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Abstract. Multi-agent environments comprise decision makers
whose deliberations involve reasoning about the expected behav-
ior of other agents. Apposite concepts of rational choice have been
studied and formalized in game theory and our particular interest is
with their integration in a logical specification language for multi-
agent systems. This paper concerns the logical analysis of the game-
theoretical notions of a (subgame perfect) Nash equilibrium and that
of a (subgame perfect) best response strategy. Extensive forms of
games are conceived of as Kripke frames and a version of Proposi-
tional Dynamic Logic is employed to describe them. We show how
formula schemes of our language characterize those classes of frames
in which the strategic choices of the agents can be said to be Nash-
optimal. Our analysis focuses on extensive games of perfect infor-
mation without repetition.

1 Introduction

Agents can be thought of as systems that are capable of reasoning
about their own and other agents’ knowledge, preferences, goals, fu-
ture and past actions. A successful framework to formally reason
about such agent systems is provided by modal logic (see ([11] or
([7])) of which the operators model various mental attitudes and also
the dynamics of such a system. Although the approaches mentioned
enable one to reason about the adoption and persistence of goals and
intentions, they do not explain where such intentions come from. As
an agent may be confronted with several, mutually exclusive, ways
how to act, however, decision making and intention formation is im-
perative. Which action an agent eventually performs may very well
depend on his beliefs concerning the other agents’ actions and their
responses to his actions. Since game theory is devoted to the study of
such reasoning mechanisms and the associated notion of strategic ra-
tionality, many of its concepts are relevant to the study of multi-agent
systems.

The emphasis of this paper is on the incorporation of some impor-
tant game-theoretical notions in Propositional Dynamic Logic (cf.,
[5]). Although our work is still of a purely theoretical nature, we
believe it to be conductive to the development of a comprehensive
logical framework in which multi-agent systems can be described,
specified and reasoned about. In that sense, our work chimes in well
with a direction set out by the communities of logic and game the-
ory to integrate the two research paradigms, thereby providing logi-
cal tools for reasoning about rationality and decision making on the
one hand, but also importing game-theoretic notions into the realm
of logic, on the other. Our work is best seen as a proponent of the
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first, with the overall goal to incorporate game-theoretic arguments
in logical formalisms that model BDI-like mental attitudes.

The key idea behind our approach is the similarity between the se-
mantics of modal logic (Kripke models), on the one hand, and games
in extensive form, on the other. We propose to judge such a game tree
as a structure for dynamic logic, in which agents can perform pro-
grams (moves) to achieve their goals (maximal utility). Along with
the closely related concept of a best response strategy our investiga-
tions focus on the solution concept of a Nash equilibrium. We also
deal with their subgame perfect varieties. We show how the ‘modal
counterparts’ of such concepts look like. As such, we pave the way
for a more thorough analyses which enables to study these game-
theoretic concepts within a BDI- or KARO-like framework. Again,
such a unification harvests in two ways: the logical approaches to
agents are enriched with a game-theoretic perspective, but also, well
known constructs from dynamic logic, for example, may give rise to
new concepts (like operations on games) in game theory (cf., [2]).

2 Game Theoretical Notions

The investigations of this paper concern finite games in extensive
form with perfect information. A (pure) strategy for a game consists
of a complete plan for a player 	 how to play that game. Strategy
profiles, denoted by 
 , combine strategies, one for each player. A
strategy profile determines for each node a unique outcome, though
not necessarily for each node the same one.

Example 1 Consider the two-person game in extensive form as de-
picted in Figure 1. Let �
� denote the strategy for player 	 � that con-
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Figure 1. Example of a game in extensive form

sists in his going right at - & and going left at - � . �.� can be con-
ceived of as the function that maps - & onto - � and - � onto / � . The



pair of strategies
� �
��������� — where ��� is the strategy for player 	 �

which prescribes her to go left at both - � and - � — denotes a strat-
egy profile and determines the outcome / $ , and granting payoffs of �
and 	 to 	 � and 	 � , respectively.

Whether a strategy is a best response for a player is relative to the
strategies the other players adopt, i.e., to a strategy profile. Assum-
ing that play commences at the root node, a strategy profile 
 is said
to contain a best response for player 	�
 , if 	�
 cannot increase her
payoff by playing another strategy available to her when the other
players stick to their strategies as specified in 
 . A strategy profile
is a Nash-equilibrium if none of the players can increase her payoff
by unilaterally playing another strategy. Equivalently, a Nash equi-
librium could be characterized as a strategy profile which contains a
best response strategy for each player (cf. [8], p. 98).

It has been argued that Nash equilibria do not in general do jus-
tice to the sequential structure of an extensive game. In our example,� � �
������� is, along with

� �
��������� , � �
��������� , � �
��������� and
� �
��������� ,

a Nash equilibrium. This is, however, dependent on the fact that 	 �
going right at - � minimizes 	 � ’s pay-off rather than that it maximizes
that of 	 � . Player 	 � , as it were, threatens to go right at - � if 	 � goes
right at - & . Player 	 � , however, need not take this threat seriously
if the sequentiality of the game is taken into account. The node - �
will be reached only if 	 � moved right at - & at a previous state of the
game. Once in - � , strategic rationality prescribes 	 � to move to / $
rather then go right to / � . As there is nothing in the description of the
game committing 	 � to move to / � in - � , the strategy profile

� � ���������
should be ruled out as a rational alternative. This is a manifestation
of the phenomenon that a strategy profile contains instructions for
the players how to act in nodes that they preclude ever to be reached
in the course of the game and in some cases allows for “irrational”
moves off the equilibrium path.

A refinement of the solution concept of Nash equilibrium that
meets this objection is achieved by requiring Nash equilibria to be
subgame perfect. In extensive form, a subgame can be conceived of
as a cutting of the game tree, which results in another game in ex-
tensive form. A strategy is a subgame perfect best response strategy
for a player relative to some strategy profile 
 if it is a best response
strategy with respect to 
 in all its subgames.

A strategy profile determines a unique outcome. By deviating
unilaterally, a player can force several outcomes to come about by
choosing her strategy. The one guaranteeing her the highest outcome
is her best response strategy with respect to the respective strategy
profile. These outcomes can be represented graphically by the leaf
nodes of the game tree from which are removed all edges that do
not comply with the strategies of the other players as laid down in
the strategy profile. Such a reduced tree we call a player’s strategy
search space with respect to a strategy profile. In our example the
strategy search space for 	 � , given a strategy profile containing 	 � ’s
strategy ��� , is obtained from Figure 1 by removing the edges to / � � / !
and / � .

Game trees, being graphs, correspond to Kripke structures and as
such they can be described by means of the language of Propositional
Dynamic Logic (PDL). The nodes of the game tree represent the
states of the frame and the edges define the accessibility relation. A
strategy for a player 	 is identified with the graph of a function from
the nodes at which 	 can move to successor nodes. A strategy profile
combines strategies of the individual players and as such it is the
graph of a function on the internal nodes of the game tree. In this
manner, strategies, strategy profiles and strategy search spaces can
be represented by programs of dynamic logic.

Fundamental to the present analysis is that frames in which the
program representing a strategy profile 
 contains a (subgame per-
fect) best response strategy for some player or is a (subgame per-
fect) Nash-equilibrium, possess certain structural properties which
are expressible in PDL. The objective of this paper is to specify
formally which constraints a frame satisfies if the strategy program
corresponds to a strategy profile that is a (subgame perfect) Nash-
equilibrium or incorporates a (subgame perfect) best response strat-
egy. We show how formula schemes of PDL characterize the frames
satisfying these structural properties.

So far the concepts of game theory relevant to this paper have only
been presented in a rather informal fashion. Now, we give a formal
account in which we go a long way in following Bonanno’s (cf. [4]).
A game in extensive form with perfect information without repetition
is identified with a a tuple

��� ������������������� � , where
�

is a finite set
of vertices and � a relation on

�
, representing the possible moves

at each vertex. The pair
��� ���!� is a non-trivial, irreflexive, finite tree.

Furthermore, � is the set of leaves of the tree, and � is a finite set of
players. The function � assigns a player to each internal node of the
game tree and is supposed to be surjective (onto). Finally, we have
the utility function �#"$�&%'�)(+* assign a pay-off to each player
in � in each vertex, rather than just at the leaves as is costumary. We
write /-,/. /10 for � � 	�� � /2��,3� � 	�� � /�0�� .

As a notational convention, we use - & to denote the root and define
for each 	 , � . " 465�-87 � "9� � -:�;4 	�< .
Definition 2 (Strategies and Strategy Profiles) Let = 4��� �������������������>� be an extensive game. A strategy profile for= is a total function 
?" �
@ �A( �

such that for all -B7 �
,-C� 
 � -:� . The set of strategy profiles we denote by D . For EGF �
,

we have 
IH�J 
 0 iff for all K+7BEL" 
 � KM��4 
 0 � KN� , writing
9H�O>. 
 0 for 
�H�PRQSPUT*
 0 .
A strategy for a player 	/7V� is the restriction of a strategy pro-

file 
 to
� . , i.e. , 
XW PUT .

Each strategy profile 
 determines a unique outcome in the sense
that if all players stick to the strategies in 
 , the game terminates
in precisely one final stage. As such, a strategy profile 
 gives rise
to a function that maps each internal node - to the leaf 
 fixes as its
outcome when playing the game is started in - . To capture this notion
we define for each strategy profile 
 , the function Y
X" � (Z� by:

Y
 � -:�[4
\ - if - is a leafY
 � 
 � -:��� otherwise.

We now give formal definitions of the game theoretical notions
of a best response strategy relative to a strategy profile and a Nash-
equilibrium, as well as their subgame perfect, or s-p., variations:

Definition 3 Let =]4 ��� �^����������������� � be a game on an extensive
form and 
)7_D�` . Let further - & be the root of = and let 	 range
over � , - over

�
and 
 over D . Then define:

(1) 
 comprises a best response strategy for 	 iff
for all 
a0b7cDd" 
cH�Oe. 
a0 implies Y
a0 � - & �f,/.!Y
 � - & �

(2) 
 is a Nash-equilibrium iff
for all 	g79� , 
 comprises a best response for 	

(3) 
 comprises an s.p.-best response strategy for 	 iff
for all -h7 � ��
 0 79Dd" 
9H O>. 
 0 implies Y
 0 � -:�f, . Y
 � -:�

(4) 
 comprises an s.p.-Nash-equilibrium iff
for all 	g79� , 
 is a s.p. best response for 	 .



3 Logic: Syntax & Semantics

Being graphs, game trees can straightforwardly be correlated with
Kripke structures, for which description modal languages are avail-
able. The analyses of this paper are conducted in languages for PDL
augmented by a separate set of labelled modal operators 5 � 	���< .���� .
Reinforced thus, we argue the language gains expressive power with
respect to the players’ preference orderings on the possible outcomes
as they are determined by the payoff structure of the corresponding
game.

The resulting logical language is a multi-modal dynamic language
containing the usual Boolean operations “ � ” (negation) and “ � ”
(conjunction) and as program connectives, “ 	 ”, “ 
 ” and “ � ” (itera-
tion) as well as a program forming operation on formulae “ � ” (test).

Definition 4 (Syntax) Let 
 & be a countable set of propositional
variables (typical element � ), � & be a set of atomic programs (typ-
ical element � ) and � a set of labels (typical element 	 ). The set of
formulae, 
 (typical element � ) and the set of programs � (typical
element � ) are generated by the following grammar:

� " " 4 � W����&W�� � ��� � W � � ��� W � 	����� " " 4 � W � � 	 � � W � � 
 � � W ��� W����
We will assume for each extensive form = 4 � � �U����������������� � a
language � ` with � at least as large as � and � & at least as large
as ��
XD i.e., W �#W , W �NW and W ��
XDNW , W � & W . In the sequel we
will more in particular assume that � 4 � and � & 4 5��:. " 	 7� < 
95��"!C" 
'7cD�< for �g` .

Falsum ( # ), material implication ( � (%$ ) and disjunction ( �'&�$ )
are defined as usual. Let further ( �*) � , ( 	 ) � , and +-,/.-0-12�'354 � 463
be short for � � � �7�8� , � � 	��9��� , and

� ����	 � � � 	:�8��� , respectively.
A frame for a language � is a triple

�<; �S5 ��=><9="��>;�S5 �M.�< .����a� , in
which

;
is a set (of states) and for each ?'7@�A
'� , �CB F ; % ;

is an accessibility relation. A frame is regular if the program con-
nectives “ 	 ”, “ 
 ” and “ � ” have their intuitive interpretations of se-
quential composition, non-deterministic choice and iteration, respec-
tively. That is, if the following conditions are fulfilled, where

� ��= � �
denotes the reflexive and transitive closure of � = :

�D=-EGF =9H 4 �C=6EJI �C=9H� =6E:K"=9H 4 � =6E 
 � � �� =�L 4 � � = � �
An interpretation function M for a frame

�<; �S5 � = < ="��> �S5 � . < .���� � is
a function that assigns a subset of

;
to each propositional variable

of the language. A model for a language � is a pair consisting of a
frame and an interpretation function M "�
 & (ON-P . The semantics
of PDL is given by interpreting each formula � on a model Q as
follows:

Q �SR
W4A� iff RN7TM � �N�
Q �SR
W4U��� iff Q �VRXWW 4Y�
Q �SR
W4U�T�T$ iff Q �VR
W4Y� and Q �:R
W4Z$
Q �SR
W4 � 	���� iff for all RU0a7 ; "[R��M.\RU0 implies Q �:R�0 W 4]�
Q �SR
W4 � � �9� iff for all R 0 7 ; "[R��C=/R 0 implies Q �:R 0 W 4U�

and setting simultaneously:

�C^`_ 4 5 � R��VR�0�� "TQ �SR W 4U�;<`a
We say that a formula � is valid in a model Q , Q W 4b� , if for all
states R in the model, Q �SRCW4c� . A formula � is valid in a frame d
at a state R , d �:R_W4%� , if for all interpretation functions M for d ,� dg�eM:�>�:R
W4]� . � is valid in d per se, d#W4]� , if for all interpretation
functions M ,

� d �fM:�NW 4g� . Finally, a formula � of � is valid, W 4c� , if
for all frames d , d#W4]� .

4 Games as Frames

Games in extensive form are defined as trees and as such give rise
to frames that serve as the semantical entities of our logic. For each
extensive game = we define a frame d ` for the language � ` as
follows:

Definition 5 Let = 4 ��� ���������:h_������� � be an extensive game. We
define d ` as the smallest regular frame

�<; �S5 �C=><�=5�`>;�S5 �!.�< .��-� � for� ` satisfying the following four requirements:
�ei � ; 4 �� N�� R�� . R 0 iff RN, . R 0� 	 � R��Dj T R 0 iff RN�kR 0 and � � R �;4 	� �2�lR�� j9m R�0 iff 
 � R � 4YR�0

Accordingly, the tree n ; �:o .���� � j TVp coincides with
��� ���!� . Fur-

thermore, each modality
� 	�� runs over the preference order of player 	

over the states as induced by the utility function. Hence,
� 	���� intu-

itively means that � holds in all states that are at least as preferable
to 	 as the local one. If R�� j T R�0 , this indicates that it is player 	 ’s move
at R . As a rule, � . is a non-deterministic program, because a player
in a game has several options how to act. The atomic program � !
is interpreted as the functional relation the strategy profile 
 of the
game defines on the vertices. Hence, it is inevitably a deterministic
program, defined on each of the internal nodes. To illustrate this def-
inition, Figure 2 depicts the frame d ` corresponding to the game of
example 1 as it is defined for the atomic programs �$.�E , �:.qH and �5! for
 such that 
 � - & �;4 - � , 
 � - � �;4 - � , 
 � - � �g4 / $ and 
 � - � �;4 / � .

d ` "

���� ���� ���� ���� ���� ��� �
r .�E � � ��� � � �

r ! � r .�E

r ! � r .sH � � ��� �� �
r .sH

r .�E
�� & ( ( ( (*)��� ��� $

� � �
+ �� !

r .sHr ! � r .sH � � ��� � � �
r .sH

r ! � r .7E

Figure 2. Frame corresponding with Example 1

Since the games that are object of our study have quite a definite
tree structure such that each vertex is accessible from the root in a
finite number of steps, the class of frames corresponding to a game
cannot be fully characterized. The class of frames we are going to
consider instead is defined by certain properties that are satisfied by
each frame that is induced by a game. These properties are axioma-
tized by the following schemes:

t . � 	����X(u�� . � 	����X( � 	�� � 	����v ! (��5! ) �X( � �"!`���= i ! (�� ! ) �X(uw .��`x (�� . ) �=�N ! w .���x (�� . )"y (%(�� ! )/y=N	�. (�� . )"y (uz�{ ��x QS| .7} � � { ��#=M� =5~ . � ( ��) ����( ��) $ � ( � ( ��)a� ����( 	 ) $ ��&�( �*)>� $���( 	 ) � ���
Interpreted on frames corresponding to games these axioms have in-
tuitive readings. Since in each game for each player 	 the preference



relation ,/. is determined by the utility function � , which range was
taken to be the continuum, � . is a total preorder on the states indeed.
Hence,

t . and � . , which characterize reflexivity and transitivity of�M. , respectively. The axiom scheme =M��="~ . captures, for each pro-
gram

�
, the comparability with respect to �M. of any two states in

which
�

terminates. This fact holds for frames d ` because the util-
ity function in each game = is defined for all vertices. = i assures
that the strategy profile only prescribes moves the players can per-
form. Moreover, =�N�! makes certain that, whenever a program � . is
enabled so is � ! , i.e., a player cannot adopt the strategy not to move
at the nodes assigned to her. Finally, =N	 . guarantees that no two pro-
grams �:. and � { are enabled at one node, i.e., no two players are to
play simultaneously. These facts are easily proved and summarized
in the following proposition:

Proposition 6 Let = be a game and d 4 ��; �S5 �C=e<�="��> �S5 �M.�< .���� �
a frame for � ` ( 	 and

�
range over � , R , R 0 and R 0 0 over

;
):

dVW4_= i ! iff � j9m F o .��`x �M.
dVW4_=�N ! iff � R �fR 0 � 	 "JR � . R 0 implies � R 0 0 7 ; "[R�� j m R 0 0
dVW4_=N	 . iff � R �fR 0 ��� � "JR��Dj T R 0�� R��Dj���R 0 imply 	R4 �
dVW4_=M� ="~ . iff
� R��:R�0 �:R�0 0b" � R �D= R�0 � R��D= R�0 0�� imply

� R�0 �M.\RU0 0 or RU0 0 �!. R�0�� a 4
Let � be the class of frames 	 for which , . is reflexive and transitive
for all 	 79� and which satisfy the conditions on the right-hand side
of the equivalences in proposition 6. We have the following fact:

Fact 7 For all games = : d ` 7
� .

5 Characterizing Nash Equilibria

In the previous section we defined for each extensive game = a dy-
namic language � ` and a frame d ` for � ` . Now, some strategy-
profiles comprise a Nash-equilibrium in an extensive game, and oth-
ers do not. If a strategy profile 
 is a Nash-equilibrium in an exten-
sive game = , this fact is reflected in certain structural properties of
the frame d ` . What we are after is a formula scheme in � ` for each
strategy profile 
 , � � 
b� , such that:


 is a (s.p.) Nash-equilibrium in = iff d ` W 4�� � 
R� .
First we introduce, for each subset of players h F � and strat-

egy profile 
 , a complex non-deterministic program,
� � 
 �:h)� , as an

auxiliary notion.

Definition 8 Consider � ` for some game = . Define for each
subset 5 	 & �GaGaGaU��	 
 <AF � and for each 
 7GD the program�g� 
 �S5�	 & � aGa�a�� 	�
 < � as:

�g� 
 �:h � " 4 +�,/.60-1Z(7� ! )"y 354 � � .�
 
�aGa a9
T� .�� 
 � ! � 463
Usually we will abbreviate

�g� 
 ��5�� . <1� to
� � 
 �f� . � . Note further that:

� � 
a����� 4 +�,/.60-1k(�� ! ) y 354�� ! 463 a
The intuition behind this definition becomes clear when we con-

centrate on frames in the class � . For each h F � , the pro-
gram

� � 
a�Vh)� is non-deterministic if for some 	 7 h , � . is non-
deterministic.

�g� 
 �:h � executes any of the atomic programs � . with	97 h if it is enabled in a state, the program �"! otherwise. The$
For the proofs of the claims made in this paper the reader be referred to [6],
which can also be found at: http://www.cs.uu.nl/people/paulh.

program terminates when �"! is no longer enabled. In any frame sat-
isfying =�N ! no � . 7 � & will be enabled either. In contradistinction,� � 
 ����� reduces to a deterministic program that repeats � ! until it
terminates.

In any frame 	 7�� , � j9m F ��� T���� j T , and so the program� � 
 ���c� , when executed in state R , terminates in those states RU0 that
are reachable by a path R/4UR & �Dj T E aGa a �Dj T � R 
 4UR 0 such that for no� 7c� and for no state R 0 0 , R 0 � j���R 0 0 . The larger the set h , the more
non-determinism is brought into the program

�g� 
 �:h � , with the de-
terministic

� � 
 ����� on the one end of the spectrum and
�g� 
 ���c� on

the other. In other words, � =�� !�~ ��� is monotonic in the sense that
h Fkh 0 implies � =�� !�~ ��� F � =�� !�~ ����� .

For each frame d ` and strategy profile 
 , the program
� � 
a���c�

will terminate exactly in the leaf nodes still reachable from the state
in which the program is executed. With the program � ! encoding a
strategy profile 
 , commencing in R , � � 
a� ��� terminates precisely in
that node which 
 determines as its unique outcome, i.e., R�� =�� !�~ !"� R 0
iff R 0 4 Y
 � R � . Moreover, as the program � . is interpreted as the
moves available to player 	 , the possible runs of the program

� � 
 �f� . �
terminate in exactly the leaf nodes which, by choosing her strategy,	 can guarantee the game to end if the other players stick to the strat-
egy profile 
 . As such,

� � 
 � 	�� represents the strategy search space of
player 	 the strategies of the other players fixed by 
 . In our example,� =�� !�~ .7E � is the set 5 � - & � / � �>� � - & � / � �>� � - & � / $ � � � - � � / � �>� � - � � / � � �� - � � / $ �>� � - � � / � �>� � - � � / � ��< , and

� � 
a� 	 � � is obtained from Figure 2
by removing the leaves / � � / ! and / � , and by substituting � ! for
� ! �f� .sH . Summarizing, the following fact holds.

Fact 9 Let =_4 ��� ������������������� � and dR` its corresponding frame.
� � � - � =�� !�~ !"� / iff Y
 � -:�;4 /�$# � - � =�� !�~ .%� / iff � 
 0 7cD : 
cH Oe. 
 0 and Y
 0 � -:�;4 /

It is precisely this insight that is exploited in this section to charac-
terize frames for which the strategy program � ! matches the Nash
optimal strategy profile of the corresponding games.

The program
�g� 
 ����� , as it boils down to an iterated execution of

the � ! program until a final state is reached, combines the strategies
of the players as encoded in the strategy profile concerned. Different
strategy profiles 
 , some of which may be Nash-optimal, will give
rise to different

� � 
a� ��� programs. The question we address now, is
which structural properties a frame d ` should comply to, if the pro-
gram

� � 
 ����� is to mirror a strategy profile that contains a (subgame
perfect) best response strategy for a player or one that is a (subgame
perfect) Nash-equilibrium. Eventually we will show that these prop-
erties can be characterized by a formulae in � ` .

If a player 	 acts in accordance with her own interest, one would
expect her to choose that strategy in her strategy search space which
guarantees her the highest payoff. In terms of frames, this can be
put as follows. Let � ! be such that a final state / is reachable by
the program

� � 
 � 	�� and another final state / 0 by
� � 
 ����� . Then by

monotony
�8� 
 � 	�� reaches / 0 as well. For �5! to model a strategy

profile incorporating an optimal strategy for player 	 , 	 should ei-
ther prefer / to / 0 or be indifferent between them. Otherwise, 	 could
alter her strategy in such a way that for the resulting strategy pro-
file 
 0 , �g� 
 0 ����� terminates in / . Formally, this intuitive constraint
for a player 	 to decide at node R and a strategy profile 
 can be put
as follows:� � � for all / � /�0 7c� "6R�� =�� !�~ !&� / and R�� =�� !�~ .%� /�0 imply /�0 �M. / .

We call � =�� !�~ !"� 	 -beneficial in a state - if the property
� � � holds

for - and 	 . It turns out that this structural property of the programs



	 , �:. and �5! in a frame d ` reflects that 
 contains a best-response
for 	 in the game = . By way of illustration, the reader consider once
more our example (cf. Figure 2) and the strategy profile 
 0 such
that 
a0 � - & � 4 - � , 
a0 � - � �-4 / � , 
 0 � - � �-4 / � and 
a0 � - � ��4 / ! .
Then, � =�� ! � ~ !"� is not 	 � -beneficial in - & , for - & � =�� ! � ~ !&� / � and- & � =�� ! ��~ .7E � / ! but not / ! � .7E / � . Neither contains 
 0 a best-response
strategy for 	 � in = . However for the original strategy profile 
 ,� =�� !�~ !"� is 	 -beneficial in all states for both 	�4 	 � and 	
4 	 � as
well as 
 is a Nash-equilibrium in = .

In general, the following proposition holds as a result of the facts 7
and 9:

Proposition 10 Let = 4 ��� ������������������� � be an extensive game
and d ` its corresponding frame. Then for 
X7cD and 	 79� in d ` :� � � 
 contains a best response for 	 iff� =�� !�~ !&� is 	 -beneficial in - &�$# � 
 contains a Nash-equilibrium iff

for all 	 79�?" � =�� !�~ !&� is 	 -beneficial in - &� � � 
 contains a s.p. best response for 	 iff
for all -h7 �

: � =�� !�~ !"� is 	 -beneficial in -�$# � 
 contains a s.p. Nash-equilibrium iff
for all -h7 �

, for all 	;7c�?" � =�� !�~ !"� is 	 -beneficial in -
Now the stage is all set to obtain the central result of this paper.

Since for each game = , � ` is, apart from being dynamic, a multi-
modal language, we have as a consequence of elementary modal
logic the following fact all �f� � ��� 7�� 
�� (cf. [10], pp.64–66):

Fact 11 For all frames d 4 �<; ��5 �C=><9="��>;�S5 �M.�< .����a� for a lan-
guage � ` . Then for all �g� � ���'7T��
T� :

d �:R
W4 (�� ) � � �6�'( �
� ��� iff

� R�0��SR�0 0a7 ; "[R���� R�0 and R ���"R�0 0 imply R�0 ��	 R�0 0
By choosing

�8� 
 � 	�� , 	 and
�8� 
 ����� for � ,

�
and � respectively in

the above fact, we procure the following theorem:

Theorem 12 Let =B4 ��� ������������������� � be a game and d ` be the
corresponding frame. Let further � � 
 � 	��:� � abbreviate the formula
scheme ( �8� 
a� 	�� ) � 	��6� ( � �8� 
 �����\��� . For all 	g7�� and 
X79D ` :

� � � 
 contains a best response for 	 iff dR` � - & W 4 � � 
 � 	��:� ��$# � 
 is a Nash-equilibrium iff d ` � - & W 4 z .��`x � � 
 � 	��S� �� � � 
 contains a s.p. best response for 	 iff d ` W 4�� � 
 � 	��V� ���
 � 
 is a s.p. Nash-equilibrium iff d ` W 4 z .���x � � 
 � 	��:� �
These results establish that PDL is sufficiently expressible for model
checking purposes with a strategic objective. The reservations for
us to make in this respect are that the situation concerned can be
described as an extensive game of perfect information and that one
is interested in the Nash equilibrium solution concept. Alternatively,
formula schemes like � � 
a� 	��:� � could be used in a specification of
a multi-agent system in which the agents are required to settle on
strategies that together constitute a Nash-equilibrium. An interesting
question in this respect is whether the program � ! can be formulated
as a complex program that is employed by the players as an algorithm
to compute a Nash-optimal choice in each possible circumstance.
Still, this issue should be committed to future research.

6 Related and Future Research

This work on incorporating game theory in modal logic, is much
inspired by Bonanno’s [4]. It differs, however, in three respects.

Firstly, Bonanno uses computational tree logic (CTL) rather than
PDL. Moreover, his emphasis is on the logical foundations of game-
theory rather than the incorporation of game-theoretical notions in
logic. Thirdly, his analyses are confined to the notion of backward
induction, an algorithm designed to generate subgame perfect Nash-
equilibria. Backward induction, however, is only guaranteed to pro-
vide a solution in games in which the preferences of the players over
the outcomes are totally ordered. Independent investigations that are
congenial to our approach, are reported by Baltag in [1]. Although
his concern is primarily with the epistemic aspects of games, he also
proposes a dynamic logic in which Nash-equilibria and related con-
cepts can be characterized. His way of mapping games onto Kripke
structures, however, is quite different from ours.

An obvious sequel to the present research would be to incorporate
other game-theoretical solution concepts into our dynamic frame-
work. Furthermore, our attention has so far been concentrated on
extensive games of perfect information without either repetition or
chance moves. In the light of purported applications to the speci-
fication of fully-fledged multi-agent systems, this could be consid-
ered a major concession. After all, one of the areas where the agent
metaphor particularly bears fruit is where the players can only be
ascribed partial knowledge of their environment.

These matters merit thorough investigation, as do the intricate
epistemic issues of game theory and those related to coalition for-
mation.
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