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Abstract. This paper develops new algorithms for clearing multi-
unit single-item and multi-unit combinatorial reverse auctions.
Specifically, we consider settings where bids are submitted in the
form of a supply function and the auctions have sub-additive pric-
ing with free disposal. Our algorithms are based on a greedy strategy
and we show that they are of polynomial complexity. Furthermore,
we show that the solutions they generate are within a finite bound of
the optimal.

1 INTRODUCTION

Online auctions are a key enabling component of e-commerce since
they are an efficient method of allocating goods/services in dynamic
situations to the agents who value them most highly [8]. Tradition-
ally, the most common forms of online auction are the simple, single-
sided auctions in which a single item is traded (examples of such
protocols are English, Dutch, first price sealed-bid and Vickrey auc-
tions). However as more trading takes place in such environments,
we believe their inherent limitations will become more apparent. This
will, in turn, increase the demand for more sophisticated market-
places in which multiple units of multiple (potentially inter-related)
items are traded simultaneously. Such auctions are calledmulti-unit
combinatorial auctions[8]. In this type of auction, bidders may bid
for arbitrary combinations of items. For example, a single bid may
be for q units of item 1 and2 ∗ q units of item 2 at price40 ∗ q if
q < 20, and at price30 ∗ q if q ≥ 20. This degree of flexibility
in expressing requirements, we believe, will be especially useful in
business-to-business e-commerce where there is often a need to trade
multiple, inter-related goods or services on a massive scale.

While multi-unit combinatorial auctions have many potential ben-
efits from an economic perspective [1], their main disadvantages
stem from the lack of computationally tractable clearing (winner
determination) algorithms for determining the prices, quantities and
trading partners as a function of the bids made. Without such algo-
rithms, multi-unit combinatorial auctions are simply not practicable.
To overcome this problem, there has been considerable recent work
in this area (e.g. [1], [2], [3], [4], [6], [7]). However, almost all of this
work has considered bids to beatomic propositionsthat are either
accepted in their entirety or rejected. This view can limit the poten-
tial profit available to the auctioneer. For example, consider the case
where there are only two bids:x1 units of one good at pricep1 andx2

units at pricep2, and the quantity the auctioneer wants to trade is less
thanx1 + x2 units . In this case, the auctioneer has no choice other
than selecting one or other of the two bids. This may prevent the auc-
tioneer from maximising its payoff. For example, the auctioneer may
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find it more beneficial to accept both bids partially; that is, tradey1

(y1 < x1) units with bidder 1 at pricey1
x1
· p1 and tradey2 (y2 < x2)

units with bidder 2 at pricey2
x2
·p2. Moreover, if the bids are expressed

in terms of the correlation between the quantity of items and the price
(rather than the simple linear extrapolation above), there will be even
more choice for the auctioneer, and, consequently, even more chance
of maximising its payoff. When viewed from the bidder’s perspec-
tive, the atomic nature of bids and the inability to explicitly relate
price and quantity means that opportunities for trade are lost because
the auctioneer may not want the entire package being offered, even
though elements of it may be acceptable.

To overcome the aforementioned shortcomings associated with
atomic propositions, Sandholm and Suri consider the case in which
agents can submit bids that correspond to a demand or supply curve
depending on whether it is an auction or a reverse auction respec-
tively [5]. Thus, bids are expressed in terms of a curve which corre-
lates the quantity with the price of an item. For example, an agent
may express the bid asq = 2 ∗ p + 1, which means that the agent is
willing to trade up toq = 2 ∗ p + 1 units if the unit price equalsp.2

Unfortunately, their work is limited to multi-unit single-item auctions
and does not deal with the combinatorial case. This means their al-
gorithm cannot explicitly cope with any interdependencies that may
exist between the purchasing of multiple items.

In this paper, we develop novel clearing algorithms that remove the
shortcomings associated with the atomic proposition nature of previ-
ous combinatorial clearing algorithms and the non-combinatorial na-
ture of Sandholm and Suri’s supply curve functions. Specifically, we
consider multi-unit single-item and multi-unit combinatorial reverse
auctions in which bids contain an agent’s supply function. The algo-
rithms that we develop have polynomial complexity and are shown
to be within a finite bound of the optimal. For the time being, our
approach is limited to reverse auctions (in which there is one buyer
and multiple sellers). Nevertheless, in the future, we aim to remove
this limitation and develop algorithms for forward auctions.

The remainder of the paper is organised as follows. Section 2 for-
malises the problem of reverse auction clearing. Section 3 developes
an algorithm for the multi-unit single-item case and proves a num-
ber of properties about the algorithm. Section 4 generalises the al-
gorithm to the multi-unit combinatorial case. Section 5 discusses re-
lated work. Section 6 concludes and presents future work.

2 REVERSE AUCTION CLEARING

This section formalises the problem of clearing in multi-
unit combinatorial reverse auctions. Assume there arem items
2 Their price function calculates the quantity from the unit price. However, in

our work, the price function will calculate the unit price from the quantity,
because we find the later more natural.



(goods/services):1, 2, ..., m andn biddersa1, a2, ..., an. The auc-
tioneer has a demand(q1, q2, ..., qm), in which qj is the quantity of
item j that the auctioneer wants. Letuj

i be the maximum quantity of
item j thatai is able or willing to provide (ifai does not provide an
item j, thenuj

i = 0). Let N be the set of natural numbers andR∗ be
the set of non-negative real numbers.

Thesupply functionis the price function of the items that each bid-
der is willing to sell. Bidderi’s supply function is:Pi : Nm → R∗,
wherePi(r1, r2, .., rm) is the price offered by bidderi for the pack-
age of items(r1, r2, ..., rm) andrj is the quantity of itemj, rj ∈ N,
0 ≤ rj ≤ uj

i , ∀ 1 ≤ j ≤ m. For example, suppose thatm = 3,
thenP1(1, 3, 2) will be the price agent 1 offers for a package which
is composed of 1 unit of item 1, 3 units of item 2 and 2 units of item
3 altogether. We consider settings where the price function satisfies
two properties:

• Discount: if∀j : rj + sj ≤ uj
i , then:

Pi(r1 + s1, r2 + s2, ..., rm + sm)

≤ Pi(r1, r2, ..., rm) + Pi(s1, s2, ..., sm) (1)

That is, buying any combination of two packages altogether is
cheaper than or equal to buying these two bundles separately. In
game-theoretic terms, this property is also calledsub-additive[7].

• Free Disposal: if∀j : 0 ≤ rj ≤ sj ≤ uj
i , then:

Pi(r1, r2, ..., rm) ≤ Pi(s1, s2, ..., sm) (2)

That is, if one package has no fewer units of each item than an-
other package, the former is not less expensive than the latter.

The above assumptions are needed for the subsequent analysis of
our algorithm and we believe they are applicable to a wide range of
applications (free disposal is a standard assumption adopted in most
of the aforementioned work on auction clearing, sub-additivity is less
frequently used but is still realistic). Thus, they do not significantly
limit the scope of our results.

We now consider thesupply allocationwhich is the amount the
auctioneer buys from each supplier.

Definition 1 A supply allocation is a tuple{rj
i }, 1 ≤ i ≤ n, 1 ≤

j ≤ m such that the auctioneer buysrj
i units of itemj from each

agentai.3

Given the definitions of the supply function and the supply alloca-
tion, the problem of reverse auction clearing is then to find a supply
allocation{αj

i}, 1 ≤ i ≤ n, 1 ≤ j ≤ m that:

• Satisfies the demand
n∑

i=1

αj
i ≥ qj , ∀1 ≤ j ≤ m (3)

That is, the quantity of each item that the auctioneer buys from all
bidders is not less than the auctioneer’s demand for that item.

• Optimises the cost

n∑
i=1

Pi(α
1
i , α

2
i , .., α

m
i ) is minimal. (4)

That is, the total price of all the units of all the items supplied by
the bidders should be as small as possible.

3 Because items are bought at the price the bidders offer, the auctioneer may
buy the same package from two different bidders at different prices, i.e., the
auctions havediscriminatory pricing[5].

However, this problem has been shown to be NP-complete, even
for the simplified case of single-items with piecewise linear supply
curves [5].4 Thus, it is impossible to find a polynomial algorithm,
unless P = NP. Given this, a heuristic method is appropriate. To this
end, the next section presents our algorithm for the single-item case
(i.e. wherem = 1), then we will deal with the combinatorial case as
a generalisation in section 4.

3 MULTI-UNIT SINGLE-ITEM REVERSE
AUCTIONS

Using the notation of the previous section, the multi-unit single-item
case can be formulated as follows. Letq be the demand of the auc-
tioneer andui be the maximum quantity of the item thatai will pro-
vide. The supply function (in the single-item case it can be drawn as
a curve, so we can call it the supply curve) is the price function of the
item: Pi : N → R∗ wherePi(r) is the price forr units when they
are sold altogether by bidderi.

For mathematical convenience, in this section we will use the unit
price function instead of the price function. The unit price function
for each bidderi is: pi : N → R∗ wherepi(r) is the unit price
for the item whenr units are sold altogether by bidderi. That is,
pi(r) = Pi(r)

r
.

As before, we consider settings where the supply curve satisfies
the following properties:

• Discount:
pi(r) ≥ pi(s),∀ 0 ≤ r ≤ s ≤ ui (5)

That is, the more units that are sold, the less the unit price is.5

• Free Disposal:

r · pi(r) ≤ s · pi(s),∀ 0 ≤ r ≤ s ≤ ui (6)

That is, the more units of the item that are sold, the more the total
price is.

The clearing problem is then one of finding a supply allocation
{αi}, 1 ≤ i ≤ n, i.e., agentai will provide αi units, such that:

• The sum of supplies from bidders fulfills the auctioneer’s demand:

n∑
i=1

α(i) ≥ q (7)

• The total price paid by the auctioneer is minimised:

n∑
i=1

αi · pi(αi) is minimal. (8)

We are now in a position to express our algorithm for solving this
problem. Like [6] we adopt a greedy approach for solving this prob-
lem and our algorithm is presented in Figure 1.

Theorem 1 If there is a solution, then this algorithm will find it. That
is, if the bidders can supply the units that the auctioneer demands,
then this algorithm will produce an allocation. Also, the solution will
supply exactly the number of units demanded by the auctioneer.

4 Although [5] does not explicitly consider sub-additive pricing, their proof
also holds for this case.

5 This is stronger than the Discount definition in the general case (inequation
1). We use it here because it is reasonable for single-item pricing.



Algorithm 1 Repeat the following steps:

• For all i such thatui > q, setui = q.
That is, we truncate the supply function to consider only quantities
that are not bigger than the demand. This is because in order to
minimise the total price, the auctioneer does not need to buy more
units than its demand, since the price functions satisfy the free
disposal property (inequation (6)).

• At each step, find the bidderak that provides the smallest unit
price, then takeak to provide all its quantityuk. The smallest
unit price is found by determining the smallest element of the set
{p1(u1), p2(u2), .., pn(un)}.

• Repeat the steps above for the set of biddersA \ ak andqnew =
q − uk.

Figure 1. The clearing algorithm for the multi-unit single-item case.

PROOF. In each step, the algorithm selects exactly one agent from
the set of bidders. If its supply is less than the auctioneer’s remain-
ing demand, the algorithm takes all its supply. Otherwise it takes the
quantity that is equal to the remaining demand. So, if the algorithm
does not terminate beforehand, it will eventually select all bidders
and take all supplies. Thus, if the bidders can supply enough units
to meet the demand, the algorithm will produce an allocation. More-
over, in each step, the algorithm takes at most all the remaining de-
mand, so the solution it produces will have the total units being equal
to the auctioneer’s demand.�

Theorem 2 The complexity of algorithm 1 isO(n2).

PROOF. At each step, it requiresO(n) to find the smallest element of
the set{p1(u1), .., pn(un)}. So each step hasO(n) complexity. As
there are at mostn steps, the complexity isO(n2) �

Theorem 3 The solution generated from algorithm 1 is within a
boundb = n from the optimal. That is, letPn(O) be the optimal
total price andPn(S) be the total price of the solution of the algo-
rithm. Then:

Pn(S)

Pn(O)
≤ n (9)

PROOF. We prove by induction of the number of biddersn.
Base case(n = 1): In the case wheren = 1 the solution is optimal

(because we have only one bid) so (9) is true withn = 1.
Inductive step: Suppose that (9) is true forn, we will prove that

(9) is also true forn + 1. That is, let(r1, r2, ..., rn+1) be the supply
allocation that the algorithm generates. Then we have to prove that:∑n+1

i=1 ri ·pi(ri) ≤ (n+1) ·Pn+1(O). Or equivalently, for all other
supply allocations(t1, t2, .., tn+1) that satisfy the demand, their total
price is greater than1

n+1
times the total price of the supply allocation

produced by algorithm 1. That is,∀ t1, t2, .., tn+1 such that:0 ≤
ti ≤ ui, ∀1 ≤ i ≤ n+1 and

∑n+1
i=1 ti ≥ q, then:

∑n+1
i=1 ri ·pi(ri) ≤

(n + 1) · (
∑n+1

i=1 ti · pi(ti)).
Proof of inductive step
Without loss of generality, assume that agentan+1 provides the

smallest unit price, that is,p(un+1) = minn+1
i=1 p(ui). This means

that agentan+1 is selected in the first step of algorithm 1 and:

rn+1 = un+1 (10)

Because supply allocation{ti} satisfies the demand (as in (7)):

n+1∑
i=1

ti ≥ q (11)

But supply allocation{ri} supplies exactly the demand quantity
(by Theorem 1), thus:

∑n+1
i=1 ri = q ⇒

∑n+1
i=1 ti ≥

∑n+1
i=1 ri

⇒
∑n

i=1 ti ≥
∑n

i=1 ri (astn+1 ≤ un+1 = rn+1, from (10))
Moreover, by inductive hypothesis, (9) is true forn agents.

⇒
n∑

i=1

ri · pi(ri) ≤ n ·
n∑

i=1

ti · pi(ti) ≤ n ·
n+1∑
i=1

ti · pi(ti) (12)

(astn+1 · pn+1(tn+1) ≥ 0)
Also: rn+1 ≤ q ≤

∑n+1
i=1 ti (from (11))

⇒ rn+1 · pn+1(rn+1) ≤
n+1∑
i=1

ti · pn+1(rn+1)

⇒ rn+1 · pn+1(rn+1) ≤
n+1∑
i=1

ti · pi(ti) (13)

(aspn+1(rn+1) is the smallest unit price)
From (12) and (13), we have:

∑n+1
i=1 ri · pi(ri) ≤ (n + 1) ·

(
∑n+1

i=1 ti · pi(ti))
The completion of the inductive step completes our proof.�
Although multi-unit single-item auctions are not our main target

case, this algorithm still represents a novel contribution in its own
right. While [5] targets the same environment as this, the algorithms
are only applicable in the specific case where the supply curves are
linear. In contrast, our result is applicable to the more general case;
that is, sub-additive, free disposal supply curves.

4 MULTI-UNIT COMBINATORIAL REVERSE
AUCTIONS

To deal with the multi-unit combinatorial case, we need to add one
more assumption about the price functions of the items, namely there
exists a numberK > 1 such that for any price function from any
bidder,K units of any item will be more expensive than 1 unit of any
other item:∀ 1 ≤ j, k ≤ m, j 6= k, d ∈ N:

Pi(r1, .., rj + d, .., rk, .., rm) ≤ Pi(r1, .., rj , .., rk + Kd, .., rm)
(14)

That is, for any package, if we substituted unit of any item in this
package byK · d units of any other item, then the price of the new
package will be more expensive or equal to the price of the old pack-
age. We believe this is a realistic assumption because in a competitive
market the unit price of any item is always likely to be within a finite
range; that is, it cannot be arbitrarily high or low.

From this, a number of lemmas follow:

Lemma 1 For any package of items, if we replaced units of any item
with d units of any other item, then the total price of the new package
of items is not bigger thanK times the total price of the old package:
∀ 1 ≤ j, k ≤ m, j 6= k, d ∈ N:

Pi(r1, .., rj + d, .., rk, .., rm) ≤ K · Pi(r1, .., rj , .., rk + d, .., rm)
(15)

PROOF. We have: Pi(r1, .., rj + d, .., rk, .., rm) ≤
Pi(r1, .., rj , .., rk + Kd, .., rm) (by (14))



Also Pi satisfies the free disposal property (in (2)), thus:
Pi(r1, .., rj + d, .., rk, .., rm)
≤ Pi(Kr1, .., Krj , .., Krk + Kd, .., Krm)
≤ K · Pi(r1, .., rj , .., rk + d, .., rm) (by (1))�

Lemma 2 For any two packages, if the total number of units of the
first package is not bigger than the total number of units of the second
package, then the total price of the first package is not bigger than
Km−1 times the total price of the second package:∀1 ≤ i ≤ n,
∀r1, r2, ..., rm, s1, s2, ..., sm such that

∑m
j=1 rj ≤

∑m
j=1 sj , then:

Pi(r1, r2, ..., rm) ≤ Km−1Pi(s1, s2, ..., sm) (16)

PROOF. Let dj = (sj − rj)

⇒
m∑

j=1

dj =

m∑
j=1

sj −
m∑

j=1

rj ≥ 0 (17)

Now there are 2 cases:

• Case 1: di ≥ 0, ∀1 ≤ i ≤ m. Then we have:Pi(r1, r2, ..., rm) ≤
Pi(s1, s2, ..., sm) (becausePi satisfies the free disposal property
in (2)). ThusPi(r1, r2, ..., rm) ≤ Km−1Pi(s1, s2, ..., sm).

• Case 2: There exists adk < 0. Then without loss of generality,
suppose thatdm < 0. We have:Pi(r1, r2, ..., rm−1, rm) ≤ K ·
Pi(r1 − dm, r2, ..., rm−1, sm) (by lemma 1).
Let r(2)

1 = r1 − dm, r
(2)
i = ri, ∀ 2 ≤ i ≤ m− 1.

⇒ Pi(r1, r2, ..., rm−1, rm) ≤ K · Pi(r
(2)
1 , r

(2)
2 , ..., r

(2)
m−1, sm)

Also:
∑m−1

j=1 r
(2)
j =

∑m−1
j=1 rj − dm ⇒

∑m−1
j=1 r

(2)
j ≤∑m−1

j=1 sj (by (17)).

Repeat the whole step above, it will take at mostm − 1 steps
to terminate. Thus, after at mostm − 1 steps, we will have:
Pi(r1, r2, ..., rm) ≤ Km−1Pi(s1, s2, ..., sm) �

Lemma 3 For any two packages, if the total number of units of
the first package is not bigger than the total number of units of the
second package, then the average unit price of the first package is
not smaller than 1

2Km−1 times the average unit price of the sec-
ond package:∀1 ≤ i ≤ n, r1, r2, ..., rm, s1, s2, ..., sm such that∑m

j=1 rj ≤
∑m

j=1 sj , then:

2Km−1 · Pi(r1, r2, ..., rm)

r1 + r2 + ... + rm
≥ Pi(s1, s2, ..., sm)

s1 + s2 + ... + sm
(18)

PROOF. Let k = [
∑m

j=1 sj∑m
j=1 rj

], that is,k is the integral part of
∑m

j=1 sj∑m
j=1 rj

.

⇒ k ≤
∑m

j=1 sj∑m
j=1 rj

< k + 1 (19)

⇒ (k + 1)

m∑
j=1

rj >

m∑
j=1

sj

⇒ Km−1Pi((k + 1)r1, .., (k + 1)rm) ≥ Pi(s1, .., sm)

(by lemma 2)

⇒ Km−1(k + 1)Pi(r1, .., rm) ≥ Pi(s1, .., sm) (by (1)) (20)

Also:
∑m

j=1 rj ≤
∑m

j=1 sj ⇒
∑m

j=1 sj∑m
j=1 rj

≥ 1

⇒ k ≥ 1 ⇒ k + 1 ≤ 2k ≤ 2 ·
∑m

j=1 sj∑m
j=1 rj

(from (19))

Algorithm 2 Repeat the following steps:

• For all i, j such thatuj
i > qj , setuj

i = qj .
That is, we truncate the supply function to consider only quantities
that are not bigger than the demand. This is because to minimise
the total price, the auctioneer does not need to buy more units than
its demand, as the price functions satisfy the free disposal property
(in (2)).

• Find the bidderak such that:

Pk(u1
k, u2

k, ..., um
k )

u1
k + u2

k + ... + um
k

is minimal,

then selectak to provide all its units(u1
k, u2

k, ..., um
k ).

That is, we consider all the biggest packages offered by the bid-
ders, then choose the package that offers the lowest average unit
price.
Note that this is not necessarily the package that offers the lowest
average in all packages, because a smaller package may have a
smaller average unit price.

• Repeat the steps with the new set of biddersA \ ak and demand
qnew

j = qj − uj
k.

Figure 2. The clearing algorithm for the multi-unit combinatorial case.

⇒ 2Km−1 ·
∑m

j=1 sj∑m
j=1 rj

Pi(r1, .., rm) ≥ Pi(s1, .., sm) (by (20))

⇒ 2Km−1 · Pi(r1,r2,...,rm)
r1+r2+...+rm

≥ Pi(s1,s2,...,sm)
s1+s2+...+sm

�
With these lemmas in place, we can now present the generalisation

of the single-item algorithm to the combinatorial case (Figure 2).
We can now analyse this algorithm to assess its properties.

Theorem 4 If there is a solution, then this algorithm will find it. That
is, if the bidders can supply the units that the auctioneer demands,
then this algorithm will produce an allocation. Also, the solution sup-
plies exactly the number of units demanded by the auctioneer.

PROOF. The proof is the same as that of theorem 1.�

Theorem 5 The complexity of algorithm 2 isO(n2)

PROOF. At each step, it requiresO(n) to find the smallest element

of the set{Pk(u1
k,u2

k,...,um
k )

u1
k
+u2

k
+...+um

k
}n

i=1. So each step hasO(n) complexity.

As there are at mostn steps, the complexity isO(n2). �

Theorem 6 The solution generated from algorithm 2 is within a
boundb = 2n · Km−1 from the optimal. That is, letPn(O) be the
optimal total price andPn(S) be the total price of the solution of the
algorithm. Then:

Pn(S)

Pn(O)
≤ 2n ·Km−1 (21)

PROOF. We prove by induction of the number of biddersn.
Base case(n = 1): In this case, the solution is optimal (because

there is only one bid to choose from), so (21) is true withn = 1.
Inductive step: Suppose that (21) is true forn, we will prove that

(21) is also true forn + 1. That is, let{rj
i }, 1 ≤ i ≤ n + 1, 1 ≤

j ≤ m be the supply allocation that algorithm 2 generates. Then we
have to prove that:

∑n+1
i=1 Pi(r

1
i , r2

i , ..., rm
i ) ≤ 2n·Km−1Pn+1(O).



Or equivalently, for every other supply allocation{tj
i} that satisfies

the auctioneer’s demand, the total price of{rj
i } is not bigger than

2n ·Km−1 times the total price of{tj
i}:

∑n+1
i=1 Pi(r

1
i , r2

i , ..., rm
i ) ≤

2(n + 1) ·Km−1 ∑n+1
i=1 Pi(t

1
i , t

2
i , ..., t

m
i ).

Proof of inductive step
Without loss of generality, assume that agentan+1 provides the

lowest average price in all the biggest packages:

Pn+1(u
1
n+1, u

2
n+1, ..., u

m
n+1)

u1
n+1 + u2

n+1 + ... + um
n+1

=
n+1

min
i=1

Pi(u
1
i , u

2
i , ..., u

m
i )

u1
i + u2

i + ... + um
i

(22)

That meansan+1 is selected in the first step of the algorithm and:

rj
n+1 = uj

n+1, for all 1 ≤ j ≤ m (23)

For all 1 ≤ j ≤ m, because supply allocation{tj
i} satisfies the

auctioneer’s demand (inequation (3)):

⇒
n+1∑
i=1

tj
i ≥ qj (24)

But supply allocation{rj
i } supplies exactly the demand quantity (by

Theorem 4)⇒
∑n+1

i=1 rj
i = qj ⇒

∑n+1
i=1 tj

i ≥
∑n+1

i=1 rj
i

⇒
∑n

i=1 tj
i ≥

∑n
i=1 rj

i (astj
n+1 ≤ uj

n+1 = rj
n+1 by (23))

Moreover, by inductive hypothesis, (21) is true forn agents
⇒

∑n
i=1 Pi(r

1
i , r2

i , ..., rm
i ) ≤ 2nKm−1 ·

∑n
i=1 Pi(t

1
i , t

2
i , ..., t

m
i )

⇒
n∑

i=1

Pi(r
1
i , r2

i , ..., rm
i ) ≤ 2nKm−1 ·

n+1∑
i=1

Pi(t
1
i , t

2
i , ..., t

m
i ) (25)

(becausePn+1(t
1
n+1, t

2
n+1, ..., t

m
n+1) ≥ 0)

Also: Pn+1(r
1
n+1, r

2
n+1, ..., r

m
n+1)

= Pn+1(u
1
n+1, u

2
n+1, ..., u

m
n+1) (by (23))

= (
∑m

j=1 uj
n+1) ·

Pn+1(u1
n+1,u2

n+1,...,um
n+1)∑m

j=1 u
j
n+1

But uj
n+1 ≤ qj , ∀1 ≤ j ≤ m.⇒ Pn+1(r

1
n+1, r

2
n+1, ..., r

m
n+1)

≤ (
∑m

j=1 qj)
Pn+1(u1

n+1,u2
n+1,...,um

n+1)∑m
j=1 u

j
n+1

≤ (
∑m

j=1

∑n+1
i=1 tj

i )
Pn+1(u1

n+1,u2
n+1,...,um

n+1)∑m
j=1 u

j
n+1

(by (24))

≤
∑n+1

i=1 (
∑m

j=1 tj
i

Pi(u
1
i ,u2

i ,...,um
i )∑m

j=1 u
j
i

) (because of (22))

≤
∑n+1

i=1 (
∑m

j=1 tj
i2Km−1 Pi(t

1
i ,t2i ,...,tm

i )∑m
j=1 t

j
i

) (by lemma 3)

⇒ Pn+1(r
1
n+1, r

2
n+1, ..., r

m
n+1) ≤ 2Km−1 ·(

n+1∑
i=1

Pi(t
1
i , t

2
i , ..., t

m
i ))

(26)
From (25) and (26) we have:

∑n+1
i=1 Pi(r

1
i , r2

i , ..., rm
i ) ≤ 2(n + 1) ·

Km−1 ∑n+1
i=1 Pi(t

1
i , t

2
i , ..., t

m
i )

The completion of the inductive step completes our proof.�

5 RELATED WORK

As already discussed, most of the previous work on clearing algo-
rithms for combinatorial auctions has been based on atomic propo-
sition auctions. So by removing this restriction, our algorithm pro-
duces more efficient allocations. In particular, Sandholm et. al. [6]
have categorised and analysed the complexity of various kinds of
atomic proposition types (e.g. auctions, reverse auctions, exchanges).
They showed that clearing combinatorial atomic proposition auctions
is NP-complete, even for the simple case of single-units (i.e. each

item has only one unit). Thus, heuristic methods are typically used to
tackle this problem.

In more detail, for single-unit combinatorial auctions, Nisan [4]
showed that Linear Programming can produce the optimal solu-
tion in a reasonable time in some specific cases (e.g. linear order
bids, mutual exclusion bids and substructure bids), and suggested us-
ing greedy and Branch-and-Bound algorithms based on Linear Pro-
gramming for the other cases. However, in our view, this Linear
Programming-based approach cannot easily be applied to our situ-
ation because the problem of clearing auctions with supply/demand
functions cannot easily be modeled. Other researchers such as Gonen
and Lehmann [2] and Leyton Brown et. al. [3] have further investi-
gated the use of Branch-and-Bound techniques to solve the clear-
ing problem. Unfortunately, however, these Branch-and-Bound al-
gorithms cannot guarantee to produce the optimal solution in poly-
nomial time.

In contrast to the above, Sandholm and Suri [5] considered multi-
unit single-item auctions with bids in the form of supply/demand
curves of some specific types (linear and piecewise linear curves).
However, as discussed in section 1, this work does not deal with
multi-unit combinatorial auctions.

6 CONCLUSIONS AND FUTURE WORK

In this paper we provided, for the first time, polynomial algorithms
for clearing multi-unit combinatorial reverse auctions with supply
functions. While previous work has concentrated on single-item auc-
tions with supply/demand curves or combinatorial auctions with
atomic propositions, we generalised the problem to multi-unit single-
item and multi-unit combinatorial auctions with supply functions.
For this very general case, we showed that our algorithms are of
polynomial complexity and can generate solutions that are within a
bound of the optimal. We believe this generalisation is an important
step towards realising the full application potential of combinatorial
auctions since it enables us to deal with a maximally flexible and
efficient scheme in a computationally tractable manner.

For the future, we aim to reduce the bound from the optimal within
this framework or to prove the optimality of the error bound. More-
over, we aim to extend our algorithms so that they are also applicable
to the forward case. We also aim to develop the algorithms for par-
ticular classes of domain in which stronger assumptions can be made
about the supply and supply allocation functions in order to find bet-
ter approximations for these more specific cases.
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