Adaptive Combination of Behaviors in an 4 gent

Olivier Buffet ! and Alain Dutech® and Francois Charpillet!

Abstract. Agents are of interest mainly when confronted with com- global behavior. The main point is that the weights lesned As

plex tasks. We propose a methodology for the automated design such, we derive andaptive(through learning relations between be-
such agents (in the framework of Markov Decision Processes) in thbaviors) andscalableagent (working with various world sizes).

case where the global task can be decomposed into simpler -possibly The following section of this paper develops in more details the
concurrent- sub-tasks. This is accomplished by automatically comeontext of our work and presents previous works that inspired us.
bining basic behaviors using Reinforcement Learning methblas. Then, in Section 3, we give the details of our algorithm with a special
main idea is to build a global policy using a weighted combinationfocus to learning and scalability. Section 4 is devoted to an experi-
of basic policies, the weights being learned by the agent (using Simmental validation of our work on the well known tile-world problem.
ulated Annealing in our case). These basic behawiarseither be A discussion and a conclusion end this paper.

learned or reused from previous tasks since they will not need to
be tuned to the new task. Furthermore, the agents designed by our
methodology are highly scalable as, without further refinement of th
global behavior, they can automatically combine several instances of

the same basic behavior to take into account concurrent occurences
of the same subtask. This section introduces the use of Reinforcement Learning in our

context. Then an analysis of previous works shows their limitations
and help us outline the solution we propose.

Framework

1 Introduction

Our researches aim at automatically designing the behavieaof) _ o
tive situatedagents limited to onlyocal perceptionsReinforcement 2.1 Reinforcement Learning and limitations
Learning (RL)[9] can be applied in that field. Nevertheless good RL

algorithms are usually used for simple cases and generally suffggeintorcement Learning (RL) methods are very appealing ways to
from combinatorial explosion, as discussed in section 2.1. _have agents learoptimal reactive behaviors in uncertain worlds, as
To overcome these difficulties, we make the hypothesis, as iRy 4 scalar feedback from the system to the agents is required.

Brook’s subsumption architecture [2], that a complex problem can g the convergence of RL algorithms (lieLearningor TD()))
be efficiently dealt with if considered as a combination of simple}, ¢ only been proven for Markov Decision Processes (MDP). A
problems. An example is given by the tile-world represented on figy\,np isdefined as a S, A, T,r > tuple,S being a finite set of

ure 1, where the agent has to manage three simple behaviors (the fitgh o5 andt a finite set of actions. When the system is in given state
one intends to avoid a hole, and the two others to push a tile in thg, an actiona being chosen, the probability for the system to end

hole). in states’ is given byT (s, a, s’). After each transition, the environ-
ment generates a rewards, a). The problem is then to find the op-

agent @) (avoidhole \ timal mappingr (s, a) between states and actions so as to maximize
\@ O + ® the reward reocoeived over time, usually expressed asa qtility function
~ ‘@ Q(s7 a)=>7", ’yt(rt|.so. = s,a0 = a). Sucha mapping is (_:a_lle_d a
+ policyand, for a MDP, it is well known that an optimadéterministic
' pushtile policy exists [9].
/' AN / ® As our agent only has a partial view of its environment, the learn-
7 ‘ ing task we are confronted with belongs to the more general class
hole tiles pusﬁ file of Partially Observed Markov Decision Processhigvertheless, the
Figure 1. A scene with some objects:| — assumption that the agent faces a Markovian problem is often made.
the global task is a combination of + © This is truly a weak approximation and the policies learned this way
sub-tasks \ ‘@) are clearly sub-optimal as explained by [7]. In fact, it is better in that

case to look fostochastigolicies, using gradient descent algorithms

Our method is twofold. First we provide our agent with basic be-for example (like in [1] or [.6])' S .
. . : Even under the Markovian approximation, the problem of combi-
haviors, either through RL or transfers from previous tasks. Then . . .) .
. : Jhatorial explosion remains. The number of an agent’s possible obser-
this basic behaviors are weighted and combined into the agent’s_.. . ; . -
vations can still be huge, even though the locality of its perceptions
1 LORIA, BP 239 F-54506 Vandceuvrés-Nancy helps reducing it. Our algorithm takes advantage of the possibility to

{buffet,dutech,char@loria.fr decompose the task in subtasks to address this specific problem.

2.2 Previous and similar works. point is also dealt with in our algorithm. To that end, we learn one
weight for each “generic” basic behavior (sucheasid holg. Thus,

A common idea to overcome the curse of dimensionality is to de4ap if many instances of the same generic behavior can be applied

compose the Markpy Depision Process in some way. A taxonomyn a given situation (several holes to avoid), they will be combined
of MDP decompositions is proposed for example by Wang and May,ging only onecommonweight. More details are given in Sections
hadevan in [10], in which our approach stands indkdon decom- 3.3and 3.4.3.

positionclass. But to our knowledge, there is up to now no satisfying

solution to this class of problem in the learning framework. .
3 Proposition

2.2.1 Why we need a new algorithm The starting point of our approach is the idea that a complex behav-
. ior is obtained as an answer to many basic motivations. Moreover,
The starting point of our approach is to give the agent stochastic poligjmpje hasic behaviors can be easily associated to each of these mo-
cies for each of its basic behaviole hard pointis then to combine yations. Given these two points, we make the hypothesis that, in
th_ese_basm policies to derive a global policy. At this point, two Majormany cases, a good solution of the complete problem can be recon-
dlrect.lons can be talfen.) structed using the basic behaviors. In this section, we will give more
A first option, as in the work of Humphrys [S], is to select one yeqyiis on these basic behaviors, describe how a scene can be anal-
particular behavior as the one to be privileged for the immediate perygaq through a decomposition in basic behaviors, and finally propose

ception of the agent. To do this, the actions desired by each behavigf ,athod to automatically build a complex behavior by learhing
and information about the utility of these actions are fed into a con-

troller which determines the “leader” behavior. Many strategies for .
the controller have been studied by Humphrys, all based okvhis 3.1 Some notations
Learningframework.The best one requires an adaptation of the re-an agent perceives a scene assbiservation, which is composed of
ward functions used to teach each basic behavior, as the selection ofaset of percepts. Such an observation can be brokercantfigu-
behavior is based on minimizing the difference between the expectegtions (i.e: subsets of the observation), and a percept can belong to
and received local reward associate¢&zhbehavior. As such, this gifferent configurations. As each percept is characterized by a type
adaptation is very specific to the global task. (for example a hole, a tile or a door in our case), we also define the
Another option is to combine the basic policies into a new pol-yery important notion of &ype of configuration which is described

icy. This option is more appealing than the preceding one for severagy a set of types of percepts (ifole, tile}). With these notations,
reasons. In some cases, as shown on figure 2, the best action to tak@ next section defines a basic behavior.

is not given by any sub-policy but could emerge from a combined
policy, especially if the sub-policies are deterministic. Besides, thi
option is less task-specific in the sense that we can re-use the basic
behaviors for different complex tasks as we only need to adjust th@ basic behavioris defined by 1- a type of configuration, 2- a
weights of the behaviors and not the behaviors themselves. stochastic decision policy learned by reinforcement and 3- the utility
of this policy. For a basic behaviér we will noteC” (b) its type of
configuration. This notion of type of configuration is essential for the

2 Basic behaviors

e scalability of our approach, since it allows generic basic behaviors to
N be instantiated several times in the same observation. Then, the pol-

to probability distributions over actiong?, : C* (b) x A — [0, 1].
Note that two different configurations can belong to the same type
of configuration, so the agent can deal with them by using the same
Figure 2. No leading behavior.The action desired by the bagiash behavior (i.e. the agent can try to avoid two holes at the same time).
behaviors is either to go lefthole Os, tile O1 } or right The knowledge of this policy for each basic behavior is not suffi-
{hole O3, tile O1 }, whereas the optimal global action is to go down. cjent to take efficient decisions when the agent has to deal with con-
current motivations. To weight them in some way -giving a higher
))) priority to danger avoidance or to important reward in sight- we
_The work from Dixon et al [3] briefly describes a method for com- g ,g4est to evaluate a situation by using Q-values, as they will give
bining sub-policies Whgre the proba.blllty dlst_rlbutlon on tht_3 actlon§us the expectation of discounted reward (i.e. the utility) of each
for each sub-task are linearly combined. A simple weight is assoCiggnfiguration-action pair. This Q-values can be learned while also
ated to each sub-policy, and the problem is then to choose the rlgrﬂéaming the policy of a basic behavior
weights As this method only intended to control their exploration,no 14 sym it up, for each behavibrare calculated two tablégor an
particular attention were given on how to choose these weights. upcoming use:
is exactly the problem we will address in our algorithmlegrning
these weightsas explained in Section 3.4.3. e Py(c,a): the probability to choose actianwhile seeing configu-
rationc, and
e (Qy(c,a): the expected discounted reward when choosing aation
for the configuratiore.

' icy P, of the behavior is a mapping from configuratianef C” (b)

|
sl =

2.2.2 Scalability is desired

We. .Iastly want to p(.)mt out that existing me'thods do not offer Sc.al_Q These basic behaviors could be usefully collected into a library which would
ability. When a basic behavior can be applied more than once in a g reusable in other situations.

given situation (for example, two holes are to be avoided), this must Q-values depend on the chosen policy.
be specifieda priori in the algorithms cited before. This specific * Both tables have the same definition §&t(b) x A.

How to use these basic behaviors is discussed in the following). If these@-values seem to give good comparisons between state-
subsections. Please note that how to find which basic behaviors taction pairs of a single behavior, the relative importance of different
use for a given complex problem is not discussed in this paper. Q-tables can be efficiently corrected by learning a parantitéor
each behavior (appearing as a factdn).

For a given observation-action pdis, a), the idea is to consider
that each behavior tells that its probabili(c, a) is the right one
When an agent is confronted to a complex situation, it must decomwith @ force of convictiore™ + Qs (c, a)| °. This leads to compute
pose it into simpler known configurations irsealableway. To this the mean of theP, (¢, a) probabilities weighted bye” * Qy(c, a)l
end, the first step is to look for “familiar” and “useful” configurations (for each current behavior):

3.3 Scene decomposition by the agent

in the perceived situation. As any subset of percepts of the agent’s 1 oy
current observation can be a configuration associated to a behavior, (% @) = k(o) > X MIealpea)
an agent will only consider configurations which belong to at least c€U(0) beB(e)
one type of configuration associated to one existing basic behavior. 0
H k o,a) — b' t]
For an observation, let us callf (o) the set of these “useful” con- (ko.0) Z Z e Qe a)l)

figurations. Then, for each useful configuratiomf /(o) we will c€U(e) beB(c)

noteB(c) the set of basic behaviors associated to this configurationAfter normalizing and putting in commaf® for all instances of a
Similarly, C(b, o) will be the set of useful configurations in obser- type of behavior, the final version is rewritten as:

vation o associated to a given basic behavioiScalability derives

mainly from the fact that one basic behavior (resp. configuration) can

be associated to more than one configuration (resp. basic behavior), 11 o,
This is all the more interesting than, due to the locality of percep- (0,a) = K o) Z N, Z @b (e, a)|-Pi(c, a)
tions, the number of useful configurations changes. " b€B to tearn | e€C(b.0)

In the tile-world scene presented on figure 1, the agent’s per- already known

ceptions concern object®,, O, and Os. With two possible be-
havior_s:avoiding the holes l(a_) associated td hole} andpushing 3 4 3 Learning and Scalability
blocs in those holegy) associated t§hole, tile}, the agent has to
take into account three differetlichavior, con figuration) pairs: ~ Each set off parameters defines a global complex policy for the
(ba, {02}), (b, {O2,01}) and(b,, {02, 03}). agent. Tuning the weights of the formula is like learning an optimal
Among the hard points of the method we propose, a combinatoriaparameterized policy in the framework of reinforcement learriTiog.
explosion can be feared as far as the search for useful configuratiof#gat end, we have simply used a straightforward simulated annealing
is concerned. In practice, the number of objects seen remains usuafgorithm with a geometric decrease of the temperature (only a few
small, as only local perception should be used. parameters have to be learned: one for each behavior).
The scalability of the process derives also from the fact that only

. . . . oned, coefficient needs to be defined for each behavior. Even when
3.4 Basic behaviors combination many configurations are associated to one behavior, the complex pol-
341 General formula icy can be computed without further learning or refining of the pa-

rameters.

The next step is to use these useful configurations to choose an ac-In the next section, we present an example showing an application
tion. There are several ways to make this choice (voting, biding, ranef our methodology on the tile-world problem.
dom choice) but we decided to compute a polRyo, a) giving a
probability distribution over actions for each possible observation 4 Experiments
o. As written previously, we chose to define this policy as a recom- .
bination of basic behaviors using thé® andQ-tables. To be more 4.1 The tile-world
precise, we try to define a linear combination of fAgolicies. The 411 Problem

general formula is thus:
The tile-world is a grid domain in which a cell may contain a hole,

1 a tile or an agent. In the complete problem, the agent (if we consider
P) = 7 b7) P, gl - H ' H H
(0,0) = Z Z w(b,c,a)-Py(c,a) only one agent) has to push tiles in holes as often as possible, while

cet(o) beB(e) avoiding to go itself in one of those holes.

wherew(b, ¢, a) are some positive functior@-values calledveights To give some details about the _simulation, tht_a agent can go freely
andK is a normalizing factorY_ P(o,a) = 1). The action is then in a hole (and also go out), but will get a negative reward doing so.
chosen according to the distribution. Moreover, when a tile is pushed in a hole, both the tile and the hole

How to calculateP optimally using theQ- and P-tables is sub- disappear_and_reappear anywht_are on the grid. Finally, to avoid some
ject to discussion. Only the formula that gave us most satisfaction i§!0cking situations, holes and tiles cannot be on cells of the grid's

presented in this paper. border. _
In this complete complex problem, many tiles and holes must be

handled. As it appears in previous examples, a simple decomposition
3.4.2 Chosen formula of the problem in basic behaviors can be mgdeoid hole]
(ba, {hole}) and[push tile in hole] (bp, {hole, tile}), as

We chosew to depend on th&)-values. A first remark is that the :
shown on figure 1.

absolute value of)-values will be used, in a view to give the same
importance to future earning§(> 0) and immediate dange€) < 5 With a single non-zero rewand the Q-table is proportional te.

4.1.2 Agent’s skills The sizes of the different observation-spaces shown on table 1 ex-

. . lain this phenomendnlt appears that with these large problems the
In these experiments, the agent has always all other objects of t?‘Eer b op gep

environment in sight. The principle of locality is nevertheless presen
in the fact that perceptions are unprecise. For any olgjeat the
scene, the agent’s perceptiofhO gives:

adient method is prone to fall in local optima: the agent only avoids
oles and does not push tiles in holes.

Table 1. Size of the different observation-spaces
e near(O): tells if objectO is in the 9-cells square centered on
the agenftrue|false) ,

; : - Ate : objects size of the number of
o direction(): gives the objects direction #tiles | #holes | observation-space configurations
(N-NE-E-SE-S-SW-W-NW) . 1 1 162/4 = 64 Tr1=2
3 — —
The only actionsvailable for an agent are to move one cell North, i ; 12353 _ ig;i ; i ; _ Z
South, East or West (it cannot ask to stay on a cell). And to conclude, 2 2| 16%/4 = 16384 24+4=6

the rewardgiven is+1 when a tile falls in a hole;-3 when the agent

goes in a hole, and otherwise. The results shown on figure 4 may be far from optimum solu-

tions, but are quite realistic: the more objects are present, the more
4.2 Conducted experiments the agent suffers from its unprecise perceptions (and is obstructed in

S i its moves).
To assess the method described in this paper, we first learn the needed

basic behaviors, then also learn complex behaviors by classical ap-

proaches (so as to have references), and we finally compare these I V VWN\/\[\\/W

behaviors with the ones obtained by recombinafion. 1000 1 7 hois

2tiles - 2 holes

4.2.1 Basic behaviors’ preparation

The first step was simply to learn the basic behaviors we would have
to use. The evolution of both policies’ efficiencies is shawmthe

two sample runs ofigure 3, where the: axis gives the number of
simulation steps (to be multiplied BY000), and they axis gives the
agent’s reward for the 1agD000 simulation steps. In both cases, the e 2 @ @ % e 0 @ s o
reward must be maximized, with a maximum of zero for &weid e 0

behavior (since the reward is always negative), and a positive maxi- Figure 4. Examples of complexbehaviors learned tabula rasa
mum for thepushbehavior (the slow decrease of the highest curve is a classical phenoma due to an
’ evolution toward a deterministic behavior)

total reward (for 10000 steps)

avoid hole
1200 |- push tile in hole

1000

4.2.3 Comparisons

wof [At last an agent -knowing the two basic behaviors- is put in the
woll same situations, and learns the weights to balance both behaviors.

“‘ The statistical results that follow have been collected after learning
the weights. There were only few variations in our samples, so this
means are nearly always reached.

total reward (for 10000 steps)

e Basic behaviors’ recombinations are compared to the policies
umber ofseps (*10000) learned tabula rasa in the first four lines of tabléA\& used in one
Figure 3. learning of basic behaviorg(just notice that the very simple case “pptimal“ basic be_haviors (columafil)), and.more noisy basic
[avoid hole] behavior is practically immediately learned) behaviors (columm(2)) in a second set of experiments (where each

action has at least 8% probability of being chosen), as we hope

to get out of some blocking situatioriSven in the case of figure 2,

the learned weights give enough importance tdéveid hole]
4.2.2 Classical approach behavior to.prevent the agent frqm falling into the h.oles..

The quality of the solutions with at most four objects is very sat-

In order to compare our approach with classical Reinforcemenisfying if we consider that the average reward reached is at least as
Learning, we tried to apply both a gradient ascent [1] and an adapteghod as the one obtained through the classical approach (except in
BolzmannQ-learning on the complete tile-world problem with dif- {he simplest caseMoreover, the comparison of columnél) and
ferent numbers of tiles and holes in the environment. Whereas in thg(g) shows —as we expected- that adding some noise may be useful
[1 tile/1 hole] case learning is quite fast and efficient, there i certain situations.
is a really fast increase of the difficulty when adding other objects. The three last situations presented in table 2 (at least five objects)

The gradient ascent did only succeed in the simplest case, bringinguld not be learned tabula rasa. The results presented for them are
us to present just the results of t@elearning.

7 The division by4 is possible since the problem does not depend on the
6 The environment considered always has a sizg »f6 cells. orientation.

5.4 Scope of our methodology

Table 2. Comparative table between policies obtained by

recombination and tabula rasa(see text for details) The application presented in Section 4 to validate our approach be-

longs to what Wang and Mahadevan [10] called siotion decom-

objects reward(for 10000 steps) -)
#tiles | #holes | tabularasal c(l) | c(2) positionclass of problem. As our framework makes no assumption
1 1 1300 | 1017 | 842 on the transition and reward functions of the system, it should also
2 1 300 | 302 | 493 be well suited to problems gfolicy decompositionin fact, we have
1 2 ~0 | 405 259 also tested our approach on a modified version of the prey-predator
2 2 200 | 283 | 411 . -
3 5 - 166 1134 problem (see [8]) where the predators must also avoid obstacles in
2 3 | 262 | 247 their environment. Because of the limited perceptions of the agents,
3 3 - 179 | 129 the policy of one agent alters the transitions probability of the other

agents. Actually, even the basic behaviors are more difficult to learn
and a special kind of incremental Reinforcement Learning [4] had to
be used. Nevertheless, the tests we conducted are highly satisfying
and show good performances. Lack of space prevented us to present
this more complex application here.

e c(1): our combination of policies
e c(2): the same combinatiomith noise added in the decisions of the basic
behaviors

the efficiencies obtained in &h x 8 grid (to have enough space)
reusingthed parameters learned wifR tiles/2 holes] 6 Conclusion
This paper presented an automated process for designing agents solv-
ing a complex task. In the general framework of Reinforcement
Learning, our algorithm learns how to combine basic low-level be-
haviors into complex ones. Thus, as many complex problems are
a combination of simpler tasks, which may be concurrent, we can

Itis clear that, with our method, we cannot be sure of reaching Optl'take advantage of this decomposition for automatically building our

mality. One of the reasons is that, as we use only a combination of ba- e)

. L . 7 gents. Scalability is another strength of our method as it allows an
sic policies, only a subclass of the possible policies can be explored., . . .

S . agent to dynamically combine several instances of the same type of
Furthermore, because of their limited perception, the agents are con- _.
. -~ basic behaviors without having to learn or modify its global behavior.
fronted to a non-Markovian task. As a consequence, the Markovian L . 7)
The main idea of our work is to learn how to weight the differ-

approximation we use cannot give an optimal result. Finally, the sim- . - . :
ulated annealing which learns the weights of the global behavior con?m basic behaviors needed by the agent, with @mgweight by

: LT . typeof behavior. This was made possible by usganericbasic be-
verges only tdocal optima. The lack of optimality is the price to pay r?l;viors which, through their assor():iawe ofycos;ggurationcan be
for a tractable algorithm. '

instantiated several times. The validity of the approach is tested on a

5 Discussion

5.1 Optimality ?

classical tile-world problem and can be used on a wide range of com-

5.2 Combination of basic behaviors

plex problems. Future work will focus on improving the combination

of basic behaviors in order to build finer complex behaviors.

One could argue that a finer level of combination could improve the

performances of our algorithm. This could be achieved with weightREFERENCES

depending not only the behaviors, but also on the actions, observa-
tions... The drawbacks of this approach lies in a bigger number oflt!
parameters to learn. One would have to pay attention to scalability[Z]
and genericity issues.

Another possibility for a finer control of the global behavior would [3]
be to make use of the sign of the utility of a basic policy. This way, we
could for example make a clear distinction between basic “negative”[4]
behaviors (forbidden actions) and “positive” behaviors that could just
promote actions. To do that would require altering the policy combi- [5]
nation function but without bringing too much task-specific knowl-
edge into the process. (6]

(7]

5.3 For a greater scalability

(8l
The “additive” nature of our present combination of behaviors is well
adapted to additive environments (where the global utility is the suml(®]
of sub-tasks utilities). When it is not the case, too many instances _tLO
the same basic behavior (many tiles) could abusively overweigh other
behaviors (avoid hole). One solution could be the use of a “critic”
module trying to predict the global utility so as to adapt the way the
behaviors are handled (additive, concurrent, preemptive...). This is
yet another argument in favor of further work on behaviors’ combi-
nation.

J. Baxter and P. Bartlett. Infinite-horizon policy-gradient estimation.
Journal of Artificial Intelligence Research5:319-350, 2001.

R. Brooks. A robust layered control system for a mobile robot. Tech-
nical report, September 1985.

K. Dixon, R. Malak, and P. Khosla. Incorporating prior knowledge
and previously learned information into reinforcement learning agents.
Technical report, Carnegie Mellon University, 2000.

A. Dutech, O. Buffet, and F. Charpillet. Multi-agent systems by incre-
mental gradient reinforcement learning.Rroc. of IJCAI'01, 2001.

M. Humphrys. Action selection methods using reinforcement learning.
In Proc. of SAB’96 September 1996.

L. Peshkin, K. Kim, N. Meuleau, and L. Kaelbling. Learning to coop-
erate via policy search. IRroc. of UAI'0Q 2000.

S. Singh, T. Jaakkola, and M. Jordan. Learning without state estima-
tion in partially observable markovian decision processesrtit. of
ICML'94, 1994.

P. Stone and M. Veloso. Multiagent systems: a survey from a machine
learning perspectiveAutonomous Robotic8(3), 2000.

R. Sutton and G. Bartdreinforcement Learnindradford Book, MIT
Press, 1998.

G. Wang and S. Mahadevan. Hierarchical optimization of policy-
coupled semi-Markov decision processesPtoc. of ICML'99 1999.

