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Abstract. To cope with the difficulty of 3D MRI brain scans 
segmentation, specification and instantiation of a priori models 
should be constrained by local images characteristics. We 
introduce situated cooperative agents for the extraction of 
domain and control knowledge from image grey levels. Their 
dedicated behaviours, i.e segmentation of one type of tissue, are 
dynamically adapted function of their position in the image, 
topographic relationships and radiometric information gradually 
gained during local region growing processes. Acquired 
knowledge is gathered and shared via qualitative maps. 
Incremental refinement of the segmentation is obtained through 
the combination, distribution and opposition of solutions 
concurrently proposed by the agents. 

1 INTRODUCTION 
Image interpretation consists in finding a correspondence 
between radiometric information and symbolic labelling with 
respect to specific spatial constraints. This requires the 
specification and instantiation of a priori models of the structures 
to detect. Face to the general complexity of images, several 
descriptors are defined and merged, learning phases are 
introduced and cooperation between several image processing 
stages are used. We are interested in medical image processing 
especially Magnetic Resonance Imaging (MRI) brain scans 
interpretation. Functional MRI (fMRI) is a recent non invasive 
and indirect technique for the detection of brain activation in 
response to specific stimuli. Measured activity is mainly located 
in the grey matter, a 2D ribbon structure highly folded in the 
brain. Then, a rationale way to visualize and analyse activity 
maps consists in unfolding the grey matter [1]. Flattened or 
unfolded maps display the activity buried in cortical sulci while 
preserving some aspects of spatial relationships. The quality of 
anatomical scan segmentation is crucial for unfolding because 
small errors, for instance in fine structures such as sulci, lead to 
large distortions on unfolded maps [2].  
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Anatomical brain scan segmentation is a challenging application 
for several reasons: 1) huge data volume (≈10Mb for one 3D 
image), 2) high variability and low specificity of classes  
characteristics due to image acquisition artefacts, 3) presence of 
complex objects structures such as sulci and 4) high variability of 
spatial relationships and objects forms due to individual anatomy 
variability.  
The purpose of this paper is to demonstrate the potential interest 
of situated agents for MRI brain scans interpretation. Situated 
agents borrow 1) from reactive AI the principle of autonomy, 
each agent acquiring autonomously the knowledge necessary to 
reach its own goal and 2) from situated cognition [3], the 
principle of contextual localization, each agent being situated in 
a local evolutive context with specific neighbourhood constraints 
to preserve the global consistency of the segmentation process. 
Agents run in a cooperative framework, where cooperation is not 
envisaged as usual for communication purposes only but as a 
mean for 1) rooting the agents: the position of each agent is 
adapted depending on the current state of the global 
segmentation process, 2) referencing: each agent modifies its 
local model depending on those built by neighbouring agents, 
and 3) controlling: segmentation is performed incrementally 
through the combination, distribution and opposition of solutions 
concurrently proposed by the agents.  
In the remainder of the paper, we position in Section 2 our 
approach with respect to the literature. In Section 3, we detail the 
situated agents environment and report in Section 4 the results 
obtained using realistic phantoms. Then, we discuss in Section 5, 
several aspects of our work and point out work under 
development.   

2 MRI BRAIN SCAN SEGMENTATION: 
RATIONALE 
Brain segmentation consists in three steps: 1) skull stripping to 
keep only brain tissue from MRI, 2) compensation for the non 
uniformity of the grey levels for each tissue (shading artefact) 
and 3) labelling of each voxel. We focus our paper on this last 
point and consider the labelling of grey matter (GM), white 
matter (WM), and cerebo spinal fluid (CSF). Labelling is a 
particularly difficult step due to partial volume effect. It is 
achieved through boundary-finding or region-based approaches, 
or the fusion of both [4 , 5]. In our context, boundary-finding can 
be based on active shape models [6] where the model of the 



 

 

object to detect (GM ribbon) is derived from a learning set and 
then deformed to fit the specificity of a new object. However, the 
use of global constraints hampers the delineation of fine 
structures such as sulci. Automatic extraction of the inner and 

outer surfaces of the cortex can be modelled as a front 
propagation problem solved using level set techniques [7]. 
Manual placement is required for the initialisation  of  the  
algorithm  and  computational  efficiency 

remains an open-problem. Our approach pertains to the region-
based approaches. The underlying Bayes formula, common to 
these approaches, yields maximum a posteriori (maximum 
likelihood) classifier. The prior probabilities can be set by the 
user [8], based on an atlas [9] or on the relative frequency of each 
class in the volume [10, 11]. The likelihood of a particular voxel 
vi belonging to a certain tissue ti is generally modelled as a 
normal distribution [12] whose parameters (<µι>, <σι>) have to 
be estimated. Different techniques can be used in this respect like 
fuzzy K-means [13] or the E/M algorithm applied locally [10] or 
globally [14] over the volume image.  
Two strategies to drive the global segmentation process can then 
be applied: incremental or iterative. When labelling is realize 
step by step for each tissue (incremental strategy), a priori 
knowledge is introduced to control the process and initialise each 
step. In [8, 15, 16], the authors exploit the fact that intensity 
levels of WM have smaller intensity variability than GM (in T1 
weighted scans) and that GM surrounds WM. Then, GM is 
automatically created by a constrained growing process from 
WM. In [17] morphological operators delineate a sulci mask 
from which a growing process is launched to determine the GM. 
In [4], the use of a deformable model allows to position 
accurately seeded-region-growing agents that firstly segment 
GM. From GM ribbon, a second agent population is launched to 
segment WM. Clearly, in these approaches, the quality of 
segmentation at a given step depends on the quality of 
segmentation at previous steps. Conversely, as regards iterative 
strategy, the Markov random field (MRF) approach can be used 
to introduce, via a regularization term, spatial and anatomical 
constraints. Labelling is then obtained through the iterative 
minimization of some given energy function. Here again, 
initialisation is a crucial step for MRF parameter estimation. It 
may be realized by fitting an histogram over the image volume 
[18], using K-means and E/M classification [19], maximum 
likelihood classification [20 ], or using prior classification 
derived from a digital brain atlas [21]. Estimation and labelling 
are generally processed sequentially but can be combined in a 
global iterative process [21].  
Based on this brief analysis of the literature, it appears that major 
issues, from the application viewpoint, are to preserve fine 
structures such as sulci, limit manual corrections by the user and 
be computationally efficient. Major issues, from the technical 
viewpoint, are (i) to proceed to proper initialisation of the 
segmentation process, (ii) to proceed to adequate modelling of 
the tissue statistics and (iii) to derive a strategy allowing the 
confrontation and fusion of the segmentation results. At the light 
of the methods cited above, the main statements of our 
methodology are 1) to work locally to cope with  grey level non 
uniformity, 2) to manage neighbourhood information to keep 
control of local processes via global information (although MRF 
is a powerful model for defining a formal neighbourhood system, 
small image details are generally lost), 3) to segment 

concurrently the various tissues to gain mutual constraints from 
their confrontation and 4) to adopt a constructivist approach 
based on successive refinements, to cope with the fact that 
parameter estimation is a local and error-prone process. Situated 
agent is the computational paradigm of this methodology. 

3 SYSTEM DESIGN 

3.1 Rationale 
The grey level distribution over the brain tissues is modelled as a 
mixture of gaussian distributions, whose parameters have to be 
estimated from the available data, to minimize the a priori 
needed to launch the segmentation process. Due to the high 
variability of the grey level information through the image 
volume and to gain in precision, the estimation is performed on a 
local basis. As estimation is an error-prone process, the models 
are confronted and adjusted in several steps to augment their 
local consistency and to ground them more deeply in the 
available data. An illustration of this process is shown in Figure 
1. 
 

 

 
 

Figure 1. Data model estimation: a) initialisation step (looking for the 
histogram modes), b) E/M for modelling normal tissue distributions, c) 
adjustment of the model using the neighbourhood, d) fuzzyfication, e) 
distribution re-estimation after labelling, f) computation of new 
membership functions (introduction of partial volume effect modelling). 

As labelling is also an error-prone process, it is performed 
locally, by dedicated agents, according to an incremental 
strategy. A region growing process is used, starting from a 
carefully selected seed, in order to aggregate the highly confident 
pixels first. This process evolves in three steps (see Figure 2): 1) 
firstly, hard grey level constraints are used, and then 2) they are 
relaxed and combined with topological constraints and finally 3) 
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d- e- f- 



 

 

a competitive approach is used to label the remaining voxels. 
Three complementary forms of cooperation are therefore 
combined in an incremental data processing  strategy [11]: 
augmentative cooperation, according to which the data volume is 
partitioned into zones processed by local agents, confrontational 
cooperation, according to which the results obtained by the 
agents results (models as well as voxel labels) are confronted and 
compared, integrative cooperation, according to which the 
problem solution is obtained through successive coordinated data 
processing steps. 
 

     
 

Figure 2. Snapshots of the segmentation process: a) result of the first 
segmentation step, b) second segmentation step: relaxing the grey level 
constraint and using a topological criteria, c) third segmentation step: 
confronting the labels for remaining pixels at the frontier between tissues. 

3.2 Architecture 
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Figure 3. Three types of agents exist in the system: global and local 
control agents, whose the role is to build the processing model of the 
system, and segmentation agents, whose the role is to cooperatively label 
the data volume. 

The system is made of agents running under control of a 
scheduler, whose role is to manage their creation, destruction, 
activation and deactivation. Each agent is in turn provided with 
several behaviours running under control of a dedicated 

scheduler. The launching of a given agent or behaviour is 
context-dependent, as driven by a simple synchronization model. 
The agents are organized into groups [22] running under control 
of a manager which ensures their proper coordination. The agents 
share a common information zone, organized according to the 
tissue types and spatial relations, and storing global and local 
statistical information. Qualitative information maps are 
introduced to efficiently gather, retrieve and easily add 
complementary information such as tissue membership values or 
topological relations. 

3.3 Agents Roles and Behaviours 
Three types of agents coexist in the system (Figure 3): global and 
local control agents and segmentation agents. The role of the 
global control agent is to partition the data volume into adjacent 
territories, and then assign to each territory one local control 
agent. The partitioning can be iterated several times to focalise 
local control agents on problematic regions such as tissue 
frontiers, sulci or ventricles. At the beginning, the volume is 
partitioned into adjacent cubes and each local agent is provided 
with global statistical information about MRI brain scans.  
 
The role of local control agents is to estimate and adjust the local 
statistical models given to segmentation agents, to create and 
launch them and refine the final segmentation result. More 
precisely each local agent articulates the following behaviours: 
• LcA1: Computation of local statistical models and 
segmentation agent creation: based on E/M algorithm, the issue 
is to extract, from the data pertaining to each territory, the 
distribution model (see Figures 1-a, 1-b). Segmentation agents 
are then created, one per territory and per tissue, provided with 
the local distribution when available. 
• LcA2: Computation of tissue membership functions: fuzzy 
functions are computed for each tissue distribution and mutually 
adjusted to avoid superposition (see Figure 1d). In order to 
favour highly confident voxels, the segmentation agent rooting 
behaviour is selected only if sufficiently robust membership 
functions are obtained. Otherwise, region growing is started 
eventually from pixels located at tissue frontiers and selected by 
neighbouring agents (information diffusion). 
• LcA3: Model adjustment behaviour: the issue is to re-
evaluate the initially computed distribution models, based on the 
labelling performed by the segmentation agents (see Figure 1-e). 
• LcA4: Segmentation completion: to allow for more 
specificity in the segmentation process evaluation, new 
membership functions are computed, corresponding to partial 
volume effects (see Figure 1-f). All remaining non-labeled pixels 
are ordered in a common list, according to their membership 
degree, and labeled to the most probable tissue. 
 
Three types of segmentation agents are distinguished, whose role 
is respectively to segment GM, WM and CSF. More precisely 
each segmentation agent articulates the following behaviours : 
• SA1: Refinement of the gaussian model: the issue is to refine 
the distribution model computed by the local control agent, based 



 

 

on neighbouring distributions for the same tissue (see Figure 1-
c). An interpolation process is used to replace, when departing 
from the interpolated values, the initially computed gaussian 
model. The process is iterated until stabilization of all agents to 
cope with the fact that at a given time some distribution models 
may be lacking for some neighbouring agents.  
• SA2: Rooting behaviour: the issue is to compute a rooting 
location for the agent. The search for this location is iterated, 
from the centre of the zone to its periphery, until some local 
satisfaction criteria is reached. If no location is found, the region 
growing behaviour is selected and runs eventually on candidate 
pixels placed at the frontiers and selected by neighbouring 
agents.   
• SA3: Region growing behaviour: this behaviour proceeds in 
two coordinated steps: hard radiometric constraints are used first, 
and relaxed in a second step where they are combined with 
topological information. Candidate pixels, e.g. non-labelled 
pixels connected to the currently labelled pixel, are marked along 
this process. If these pixels reach the frontier with a neighbouring 
territory, they are stored into the candidates list of the 
corresponding agent, which is automatically reactivated, if 
inactive, to process them. 

3.4 Agents Coordination 
Gradual refinement of tissue distribution models interleaves local 
control agent behaviours with segmentation agent behaviours. 
The following loop combines the different behaviours: LcA1, 
SA1, LcA2, SA2 or SA3, LcA3, SA1 and LcA4. The firing of 
local control and segmentation agent behaviours alternates. This 
coordination is controlled by the agents themselves through a 
shared variable representing task completion. When this global 
variable is decremented to 0 by a given agent, this agent 
reactivates the agent group whom it is member. Reactive 
capabilities are also provided to the segmentation agents to 
manage two situations: 1) refinement of the gaussian model is 
fired for a given agent, each time one of its neighbours modifies 
its own model, 2) the growing behaviour is fired (and rooting 
behaviour is stopped if any) for a given agent, each time new 
pixels are provided as candidate pixels by neighbouring agents. 
Reactivity is a central point in our approach as it allows 
information diffusion on the fly of the segmentation process and 
limits the search for rooting.  

4 RESULTS 
To quantitatively evaluate our method, we used MR images 
generated by the BrainWeb simulator [23]. Starting with images 
whose the tissue classification was perfectly known (considered 
as our reference for each tissue i.e. Ref masks), we created using 
BrainWeb images with several noise levels (3% , 5% and 7%) 
and bias field non uniformities (20% and 40%). For these six 
images, we compared the results obtained with our method to 
those obtained with two methods based on MRF and including 
shading effect correction [9, 21]. For this purpose, we computed 
for each tissue the Jaccard similarity, equivalent to the Tanimoto 
coefficient and equal to TP/(TP+FP+FN), between Ref masks 
and masks obtained by the three methods. The results of this 

evaluation are represented in Table 1. Some results provided by 
other methods are reported in [20]. 
 
Table 1. Results on Brainweb phantom 

 n = 3%  n = 5%  n = 7%  
  20%  40%  20%  40%   20%  40% 

 WM   0.88   0.87   0.87   0.86   0.86  0.81  
  ∇    GM   0.89   0.89   0.87   0.87   0.81  0.82 

 WM   0.84   0.85   0.83   0.83   0.78  0.78  
  ◊   GM   0.87   0.87   0.82   0.82   0.78  0.78 

 WM   0.92   0.90   0.88   0.86   0.82  0.82  
  ∆   GM   0.91   0.90   0.86   0.86   0.80  0.81 

  ∇  SPM[9] , ◊ [21], ∆ Our method 

5 DISCUSSION AND PERSPECTIVES 
In the context of unfolding, the majority of methods proposed are 
sequential [8, 15, 16] with the insertion of a priori knowledge to 
sequence the segmentation. Several manual interventions are 
required to correct for some imperfections (holes, links between 
two lips of a sulcus or GM and ventricle horns) [8, 10, 16, 17]. In 
our approach tissues are segmented concurrently: several situated 
cooperative agents works in different parts of the image to 
segment GM, WM and CSF. The objective of our approach is to 
solve the following three major points: 1) to position correctly 
the agents, 2) to define adequate constraints for region-growing 
and 3) to control the global process. Positions and constraints, 
roughly defined at initialisation, are gradually refined thanks to 
information continuously gained locally and globally. 
Information added all along the segmentation process is rapidly 
diffused thanks to reactive agents behaviours. Qualitative maps 
are introduced to gather intermediate results and control agents 
behaviours. Then, augmentative (parallel region growing 
processes), confrontational (combination of information from 
agents working on different tissues) and integrative (interleaving 
estimation with data analysis) cooperation are processed in a 
coordinate way. For unfolding, a hard segmentation is required. 
A specific qualitative map, that contains for each voxel the 
degree of membership to a tissue, is inserted to take into account 
of partial volume effect, modelled as a gaussian mixture. This 
fuzzy map helps to improve the final labelling for hard MRI 
brain scans segmentation.  
Our approach is in the same vein that this presented in [10] and 
applied to macaques brains segmentation, where local EM are 
used to deal with non uniformity of grey levels. EM is very 
sensitive to initialisation. We use peak finding on the overall 
image for EM initialisation. This can be improved in using prior 
classification based on a digital atlas. Spatial relations are 
elegantly modelled via MRF approaches. However, the Ising 
model, generally used with MRF approaches, leads to the 
blurring of fine structures incompatible with unfolding. Models 
preserving fine structures are computationally inefficient [21]. 
EM algorithm to estimate normal distribution presupposes grey 
levels as independent variables and no spatial relations are 
available. Here, spatial relations are introduced via agent’s 
neighbourhood and are used to refine EM parameters obtained 
locally to its territory. Our results are then similar to those 



 

 

obtained with MRF techniques with a lower computational 
burden (less than 5 min to segment a complete volume).  
The technique proposed has now to be evaluated on real MRI 
brain scans. For this purpose, several improvements have to be 
introduced. Shading effect can appear inside agents territories. A 
bias field estimation map obtained following the technique 
proposed in [24] could be added to our model. Presently, 
interpolation is iterated until stabilization of all agents present 
into the system. Based on topological relations, agents could be 
gathered in groups and stabilization restricted to each group. 
Sulci maps obtained thanks to morphological operators or genetic 
approach could be added to help the GM ribbon detection. 
Tissues interfaces are prone to errors due to partial volume effect. 
In MRF model a specific term can be added to the energy 
function to provide information about local grey level variations 
[18]. Here, specific agents, working with confrontation and 
negotiation, and launched at tissues interfaces, could improve 
their detection. Introduction of anatomical information and the 
segmentation of sub-cortical structures could ameliorate the 
complete process of GM ribbon unfolding; 
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