

Engineering Issues in Inter-Agent Dialogues

Nikos Karacapilidis1 and Pavlos Moraïtis2

Abstract. This paper presents a logical framework for modeling of
complex dialogues between intelligent and autonomous agents.
Our overall approach builds on the assumption that an agent is
composed of a set of modules, each of them conveying the
appropriate knowledge to carry out a certain dialogue type, such as
deliberation, negotiation, persuasion, etc. Much attention has been
paid in keeping our framework as operational as possible, in that
the architecture of agents and their conversational protocol are
thoroughly interrelated. Due to the proposed knowledge structure,
set of application-independent rules (called dialogue policies) and
the combination of backward and forward reasoning, the
framework can generate automatic dialogues between agents.

1 INTRODUCTION
Research on agent communication attracts increasing interest in the
last few years, while focuses on aspects such as conversation
protocols and formal frames supporting different dialogue types.
More specifically, several interesting works addressing the
particularities of persuasion dialogues [14], negotiation dialogues
[1, 7, 12, 13], deliberation dialogues [3], and combinations of
dialogues [5, 6, 9] have been already proposed.
 This paper engineers a set of formal and operational issues
arising in a framework for inter-agent dialogues. Having first
defined the concepts of communication performative and dialogue
context, it proceeds by discussing procedures and rules related to
the automation of dialogues. Much attention is paid to the
definition of a set of application-independent rules, namely
dialogue policies, which are exploited by a reasoning mechanism
and serve the automated generation of the appropriate illocutionary
acts, as well as the initiation and termination of a dialogue. The
above concept is similar to that of dialogue constraints [12];
however, our dialogue policies are associated with the specific
profile of an agent, thus characterizing his personality and
behavior.
 The main contribution of this work is in the seamless
integration of the conversation model and agents architecture (both
are fully implemented). In fact, agents in our framework operate
combining two types of reasoning, namely backward (aiming at
satisfying the goal generated upon the reception of a
communication performative), and forward (building the
appropriate answers to the performatives received), thus regulating
the continuity of dialogues. In addition, our approach is based on
the assumption that an agent is composed of a set of modules, each
of them being responsible for a particular feature of the agent’s
overall behavior. Such features may concern abilities such as
information seeking, deliberation, negotiation, etc. [14] allowing
each module to perform the associated dialogue. Moves from one
dialogue type to another are performed through the interaction of
the different modules an agent consists of.
 The remainder of the paper is structured as follows: Section 2
presents the proposed structure of an agent focusing on the
representation of the knowledge conveyed, while Section 3

describes the conversation protocol defining the concepts of
performative, dialogue policy and dialogue context. Section 4
gives some illustrative examples demonstrating the abilities of our
approach, while Section 5 sketches the execution cycle of an
agent’s module. Finally, Section 6 comments on related work and
outlines future work directions.

2 THE AGENTS STRUCTURE
Let Ag be the set of agents involved in an agent-based system. We
assume that each agent x ∈ Ag is composed of a set of modules ∆x
that implement its overall behavior. More specifically, each
module δx (∆x = ∪ δx) is responsible for a specific aspect of the
agent’s behavior (it may correspond to abilities such as deliberate,
negotiate, cooperate, information seeking, etc.), where the overall
behavior of an agent is the result of the interaction among the
different elements of ∆x. For instance, the role of an agent’s
deliberation module is to collaborate with its peers in order to
decide a sequence of actions in some situations, while the role of
its negotiation module is to apply the appropriate negotiation
protocol in order to negotiate with another agent about a specific
topic or goal. The above assumption, being in line with the work
presented in [11], makes our approach different compared to
existing work on developing frameworks for conversational agents.
It should be made clear here that one may build an agent according
to his/her particular interests in a specific application; that is, an
agent x may be composed of just a negotiation module, while
another one y may also include a deliberation and an information
seeking module. Our architecture permits multiple parallel agent
dialogues of different type (each agent has only one instance of the
module types mentioned above; thus, he cannot be engaged in
multiple parallel dialogues of the same type).
 Each of the above modules is triggered whenever it is
necessary to play the specific role it is conceived for, thus
performing a dialogue corresponding to its “area of expertise”. The
idea is that the reaction of an agent to an input received (i.e., a
message from another agent), or his global action towards
achieving a goal, is based on a sequence of actions triggered in one
or more (possibly all) of his modules. In other words, each agent’s
module is associated with a certain part of the overall dialogue. We
also assume that all messages exchanged between two
conversational agents pass through their communication modules.
That is, the only constraint we impose in the agents’ architecture is
that an agent has to interact with his environment through the
above module (no other restriction holds for the interaction
between the other modules).
 Finally, in order to serve its role, we assume that each module
δx is equipped with a knowledge base K(δx). The content of this
knowledge base may be application-specific or application-
independent as well as module-specific or module-independent.
However, in any case, it is related to the role of the particular
module. The knowledge conveyed is expressed in a declarative
way (first-order logic), as described below:
Definition 1. A knowledge base is a tuple <F, G, A, solver, DP, PR,
messenger, RF, D>, where (see Fig. 1):
 F contains application-specific knowledge (facts) related to the
role of the module (e.g., for a deliberation module, such

1 Industrial Management Lab, MEAD, University of Patras, 26504 Rio
Patras, Greece, nikos@mech.upatras.gr

2 Dept. of Computer Science, University of Cyprus, 75 Kallipoleos str.,
Nicosia, Cyprus, moraitis@ucy.ac.cy

knowledge may concern the agent’s environment) and the
specific topics.
 G is the goal to be achieved (represented by sentences).
 A is the set of possible actions (represented by if-then rules).
 solver is an application-independent inference engine that

exploits facts and actions to reach a goal. It is activated
whenever a new goal G’ replaces (the existing) goal G. It is based
on a backward reasoning mechanism.
 DP is a set of application-independent knowledge, namely
dialogue policies, represented by if-then rules (see next Section).
The messenger uses these policies to regulate the dialogues.
 PR is a set of preference relations >pr on the set of F and on the set
of A.
 messenger is an application-independent inference engine that

filters the received messages and permanently consults the
existing dialogue policies and preference relations. It exploits a
forward reasoning mechanism.
 RF is a list of the reasons (facts or actions) leading to the failure
of the current goal.
 D contains the messages exchanged during the current dialogue
(messages exchanged between the modules of two different
agents through their communication modules and/or, in case of
embedded dialogues, between two modules of the same agent
directly). It is implemented as a queue that is emptied after the
end of each dialogue.

Figure 1: Structure of agents.

 It should be noted here that the agent’s knowledge bases may
change over time due to the outcome of a negotiation,
argumentation or persuasion dialogue.

3 THE CONVERSATION PROTOCOL
Conversation between agents is based on dialogues. We make the
simplifying assumptions that only two agents may participate in a
dialogue and that an agent’s module may be involved in just one
dialogue at each time. A dialogue between agents can be a complex
process, taking place through the exchange of messages. Each
message conveys certain semantics in order to be appropriately
handled by an agent. A dialogue is always initiated in order to
achieve a goal and, according to the nature of this goal (i.e.
perform a task, persuade the validity of a statement, etc.), it installs
the appropriate context (i.e. deliberation process, negotiation
process, etc.). In a dialogue context, each time an agent receives a
message, it has to know immediately which reasoning procedure
(that is, which module) it must be activated in order to set up the
most appropriate answer (or action) to the message received.
Definition 2. A message is an instance of a schema of the form
Msg=(id, P), where P declares the performative (dialogue primitive)
conveyed. In our framework, it is P=S (x, y, σ, T), where:
 id is the message’s identification number;

 S is an illocutionary act belonging to the set {propose, accept,
request, assert, refuse, challenge, reject} (note that this is the set
implemented in the current stage of our work; obviously, it can
be altered according to the particular dialogue setting);
 x and y are the sender and the receiver of the performative,
respectively;
 σ is the subject (i.e., body) of the performative, which may take
one of the following forms:

- a tuple σ = <sentence [support]> where support consists of
elements (facts, actions, etc.) expressing arguments
supporting sentences. When no support is available (or
necessary to be explicitly mentioned), its value is ∅;

- a dialogue context structure DC (see below);
- ∅, meaning “nothing to say”.

 T is the time when the performative is uttered (times are actually
timestamps of the related transaction).

 In fact, the first of the forms proposed for σ may express any
message content, provided that it respects first-order logic
representation.
Definition 3. For an agent x ∈ Ag, a dialogue policy is an if-then
rule of the form P (x, y, σ, T) ∧ C ⇒ P' (y, x, σ’, T+1), where:
 P (x, y, σ, T) is a performative uttered at time T, P’ (y, x, σ’, T+1) is a
performative sent at time (T+1) from the receiver of P (x, y, σ, T) to
its utterer, and σ (σ’) is the subject of the performative, as
described above (the subject of P’ is not always the same with
that of P). The above concept is similar to that of dialogue
constraints [12], which however correspond to integrity
constraints in an abductive logic programming framework. In the
rest of this paper, the part (P (x, y, σ, T) ∧ C) is referred to as
body(dp) and P' (y, x, σ’, T+1) as head(dp).
 C, hereafter referred to as condition.

 It should be made clear here that our dialogue policies actually
encode the personality of an agent (such as “co-operative”, “hard-
nosed”, “self-interested”, etc.). The idea is that when a module of
an agent receives a message related to a subset of the defined
dialogue policies (see DP1, DP2, DP3, DP4, DP5 below), its subject σ
is considered as a goal Gσ. The operation of the solver (which uses
backward reasoning exploiting the if-then rules of the set A),
corresponds to the reduction of G to sub-goals, which in turn
correspond to the if parts (or premises) of the triggered rules. The
satisfaction (or not) of these rules defines what DP will be triggered
and consequently what is the condition C to be checked in order to
choose the message to be sent. Otherwise, C depends on the type of
the received message (see DP6, DP7, DP8, DP9). In other words, the
dialogue policy is a procedure of entailment that defines what is
the next message to be sent by an agent y, after the reception of a
specific message coming from another agent x. As defined above, a
dialogue policy is a part of the knowledge base of each module of
an agent; the module is triggered appropriately whenever the
knowledge it contains is sufficient for action at a certain time
instance. The definition of the agent’s architecture as a
combination of different modules and the presence of dialogue
policies in the knowledge base of each of them sets an important
difference of our approach to the one proposed in [12]. More
specifically, their proposed agent’s architecture is the combination
of a communication layer, a planning module and a reasoning
module, where the last is being in charge of activating a sequence
of dialogues (and therefore equipped with the related knowledge)
no matter which is the type of the undertaken dialogue (i.e.
deliberation, negotiation, persuasion, etc.) [14].
 In order to regulate the interchange of messages used in our
approach, we have defined a set SoP of the allowed sequences of
performatives (expressed through dialogue policies). It is: SoP={

request → assert, request → refuse, propose → accept, propose → refuse,
propose → propose, refuse → challenge, challenge → assert, assert →
accept, assert → reject}. The dialogue policies corresponding to a
(rather usual) profile are formally presented below (note that
condition C appears within the square brackets):
DP1: request (x, y, σ, T) ∧ [K(δy) ⊢ Gσ] ⇒ assert (y, x, σ, T+1)
DP2: request (x, y, σ, T) ∧ [K(δy) ⊬ Gσ] ⇒ refuse (y, x, σ, T+1)
DP3: propose (x, y, σ, T) ∧ [K(δy) ⊢ Gσ] ⇒ accept (y, x, σ, T+1)
DP4: propose (x, y, σ, T) ∧ [K(δy) ⊬ Gσ ∧ {∃ σ' ∈ K(δy) (σ' >pr σ) ∧ (K(δy) ⊢
Gσ’)}] ⇒ propose (y, x, σ', T+1)

 The first three dialogue policies are rather straightforward. The
condition imposed in DP4 means that if K(δy) does not entail Gσ (i.e.,
the goal associated to the subject σ of the received performative), it
is checked whether there exists another σ' belonging to K(δy) along
with a preference in PR stating that σ' is preferable than σ, such that
Gσ' can be entailed by K(δy).
DP5: propose (x, y, σ, T) ∧ [K(δy) ⊬ Gσ ∧ {∄ σ' ∈ K(δy) (σ' >pr σ) ∧ (K(δy) ⊢
Gσ’)}] ⇒ refuse (y, x, σ, T+1)

 The condition above is similar to the one of DP4, with the
difference that in this case there is not a σ' belonging to K(δy) along
with a preference σ' >pr σ, such that Gσ' can be entailed by K(δy).
DP6: refuse (x, y, σ, T) ∧ [support (σ) = ∅] ⇒ challenge (y, x, σ, T+1)

 The meaning of the above is that an unsupported refusal, sent
from agent x to agent y, triggers a challenge act from y (which
actually asks x to justify his decision).
DP7: challenge (x, y, σ, T) ∧ [∃ reason ∈ RF(y) | reason ⊢ (¬σ)] ⇒ assert
(y, x, σ, T+1)

 The condition above actually checks RF to verify whether there
exists a reason of failure of the goal associated to the subject σ (i.e.,
a fact or an action that contradicts σ); if yes, the reason found is
sent back to the utterer of the challenge act (as a support of σ).
DP8: assert (x, y, σ, T) ∧ [support (σ) ≠ ∅ ∧ {∄ support’ ∈ K(δy) support’
⊢ (¬support)}] ⇒ accept(y, x, σ, T+1)
DP9: assert (x, y, σ, T) ∧ [support (σ) ≠ ∅ ∧ {∃ support’ ∈ K(δy) support’
⊢ (¬support)}] ⇒ reject(y, x, σ, T+1)

 The meaning of the condition of DP8 is that if a support’, which
contradicts support, cannot be found then y has to accept the
assertion of x. Otherwise (in case that a support’, which contradicts
support, exists in the knowledge base of y), y will reject it (in fact, it
will reject the support provided). In addition to the above, the
following two policies (exploiting the predicates need and
want_share) are used for the initiation of a dialogue:
DP10: need (x, r, goal) ∧ [¬have (x, r) ∧ have (y, r)] ⇒ request (x, y, give
(y, x, r)), where r can be a certain resource.
DP11: have (x, r) ∧ [want_share (x, y, r)] ⇒ propose (x, y, r), where r can
be a certain desire, goal, or resource.
Definition 4. Given that agents convey knowledge in their
constituent modules, as described in the previous section, and
inspired by the work presented in [9, 14], we define a dialogue
context as a tuple (t, (τ, M)), where:
 t is the type of the dialogue (t ∈ {deliberation, negotiation,

cooperation, argumentation, …});
 τ is the topic of the dialogue (i.e., what agents discuss about);
 M is the medium used for the dialogue, which may refer to
messages exchanged between two conversational agents x and y
either directly (denoted by Direct) or through a mediator z
(denoted by med(z)), messages shared via a common memory w
(such as a blackboard), etc.

 Often, agents may get involved in a dialogue about what they
will discuss in the sequel. For instance, during a deliberation
dialogue between two agents x and y intending to decide which car
to buy, agent x may initiate a new dialogue type in order to

negotiate with his peer about the list of criteria to be considered in
their decision. In this case, the initial dialogue context would be
DCk=(deliberate, (car_purchase, Direct)), where a new context
DCm=(negotiate, (criteria, Direct)) will be settled (embedded to the
previous one) due to the proposal of x. The above is in agreement
with one of the key features of the approach proposed in the work
of Walton and Krabbe [14], assuming that dialogue types may be
nested. In such cases, a new dialogue type is initiated by a specific
message, whose subject is a dialogue context structure. Agents
thus know in which dialogue type the messages exchanged in the
sequel belong to.
 Agents utter successively in a dialogue while the choice of the
appropriate message to be sent at each time is based on the set of
the dialogue policies residing in the associated module of each
agent. This means that a dialogue of a certain type installs a
specific framework of interaction (i.e., dialogue context) that
triggers the appropriate module of each agent. More specifically, it
is the type t of a dialogue context that triggers the appropriate
module, provided that the topic τ belongs to the facts F of the
knowledge base K(δx), where δx is the module of agent x that
corresponds to the dialogue type t (for more details, see the
second example in the next section). The rationale of the above is
that an agent must have the appropriate module and be equipped
with the necessary knowledge in order to be able to discuss about
the specific topic (i.e., it would be rather surprising for a fish-
market’s seller agent to deliberate on weather forecasting with a
meteorologist agent).

Definition 5. Adapting the approach followed in [12] to our
framework, normal termination of a dialogue occurs when, given
that an agent x utters a performative pi, there exist no possible
performative that y can utter after consulting the list of dialogues
policies DP, that is, for all dp ∈ DP (note that a dp has been
previously defined as body(dp) ⇒ head(dp)), it holds (K(δy) ∪ pi) ⊬
body(dp). This definition will be extended in the future, to also
capture abnormal termination cases (concerning communication
failure between agents).

4 SOME EXAMPLES
In order to better describe the functionality of our model, we
present below two examples (for clarity reasons, we will use the
concept of performative instead that of a message to omit the
associated message ids). The first example concerns a widely used
scenario involving home-improvement agent (see for instance, [1,
7]). According to it, agent X has the intention of hanging a picture,
knows how to do it by using a nail, but lacks the necessary nail. On
the other hand, agent Y has the intention of hanging a mirror,
knows how to do this, and has all the necessary resources. Among
these resources, there is only one nail, which X would like to get.
The dialogue taking place between X and Y is as follows:

X: Please give me a nail. Y: No. X: Why won’t you give to me?
Y: Because I want to hang a mirror and for that I need a nail.
X: I understand.

 Using our framework, the negotiation module of agent X has
the following knowledge:
 FX = {FX1: ¬Have (X, NAIL), FX2: Have (Y, NAIL)};
 AX = {AX1: ∀z, ∀goal, Have(X,z) ∧ Achieve (X,z,goal) ⇒ Need (X,z, goal)};
 GX = achieve (X, NAIL, PICTURE_HANGED);
 DP = {DP10: ∀ y, ∀ r, ∀ goal, Need (X, r, goal) ∧ ¬Have (X, r) ∧ Have (y,

r) ⇒ request (X, y, Give (y, X, r))}.
 According to the above, agent X will send to agent Y the
performative Pk = request (X, Y, <Give (Y, X, NAIL) [∅]>, T). On the
other hand, the negotiation module of Y has in its own knowledge
base the following:

 FY = {FY1: Have (Y, NAIL)};
 AY = {AY1: ∀x, ∀z, ∀goal, Have (Y,z) ∧ ¬Need (Y,z,goal) ⇒ Give (Y, x, z),

AY2: ∀ z, ∀ goal, Have (Y, z) ∧ Achieve (Y, z, goal) ⇒ Need (Y, z, goal)};
 GY = Achieve (Y, NAIL, MIRROR_HANGED).

Having received the performative Pk, the messenger of Y detects
that its illocutionary act is “request”, it thus sets Give(Y, X, NAIL) as
the goal GY to be obtained. The solver is then activated which,
taking into account the above knowledge and following a
backward reasoning mechanism (on AY1 and AY2), concludes that GY
cannot be achieved (see Fig. 2).

Figure 2: Proof tree (first example)

 The messenger will be then triggered again which, by consulting
the dialogue policy DP2, will generate the performative Pk+1 = refuse
(Y, X, <Give(Y, X, NAIL) [∅]>, T+1). Note that the reason leading to the
failure of the goal is AY2, which has been put in RFY. Having
received the performative Pk+1, the messenger of X detects that its
illocutionary act is “refuse” and, due to the lack of support in Pk+1
(support (Give(Y, X, NAIL)) = ∅) and DP6, sends the performative Pk+2 =
challenge (X, Y, <Give(Y, X, NAIL)>, T+2). Agent Y receives the above
performative, his messenger is again activated, detects that it is a
“challenge” message and, due to DP7, consults the list RFY and sends
the performative Pk+3 = assert (Y, X, <Give(Y, X, NAIL)>, [Have(Y, NAIL) ∧
Achieve(Y, NAIL, MIRROR_HANGED) ⇒ Need(Y, NAIL,
MIRROR_HANGED)], T+3). Proceeding similarly, X receives Pk+3, his
messenger detects that its illocutionary act is “assert” and, due to
DP8, checks whether his knowledge base K(δX) contains any
contradictory information. Since this is not the case in our example
(see AX1), X cannot further defeat the last assertion of Y, and sends
the performative Pk+4 = accept (X, Y, ∅, T+4). ∎
As noted in the previous section, in order to set up a dialogue, an
agent has to send a message conveying a dialogue context in its
body. In this second example (see Fig. 3 illustrating the related
inter-agent dialogue), consider an agent Z that wants to negotiate
with his peer Y about a certain topic. The message request (Z, Y,
<Negotiation(Topic:GOING OUT, Direct)>, 1) will actually trigger Y to
check whether he is able to participate in such a dialogue, that is
whether he has a negotiation module and the topic exists in his
knowledge base. Assuming that the above hold, Y confirms its
ability to participate in such a dialogue by sending the message
accept (Y, Z, <Negotiation(Topic: GOING OUT, Direct)>, 2). Upon the
receipt of this confirmation, assume that Z sends a message Msg1
containing the performative propose (Z, Y, <Have_a_dinner(Z, Y,
ESTIADES)>, 3) (for space reasons, we omit details concerning the
construction of this message). Let Y having the following
knowledge (in its related module):
 FY = {FY1: ¬Good_restaurant(ESTIADES), FY2: Good_film(AI), FY3:

Friend(Z), FY4: Have(Y, TIME), FY5: ¬Good_film(LEGALLY BLONDE)};
 AY = {AY1: ∀ x, ∀ w, ∀ time, Have(Y, time) ∧ Good_restaurant(w) ∧

Friend(x) ⇒ Have_a_dinner(Y, x, w), AY2: ∀ x, ∀ z, ∀ time, Have(Y, time)
∧ Good_film(z) ∧ Friend(x) ⇒ Go_cinema(Y, x, z)}
 PRY = {PRY1: ∀ x, ∀ z, ∀ w, Go_cinema(Y, x, z) >pr Have_a_dinner(Y, x, w)}.
 Having received Msg1, the messenger of the corresponding
module detects that its illocutionary act is “propose” and sets the
subject of the message as the goal G to be obtained. That is, the
current goal of agent Y is: Have_a_dinner(Z, Y, ESTIADES). In the

sequel, the module’s solver is triggered (as shown in Fig.1, solver is
permanently consulting the sets A and F). Due to the action AY1,
Have(Y, time) ∧ Good_restaurant(w) ∧ Friend(x) becomes now the new
goal to be satisfied.
 Following a backward chaining algorithm [10], this goal
cannot be achieved (ESTIADES is not considered to be a good
restaurant). Therefore, agent Y cannot answer positively to the
proposal of Z. The fact ¬Good_restaurant(ESTIADES) is put in the
list RF of the related knowledge base of Y, the idea being that Y can
use this element as an argument supporting its future action(s) or
decision(s). Since the current goal cannot be obtained, the
messenger of Y is activated again (as in Fig.1, messenger is
permanently consulting PR and DP). Due to the preference PRY1 and
the dialogue policy DP4, a new goal Gσ’ is now defined
(corresponding to the last part of the condition C of DP4) and solver
is once again activated in order to infer if this can be obtained.
Easily, one can conclude that Gσ’ is satisfied since it is entailed by
K(δY) (due to FY1, FY2 and AY2).

Figure 3: Inter-agent dialogue (second example)

 DP4 actually enables agent Y to make a counter proposal to
agent Z. According to the above, the answer of Y will be a message
Msg2 conveying the performative propose (Y, Z, <Go_cinema(Y, Z, AI)>,
4). To further continue this dialogue, assume that Z has the
following knowledge (note that the items listed below are the ones
needed to follow the example):
 FZ = {FZ1: Good_film(LEGALLY BLONDE), FZ2: Friend(Y), FZ3: Have(Z,

TIME), FZ4: ¬Good_film(AI)};
 AZ = {AZ1: ∀ x, ∀ y, ∀ time, Have(Z, time) ∧ Good_film(y) ∧ Friend(x) ⇒

Go_cinema(Z, x, y)}
 PRZ = {PRZ1: ∀x,∀y, Go_cinema(Z,x,LEGALLY BLONDE) >pr Go_cinema(Z,

x, y}.
 Exploiting DP4 again (and due to PRZ1), agent Z makes another
counter proposal: propose (Z, Y, <Go_cinema(Z, Y, LEGALLY BLONDE)>,
5). Having contradictory knowledge about this film (see FY5), Y
sends the (unsupported) reply refuse (Y, Z, <Go_cinema(Z, Y, LEGALLY
BLONDE)>, 6) (see DP5). Using DP6, Z may challenge the last reply;
thus, he sends the performative challenge (Z, Y, <Go_cinema(Z, Y,
LEGALLY BLONDE)>, 7). In turn, Y sends back to Z the reason leading
to the failure of the last proposal (see DP7 and FY5). Since the
support provided contradicts with FZ1, agent Z will reject it. ∎

5 THE EXECUTION CYCLE
It is generally admitted that in order to maintain the dynamic
nature of a dialogue, the selection of the appropriate moves to be
triggered should be based on rational and reactive reasoning
mechanisms (see, for instance, [4]). Following our approach, the
execution cycle of an agent’s module combines elements of the

proposed structure of its knowledge base with issues related to the
conversational protocol and reasoning mechanisms described in
Section 3. Having defined the structure of agents, we sketch below
the execution cycle of each such module (due to space reasons, we
cannot provide a more detailed analysis of the algorithm).

begin
for each incoming message (id, S (x, y, σ, T)) in D
 activate messenger;
 perform forward reasoning;
 illocutionary_act ← S;
 p ← S (x, y, σ, T); /* p is a performative */
 if illocutionary_act ∈ {refuse, challenge, assert}
 read list DP; /* DP is the list of dialogue policies */
 find dpi where p belongs to body(dpi)
 if K(δy) entails C /*C is the condition of a dp */
 p’ ← head(dpi);
 new_message ← (id+1, p’); send new_message
 else exit
 end if
 if illocutionary_act ∈ {request, propose}
 Gδ ← σ; /* δ refers to the specific module */
 activate solver;
 perform backward reasoning;
 if Gδ is entailed
 read list DP; /* performed by messenger */
 if illocutionary_act = request
 p’ ← head(dp1);
 new_message ← (id+1, p’); send new_message
 else /* illocutionary_act = propose */
 p’ ← head(dp3);
 new_message ← (id+1, p’); send new_message
 else /* Gδ is not entailed */
 reason ← (reason of failure);
 put reason in RF;
 if illocutionary_act = request
 p’ ← head(dp2);
 new_message ← (id+1, p’); send new_message
 else /* illocutionary_act = propose */
 if ∃ σ' ∈ K(δy) such that (σ' >pr σ)
 if Gσ’ is entailed /* performed by solver*/
 /*all the following are performed by messenger*/
 p’ ← head(dp4);
 new_message ← (id+1, p’);
 send new_message
 else
 p’ ← head(dp5);
 new_message ← (id+1, p’);
 send new_message
 terminate solver
 end if
 terminate messenger
end for

end

6 DISCUSSION
This paper builds on previous related work to propose a formal and
operational framework for dialogues between intelligent and
autonomous agents. Issues addressed concern a modular agent
implementation associated to the disparity of dialogue types in
which an agent may get involved, a detailed knowledge structure
together with the associated mechanisms for backward and forward
reasoning, and the ubiquitous dialogue games.
 Compared to previous work, our contribution has several
advantages. First, having defined the illocutionary acts permitted,
as well as combinations of these acts, the conversational model
proposed is expressive enough to represent disparate (possibly
embedded) types of dialogues in a unified way (we do not,
however, claim that our model is more expressive than those
described in [3, 6]). This has to be considered in parallel with our
conception of agents’ structure; that is, agents consist of a set of
components, each of them being provided with an instance of the
proposed conversation’s model and being responsible to undertake
a specific type of dialogue, related to its role in the overall agent’s
behavior (the type and the number of the involved modules
depends on the application and the designer of the system).

Second, due to the set of the dialogue policies defined and the
combination of backward and forward reasoning, the proposed
model can generate automatic dialogues between agents (even if,
for the moment, the set of performatives involved is relatively
small). The dialogue policies defined in this paper are application-
independent and more general compared to the similar concept of
dialogue constraints presented in the work of Sadri et al. [12] (as
noted above, dialogue policies enable us specify various
personalities of agents). Moreover, our definitions of performatives
and dialogue contexts enable us modeling nested dialogues. Note
also that our framework clearly specifies the way dialogues are
generated (this feature does not appear in [9]). Third, the proposed
representation of dialogue contexts allows the verification of the
ability of an agent to participate in a dialogue on a specific topic
(concerning the decision to enter or not in a particular dialogue
type), which is also another difference with [12] and, like in [5],
enables participants to be aware of the nature of the dialogue to be
undertaken. Finally, integrating issues arising from the proposed
knowledge structure, reasoning mechanisms and execution cycle,
our work provides an operational framework for conversational
agents (probably more than those appearing in [1, 3, 5, 8, 9]).
 Our primary future work direction concerns the automation of
moves from one dialogue type to another. Moreover, inspired by
[2, 8], we plan to integrate agents mental attitudes (beliefs, desires,
intentions) in our framework. Another direction concerns the
definition of more properties for our framework and its enrichment
with more performatives and dialogue policies (including policies
for nested dialogues).
Acknowledgements: We would like to thank the referees for their helpful comments,
which helped us improve this paper. Also, K. Karenos, L.Michael and C. Christofi for
their help in the implementation of our framework.

REFERENCES
[1] Amgoud, L., Parsons, S. and Maudet, N. Arguments, dialogue and

negotiation. In Proc. of ECAI 2000, Berlin, 2000, 338-342.
[2] Cohen, P. and Levesque, H. Communicative actions for artificial

agents. In Proc. of ICMAS’95, San Francisco, AAAI Press, 1995.
[3] Hitchcock, D., McBurney, P., and Parsons, S. A Framework for

deliberation dialogues, Argumentation and its Applications. In Proc.
of the Fourth Biennial Conference of the Ontario Society for the
Study of Argumentation, 2001.

[4] Kowalski, R.A., and Sadri, F. From logic programming to multi-agent
systems. Annals of Mathematics and AI, 1999.

[5] McBurney, P., and Parsons, S. A formal framework for inter-agent
dialogues. In Proc. of AGENTS’01, Montreal, 2001, ACM Press, NY.

[6] McBurney, P., and Parsons, S. Agent Ludens: Games for agent
dialogues. In Proceedings of AAAI Spring Symposium on Game
Theoretic and Decision Theoretic Agents (GTDT2001), P.
Gmytrasiewicz and S. Parsons (eds.), 2001.

[7] Parsons, S. and Jennings, N.R. Negotiation through argumentation - a
preliminary report. In Proc. of ICMAS ‘96, 1996, 267-274.

[8] Pitt, J.V. and Mamdani, A. A Protocol-Based Semantics for an Agent
Communication Language. In Proceedings of IJCAI’99, Stockholm,
Morgan-Kaufmann Publishers, 1999, 486–491.

[9] Reed, C. Dialogues frames in agent communication. In Proceedings
of 3rd Intern. Conference on Multi Agent Systems, 1998, 246-253.

[10] Russell, S. and Norvig P. Artificial Intelligence: A Modern
Approach. Prentice-Hall, NJ, 1995.

[11] Sabater, J., Sierra, C., Parsons, S. and Jennings, N. R. Engineering
executable agents using multi-context systems. Journal of Logic and
Computation 12, 2002.

[12] Sadri F., Toni, F. and Torroni, P. Dialogues for negotiation: agent
varieties and dialogue sequences. In Proc. of ATAL-2001, 2001.

[13] Sierra C., Jennings, N.R., Noriega, P., and Parsons, S. A Framework
for argumentation-based negotiation. In ATAL ‘97, 1997, 167-182.

[14] Walton, D.N. and Krabbe, E.C.W. Commitment in dialogue: Basic
Concepts of Interpersonal Reasoning. State University of New York
Press, NY, 1995

	INTRODUCTION
	THE AGENTS STRUCTURE
	THE CONVERSATION PROTOCOL
	SOME EXAMPLES
	THE EXECUTION CYCLE
	DISCUSSION
	Acknowledgements: We would like to thank the referees for their helpful comments, which helped us improve this paper. Also, K. Karenos, L.Michael and C. Christofi for their help in the implementation of our framework.
	REFERENCES

