especially useful ifyre of Sandholm and Suri’s supply curve functions. Specifically, we
business-to-business e-commerce where there is often a need to tradgsider multi-unit single-item and multi-unit combinatorial reverse
multiple, inter-related goods or services on a massive scale. auctions in which bids contain an agent’s supply function. The algo-

While multi-unit combinatorial auctions have many potential ben- ithms that we develop have polynomial complexity and are shown
efits from an economic perspective [1], their main disadvantagegy pe within a finite bound of the optimal. For the time being, our
stem from the lack of computationally tractable clearing (winnerapproach is limited to reverse auctions (in which there is one buyer
determination) algorithms for determining the prices, quantities andy,q multiple sellers). Nevertheless, in the future, we aim to remove
trading partners as a function of the bids made. Without such algogis |imitation and develop algorithms for forward auctions.
rithms, multi-unit combinatorial auctions are simply not practicable. The remainder of the paper is organised as follows. Section 2 for-
To overcome this problem, there has been considerable recent wogk|ises the problem of reverse auction clearing. Section 3 developes
in this area (e.g. [1], [2], [3], [4], [6], [7]). However, almost all of this  an algorithm for the multi-unit single-item case and proves a num-
work has considered bids to latomic propositionghat are either  per of properties about the algorithm. Section 4 generalises the al-
accepted in their entirety or rejected. This view can limit the poten-gorithm to the multi-unit combinatorial case. Section 5 discusses re-
tial profit available to the auctioneer. For example, consider the casgyted work. Section 6 concludes and presents future work.
where there are only two bids; units of one good at price; andz»
units at pricep2, and the quantity the auctioneer wants to trade is les
thanz: + z2 units . In this case, the auctioneer has no choice othe REVERSE AUCTION CLEARING
than selecting one or other of the two bids. This may prevent the aucfhis section formalises the problem of clearing in multi-
tioneer from maximising its payoff. For example, the auctioneer mayunit combinatorial reverse auctions. Assume there rardtems

1 Intelligence Agents Multimedia Group, Department of Electronics and? Their price function calculates the quantity from the unit price. However, in
Computer Science, University of Southampton, Southampton SO17 1BJ, our work, the price function will calculate the unit price from the quantity,
UK. Email: {vdd0Or,nrj} @ecs.soton.ac.uk because we find the later more natural.



(goods/services)t, 2, ...,m andn biddersaq, as, ..., a,. The auc- However, this problem has been shown to be NP-complete, even
tioneer has a demar(d, g2, ..., gm ), in Which ¢; is the quantity of  for the simplified case of single-items with piecewise linear supply
item j that the auctioneer wants. Lej be the maximum quantity of curves [5]? Thus, it is impossible to find a polynomial algorithm,
item j thata, is able or willing to provide (ifa; does not provide an unless P = NP. Given this, a heuristic method is appropriate. To this
item 7, thenu{ = 0). LetN be the set of natural numbers aRd be end, the next section presents our algorithm for the single-item case
the set of non-negative real numbers. (i.e. wherem = 1), then we will deal with the combinatorial case as
Thesupply functions the price function of the items that each bid- a generalisation in section 4.
der is willing to sell. Bidder's supply function isP; : N — R*,
whereP;(r1, 72, ..,7m) is the price offered by bidderfor the pack-
age of itemgr, r2, ..., 7m ) @andr; is the quantity of iteny, r; € N, 3 XLBJ(IZ_H-C[)JI\,I\ISIT SINGLE-ITEM REVERSE
0<r; < uf V1 < j < m. For example, suppose that = 3,
then P (1, 3, 2) will be the price agent 1 offers for a package which ysing the notation of the previous section, the multi-unit single-item
is Composed of 1 unit of item 1,3 units of item 2 and 2 units of item case can be formulated as follows. [qebe the demand of the auc-
3 altogether. We consider settings where the price function satisfiegoneer and.; be the maximum quantity of the item thatwill pro-
two properties: vide. The supply function (in the single-item case it can be drawn as
a curve, so we can call it the supply curve) is the price function of the
item: P; : N — R* whereP;(r) is the price forr units when they
are sold altogether by bidder
< Pi(r1,72, o0y Tm) + Pi(51, $2, ..y Sm) 1) For mathematical convenience, in this section we will use the unit
price function instead of the price function. The unit price function
That is, buying any combination of two packages altogether istor each bidderi is: p; : N — R* wherep;(r) is the unit price
cheaper than or equal to buying these two bundles separately. gy the jtem when units are sold altogether by bidderThat is,
game-theoretic terms, this property is also catied-additive7]. pi(r) = @ ]
e Free Disposal: i¥/j : 0 < r; <'s; < uj, then: As before, we consider settings where the supply curve satisfies

Pi(r1, 72, ooy ) < Pi(51, 52 s Sm) @) the following properties:

e Discount: ifVj : r; +s; < ul, then:
Pi(r1+ 51,72 4+ 2, o0, Tm + Sm)

That is, if one package has no fewer units of each item than an® Discount:
other package, the former is not less expensive than the latter. pi(r) > pi(s),V0O<r <s<uy; (%)

The above assumptions are needed for the subsequent analysis ofThat is, the more units that are sold, the less the unit price is.
our algorithm and we believe they are applicable to a wide range o# Free Disposal:
applications (free disposal is a standard assumption adopted in most
of the aforementioned work on auction clearing, sub-additivity is less ropi(r) <s-pi(s),VO<r <s<w (6)
frequently used but is still realistic). Thus, they do not significantly
limit the scope of our results.

We now consider thsupply allocationwhich is the amount the
auctioneer buys from each supplier.

That is, the more units of the item that are sold, the more the total
price is.

The clearing problem is then one of finding a supply allocation
Definition 1 A supply allocation is a tupldr/},1 < i < n,1 <  {ai},1 <i<n,ie. agent; will provide a; units, such that:

i < m such that the auctioneer buyg units of item; from each . . ' .
éggnz- 3 ye J e The sum of supplies from bidders fulfills the auctioneer’'s demand:

n

Given the definitions of the supply function and the supply alloca- Z a(i) > g @)
tion, the problem of reverse auction clearing is then to find a supply N
allocation{a}},1 <i <n,1 <j <mthat:

i=1

e The total price paid by the auctioneer is minimised:
e Satisfies the demand

n

i ol > gVl <j<m 3) >~ ai - pi(as) is minimal. 8)

— i= A -7 - i=1
That s, the quantity of each item that the auctioneer buys from all W€ aré now in a position to express our algorithm for solving this
bidders is not less than the auctioneer's demand for that item. ~ Problem. Like [6] we adopt a greedy approach for solving this prob-

e Optimises the cost lem and our algorithm is presented in Figure 1.
~ 1 2 ™y is minimal Theorem 1 If there is a solution, then this algorithm will find it. That
Z Pi(e, a3, ., ") is minimal. (4) s, if the bidders can supply the units that the auctioneer demands,

=t then this algorithm will produce an allocation. Also, the solution will

That is, the total price of all the units of all the items supplied by supply exactly the number of units demanded by the auctioneer.
the bidders should be as small as possible.

4 Although [5] does not explicitly consider sub-additive pricing, their proof

3 Because items are bought at the price the bidders offer, the auctioneer mayalso holds for this case.
buy the same package from two different bidders at different prices, i.e., thé This is stronger than the Discount definition in the general case (inequation
auctions haveliscriminatory pricing[5]. 1). We use it here because it is reasonable for single-item pricing.



Algorithm 1 Repeat the following steps: Because supply allocatioft; } satisfies the demand (as in (7)):

n+1
e For all i such thatu; > g, setu; = gq. Z ti >q (11)

That s, we truncate the supply function to consider only quantities
that are not bigger than the demand. This is because in ordef to
minimise the total price, the auctioneer does not need to buy more But supply allocation{r; } supplies exactly the demand quantity
units than its demand, since the price functions satisfy the fre@y Theorem 1), thusy" "' r; = ¢ = Y70 6 > 2
disposal property (inequation (6)). = D ti 2 3 i (@Stny1 < Uny1 = Ty, from (10))

e At each step, find the bidden, that provides the smallest unit ~ Moreover, by inductive hypothesis, (9) is true forgents.
price, then takeu; to provide all its quantityu,. The smallest " " atl
unit price is found by determining the smallest element of the|set _, reops(rs) < - tomilt) < - topilts 12
o) i) oD Soriepi(r) <ne Y tiepi(ts) Sne Y tiopi(ts)  (12)

e Repeat the steps above for the set of biddéfsa, and gnew =
q — Uk (@stni1 - prta(tnis) > 0)

Also: 11 < g < S0 (from (11))

n+1
Figure 1. The clearing algorithm for the multi-unit single-item case. = Tog1 Pt (Tny1) < Z ti * Dnt1(Tnt1)

n+1

. = Tnt1 " Pnt1(Tnt1) < ti - pi(ti 13
PROOF In each step, the algorithm selects exactly one agent from - +1(ren) Z (t) (13)

the set of bidders. If its supply is less than the auctioneer’s remain-

ing demand, the algorithm takes all its supply. Otherwise it takes the (8Spn-+1(rn+1) is the smallest unit prlce)

quantity that is equal to the remaining demand. So, if the algorithm From (12) and (13), we havé: ™' r; - pi(r;) < (n + 1) -
does not terminate beforehand, it will eventually select all bidders(>_ ;- +1 ti - pi(ti))

and take all supplies. Thus, if the bidders can supply enough units The completion of the inductive step completes our probf.

to meet the demand, the algorithm will produce an allocation. More- Although multi-unit single-item auctions are not our main target
over, in each step, the algorithm takes at most all the remaining decase, this algorithm still represents a novel contribution in its own
mand, so the solution it produces will have the total units being equalight. While [5] targets the same environment as this, the algorithms

to the auctioneer’s demand. are only applicable in the specific case where the supply curves are
linear. In contrast, our result is applicable to the more general case;
Theorem 2 The complexity of algorithm 1 ©(n?). that is, sub-additive, free disposal supply curves.

PROOF At each step, it requirg9(n) to find the smallest element of
the set{p1(u1), .., pn(un)}. SO each step had(n) complexity. As 4 MULTI-UNIT COMBINATORIAL REVERSE

there are at most steps, the complexity i©(n?) O AUCTIONS
i ) o To deal with the multi-unit combinatorial case, we need to add one
Theorem 3 The solution generated from algorithm 1 is within & mqre assumption about the price functions of the items, namely there
boundb = n from the optimal. That is, leP,(O) be the optimal  gyists a numbek > 1 such that for any price function from any
total price andF,(S) be the total price of the solution of the algo-  pigder, K units of any item will be more expensive than 1 unit of any
rithm. Then: Pu(S) otheritemvV 1< j k<m,j#k deN:
P,(0) =n © Pi(ri,.,rj +d, Ty Tm) < Bi(T1, Ty oy e + Kdy oy Tim)

(14)
That is, for any package, if we substituteunit of any item in this
package byK - d units of any other item, then the price of the new
. . . package will be more expensive or equal to the price of the old pack-
Inductive step: Suppose that (9) is true far, we will prove that age. We believe this is a realistic assumption because in a competitive

(9) is also true fon + 1. That is, let(r1, 72, ..., 1) be the supply market the unit price of any item is always likely to be within a finite
allocation that the algorithm generates. Then we have to prove thaFange that is, it cannot be arbitrarily high or low.

S s pi(ri) < (n+1) - Potr(O). Or equivalently, for all other From this. & number of lemmas follow:
supply allocationst, to, .., t,+1) that satisfy the demand, their total '
price is greater thalqT times the total price of the supply allocation | emma 1 For any package of items, if we replaé¢enits of any item
produced by algorithm 1. That isif1, t2, .., tny1 SUCh thatl < with ¢ units of any other item, then the total price of the new package
ti <u, V1 <i<ntland} 75t > g, then: 0 ripi(ri) < ofitemsis not bigger thak times the total price of the old package:
(n+ 1) - (0t pilta). V1<jk<m,j#kdeN:

Proof of inductive step

Without loss of generality, assume that agept, provides the  Pi(r1,..,7; +d,...7k,...,7m) < K - Pi(r1,..,75, T + d, .., ")
smallest unit price, that i$)(un+1) = min?H p(u;). This means (15)
that agent:,,+1 is selected in the first step of algorithm 1 and:

PROOF. We prove by induction of the number of bidders
Base casén = 1): Inthe case where = 1 the solution is optimal
(because we have only one bid) so (9) is true wits 1.

PROOF We have: Pi(ri,..,r; + d,..,Tk,..,Tm) <
Tn+l = Un+1 (10) Pi('f'l, 3Ty Tk +Kd7 ..,Tm) (by (14))



Also P; satisfies the free disposal property (in (2)), thus:
Pi(’l“l, Ty + d, s Tk, ..,Tm)
< Pi(Kri,.,Krj,...Kriy+ Kd, .., Kry,)
< K-Pi(ri,.,rj,.,rp +d,..,rn) (by (1))O

Algorithm 2 Repeat the following steps:

e Forall 4, such thaw? > ¢;, setu? = g;.
That is, we truncate the supply function to consider only quantities
that are not bigger than the demand. This is because to minimise
the total price, the auctioneer does not need to buy more units than
its demand, as the price functions satisfy the free disposal propgrty
(in (2)).

e Find the biddera), such that:

Lemma 2 For any two packages, if the total number of units of the
first package is not bigger than the total number of units of the second
package, then the total price of the first package is not bigger thar
K™~ times the total price of the second packaye: < i < n,
VT1, 72,5 ey Ty 81, 82, .0y Sm SUCh thad ST 7y <377 s, then:

Pk(ul];7ui7 vy U )

m—1 is minimal,
P»;(Tl,T27..,7Tm) SK Pi(51,82,.,.,8m) (16) uk+uk+ 4w
PROOF Letd; = (s; — 1) then select,, to provide all its units(u}c, Uz, up).
. - . That is, we consider all the biggest packages offered by the bid-
- Z d = o Z r >0 (17) de_rs, then choose the package that offers the lowest average| unit
= = price.
Note that this is not necessarily the package that offers the lowest
Now there are 2 cases: average in all packages, because a smaller package may haye a
smaller average unit price.
e Caseld; > 0,V1 <i < m.Thenwe haveP;(ri,r2,...,mm) < e Repeat the steps with the new set of biddérsax and demand

P;(s1,s2,...,sm) (becauseP; satisfies the free disposal property e = q; — ul.
in (2)). ThusP; (11,72, ..., rm) < K™ ' Pi(s1, 82, ..., 8m).

e Case 2 There exists al;, < 0. Then without loss of generality,
suppose thad,,, < 0. We have:P;(r1,7r2,...,7m—1,7m) < K -
Pi(r1 — dm, T2, .., Tm_1, Sm) (Dy lemma 1).

Letriz) =r1 — dm, TEQ) =7r,V2<i<m-—1.

Figure 2. The clearing algorithm for the multi-unit combinatorial case.

= P-(rl,rg,.. Tm—1,Tm) < KvPi(r?) ;2), . fL) 1,8m)
Also: Z D D rLE VI S D rt o S ) (G gznl LPi(r1, 0, 7m) 2 Pils1,, 5m) (by (20))
Z _1 Sj (by(l?)) = 9K™~ 1, P(Tlﬂzy 5Tm) > Pi(51,582,.-::5m)

+rm — si1+s2t+...tsm
With these Iemmas in place, we can now present the generalisation

of the single-item algorithm to the combinatorial case (Figure 2).
We can now analyse this algorithm to assess its properties.

Repeat the whole step above, it will take at most— 1 steps
to terminate. Thus, after at most — 1 steps, we will have:
Pi(rla T2, .0y Tm) S Kmilpi(slv 82, .0ty Sm) g

Theorem 4 Ifthere is a solution, then this algorithm will find it. That
is, if the bidders can supply the units that the auctioneer demands,
en this algorithm will produce an allocation. Also, the solution sup-

plies exactly the number of units demanded by the auctioneer.

Lemma 3 For any two packages, if the total number of units of |
the first package is not bigger than the total number of units of th
second package, then the average unit price of the first package
not smaller thanW times the average unit price of the sec-

ond packagevl < i < n, 11,72, ..., Tm, 81, 52, ..., m SUCh that PROOF. The proof is the same as that of theorerl.
Doty <300, s, then:

Theorem 5 The complexity of algorithm 2 i@ (n?)

m1 Pi(r1,72, .y Tm) Pi(s1,82,..., Sm)
2K . > (18) . . '
ri4ret ..+ rm S+ S2 4 ..+ Sm PROOF At each step, it require9(n) to find the smallest element
o of the set| M ™_,. So each step ha3(n) complexity.
PROOF. Letk = [%in L2 7} that is,k is the integral part 0%. { uptug oty Yzt (n)
17 As there are at most steps, the complexity i©(n?). O
Z;" L8 Theorem 6 The solution generated from algorithm 2 is within a
=k< T k+1 (19)  boundb = 2n - K™ from the optimal. That is, leP, (O) be the
J ml - optimal total price andP,, (S) be the total price of the solution of the
algorithm. Then:
= (k+1 > i
R+ DY r >3 s, Pa(S) _ 0 pom e
P,(0) —

= K™ 'P((k+ 1)r1,.., (k + 1)rm) > Pi(s1, .., 8m)
(by lemma 2) PrROOF We prove by induction of the number of bidders
Base casén = 1): In this case, the solution is optimal (because
= K™ (k4 1)P;(r1,..,rm) > Pi(s1, ..,sm) (by (1)) (20)  thereisonly one bid to choose from), so (21) is true witk 1.
Inductive step: Suppose that (21) is true far, we will prove that

Also: YTy <3 sy = %T’ L% > (21) is also true fom + 1. Thatis, let{r?},1 < i < n 4+ 1,1 <
Trsy j < m be the supply allocation that algorithm 2 generates. Then we

=k21l=k+1<2k<2- 5 v, (from (19) have to prove thaly "' P;(r}, 72, ...,7") < 2n-K™ ' P, 11(O).



Or equivalently, for every other supply aIIoc_ati@tﬁ} that satisfies
the auctioneer's demand, the total price{ef } is not bigger than
2n- K™~ ! times the total price oft? }: 327" Pi(rl,r?, ..,r") <

2(n+1)- K™ PSPt a2, t).
Proof of inductive step
Without loss of generality, assume that agept 1 provides the

lowest average price in all the biggest packages:

n+1 A 1 2 m
— min P’L(uz7uzv"'5ul ) (22)

i=1 ul +u? + ... +ul

1 2 m
Pn+1(un+1:un+17 “'7un+1)
1 2
Upy1 T Upyq T FUTY

That means.,+1 is selected in the first step of the algorithm and:

=l foralll <j<m (23)

Forall1 < j < m, because supply allocaticft!} satisfies the
auctioneer’s demand (inequation (3)):

n+1

=Y tl>g (24)
i=1

But supply aIIocatior{r_f} supplies exactly the demand quantity (by

Theorem 4} Y0 ) = q; = S04 t] > 3]
n n
= Zizl t; > Zizl ] (aStZL+1 < UZL+1 = TfLJrl by (23))

Moreover, by inductive hypothesis, (21) is true foagents
=>", Pi(ril, rZ, ey i) < onK™ 1. A Pi(t}, 2, ..., ")

n n+1
=Y Pi(ri,rt, o) < 2K Pt 8 1) (25)
i=1 i=1
(becausePn 1 (thi1,t2 11, s toq) > 0)
Also: PTL+1(T'}7,+17 T31+17 HE) T;"Lrii»l)

1 2
= P7L+1(un+17 Un41y -y U’T+l) (by (23))
_ (Zm J ) . Pn,+l<u;,+1v“12L+17“"“fny,1+1)
- j=1 un+1 m . j
1=
j . 1 2
Butu/,; < ¢;,V1 <7 <m.= Poy1(Tni1, Tngts o ")

P, (ul u? coult 1)
m N Prgr(unq,ungnsounin
< (2L ) ;

Z;”:l “Jn,+1
< (T, X ) Pl vy oit)

PP (ul w2 u™
< ST, o] i) (because of (22))
j=1"4
1

. 2 m
n+1 m 4] m—1 P (t;,t;,..,t]")
< Yo (UL 2K e
j=1%

7
Wnt1

m o J

(by (24))
=1 "n+1

) (by lemma 3)

n+1
= Poi1(Tng1s Tagts o isn) < 2K (O Pt 87,0 87))

=1
(26)
From (25) and (26) we hav&>" "' P;(r}, 72, ....,r") < 2(n+1) -
KU Pt 8 1)

The completion of the inductive step completes our probf.

5 RELATED WORK

item has only one unit). Thus, heuristic methods are typically used to
tackle this problem.

In more detail, for single-unit combinatorial auctions, Nisan [4]
showed that Linear Programming can produce the optimal solu-
tion in a reasonable time in some specific cases (e.g. linear order
bids, mutual exclusion bids and substructure bids), and suggested us-
ing greedy and Branch-and-Bound algorithms based on Linear Pro-
gramming for the other cases. However, in our view, this Linear
Programming-based approach cannot easily be applied to our situ-
ation because the problem of clearing auctions with supply/demand
functions cannot easily be modeled. Other researchers such as Gonen
and Lehmann [2] and Leyton Brown et. al. [3] have further investi-
gated the use of Branch-and-Bound techniques to solve the clear-
ing problem. Unfortunately, however, these Branch-and-Bound al-
gorithms cannot guarantee to produce the optimal solution in poly-
nomial time.

In contrast to the above, Sandholm and Suri [5] considered multi-
unit single-item auctions with bids in the form of supply/demand
curves of some specific types (linear and piecewise linear curves).
However, as discussed in section 1, this work does not deal with
multi-unit combinatorial auctions.

6 CONCLUSIONS AND FUTURE WORK

In this paper we provided, for the first time, polynomial algorithms
for clearing multi-unit combinatorial reverse auctions with supply
functions. While previous work has concentrated on single-item auc-
tions with supply/demand curves or combinatorial auctions with
atomic propositions, we generalised the problem to multi-unit single-
item and multi-unit combinatorial auctions with supply functions.
For this very general case, we showed that our algorithms are of
polynomial complexity and can generate solutions that are within a
bound of the optimal. We believe this generalisation is an important
step towards realising the full application potential of combinatorial
auctions since it enables us to deal with a maximally flexible and
efficient scheme in a computationally tractable manner.

For the future, we aim to reduce the bound from the optimal within
this framework or to prove the optimality of the error bound. More-
over, we aim to extend our algorithms so that they are also applicable
to the forward case. We also aim to develop the algorithms for par-
ticular classes of domain in which stronger assumptions can be made
about the supply and supply allocation functions in order to find bet-
ter approximations for these more specific cases.
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