Building Trading Agents: Challenges and Strategies

Maria Fasli' and Ioannis Korres and Michael Michalakopoulos and George Rallidis

Abstract. With the advent of the Internet, trading in electronic mar-
ket places has become common practice for an increasing number of
businesses and individuals. One of the most efficient ways of negoti-
ating for goods and services is via auctions. Although implementing
an agent to take part in an auction for a single good is relatively sim-
ple, developing an agent to participate in simultaneous auctions of-
fering complementary and substitutable goods is a complex task. In
this paper we discuss the challenges of the Trading Agent Competi-
tion which features a complex benchmark e-market problem and we
present the strategies of two agents that participated successfully in
the competition, one of them being placed among the eight finalists.

1 INTRODUCTION

Agent-based and multi-agent systems have become increasingly pop-
ular as a means of conceptualising and implementing a wide range of
applications. More recently, with the advent of the Internet there has
been a mounting interest regarding their utilisation in e-commerce
applications. Agent technology being particularly suited for informa-
tion rich environments can be applied in some of the stages involved
in searching and buying products and servises [4]. For instance, semi-
autonomous and personalised software agents can be used in the ne-
gotiation stage in order to automate the trading process. This has sev-
eral potential benefits such as reduced costs and greater efficiency as
well as savings in time and effort.

One of the most efficient ways of negotiating for goods and ser-
vices is via auctions [5]. Although constructing an agent to take part
in an auction for a single good is relatively simple, developing an
agent to participate in simultaneous auctions offering complemen-
tary and substitutable goods is a complex task. This is the form of
the problem tackled at the International Trading Agent Competition
which features artificial trading agents competing against each other
in a market-based scenario. The 2nd Trading Agent Competition and
Workshop (TAC-01) was held in Tampa, Florida on October 14, in
conjunction with the 3rd ACM Conference on Electronic Commerce.

In this paper we discuss the challenges presented by the bench-
mark problem of TAC-01 and the implementation of two trading
agents that addressed those challenges and participated in the event.
Both agents participated in the Preliminary Tournament of the com-
petition and achieved good results. One of them qualified and par-
ticipated in the Final Tournament obtaining a place among the eight
finalist agents. The structure of the paper is as follows. In the next
two sections we discuss the benchmark problem of TAC-01 and the
challenges that it presents for building effective trading agents. The
next two sections describe the strategies and implementation details
of the two agents. We then present the competition’s results and the
paper ends with the conclusions and a pointer to future work.

1 University of Essex, Department of Computer Science, Wivenhoe Park,
Colchester CO4 3SQ, UK, email: mfasli@essex.ac.uk

2 THE TAC SCENARIO

The Trading Agent Competition is an open-invitation event featuring
software agents from all over the world competing in a challenging
market game. The aim of the competition is to stimulate research in
trading agents with an emphasis on developing a successful strategy
for maximizing profit in a constrained environment. The competition
is based on the infrastructure of the AuctionBot server [10]. A TAC
game (instance) lasts 12 minutes and involves eight agents competing
against each another. Each agent acts as a travel agent whose objec-
tive is to create travel packages from TACtown to Tampa during a
notional 5-day period for eight clients. In order to do so, the agent
has to secure the necessary resources which consist of airline tick-
ets, hotel reservations, and optionally some tickets for entertainment
events, all being traded simultaneously in electronic auctions. Each
one of those clients has its own individual preferences over the var-
ious aspects of the trip. The agents’ objective is to construct travel
packages as close as possible to their clients’ preferences while at
the same time minimizing expenditure. A travel package is feasible
if it contains an in-flight ticket, an out-flight one and a hotel room for
each day between the in-flight and out-flight days.

There are two types of airline tickets, flights to Tampa (in-flights)
and flights from Tampa (out-flights). There are 4 single-seller auc-
tions for the in-flight tickets (days 1-4) and 4 for out-flight tickets
(days 2-5). There are no in-flights on day 5 and no out-flights on day
1. TACA:Ir is the only provider of airline tickets whose availability
is considered unlimited. In the beginning of the game the tickets are
priced randomly between $250 and $400. Their price changes peri-
odically (every 24-32 seconds) by a random value between -$10 to
z(t). z(t) is a linear function of the game time (0:00 to 12:00) and
its value is always between [10,90]. This means that the ask price for
airline tickets is expected to increase as the game progresses moti-
vating agents to buy airline tickets early. The ask price is guaranteed
to stay between $150 and $800. The flight auctions close at the end
of the game and no resale of airline tickets is allowed.

There are two hotels available, the “nice” Tampa Towers (77') and
the the “not so nice” Shoreline Shanties (SS). Because of the differ-
ence in quality the price of the former is expected to be higher than
that of the latter. There are 4 auctions for each hotel (days 1-4) and
each hotel has 16 rooms available for each day. The rooms are traded
in 16-th price English (ascending) auctions. This means that the 16
highest bidders win the rooms at the 16-th highest price. The agents
have no knowledge of the other bids, their only information is the
current ask price. Four minutes after the start of the game one hotel
auction clears and closes. One (random) hotel auction closes every
minute thereafter. Bid withdrawal or ticket resale is not allowed.

There are three types of entertainment events: alligator wrestling,
amusement park and museum. Tickets are available from days 1 to
4, and they are traded in twelve auctions in total. These auctions are

double auctions, that is the agents can act as both sellers and buyers
[9]. Clearing takes place immediately when a match occurs and the
remaining bids are left active in the auction. The auctions close when
the game ends. Bid withdrawal and ticket resale are permitted.

When the game starts each agent is assigned a random set of pref-
erences for the eight clients as well as a random endowment of en-
tertainment tickets. The preferences consist of the preferred arrival
day (PA) between days 1 and 4, the preferred departure day (PD) be-
tween days 2 and 5, the hotel premium value (HP) or bonus between
$50 and $150, and entertainment values (EV) between $0 and $200
for each type of entertainment ticket. The hotel premium value rep-
resents the bonus that the agent will receive if the client is placed in
the nice hotel. No hotel swapping is allowed during a client’s stay.

The top scoring agent is the one that achieves the highest sum of
the individual client utilities while minimizing the expenses of the
goods bought. The client utility, measured in dollars, for a feasible
travel package is computed by the formula:

Utility=1000-Travel Penalty+HotelBonus+ FunBonus, where

TravelPenalty=100 * (| AA-PA | + | AD-PD |)*

HotelBonus= HP if client is staying at 77, O otherwise.

FunBonus=EVI+EV2+EV3

If the travel package is not feasible the client is assigned zero util-
ity. When the game ends the TAC server allocates the goods the agent
holds to its clients in order to construct feasible packages and a score
is computed for each participant agent. The server tries to make an
optimum allocation in order to maximize the clients’ utilities. A more
detailed description of the game can be found in [7].

3 CHALLENGES

There are several challenging issues in designing and implementing a
trading agent for the TAC market scenario. Finding optimal solutions
via a brute force is computationally intractable. A more sophisticated
approach, which may include an advanced search algorithm and an
effective bidding strategy, is therefore required in order to succeed.

To achieve long-term success, the bidding strategy should take into
account not only current prices, but an estimation of the future prices
as well. Unfortunately, accurate price estimation is very difficult, if
not impossible, because of the limited information the game pro-
vides. The only information that is available to the agent is the cur-
rent asking prices. The agent knows nothing about the other agents’
bids or ticket demand. Standard machine learning techniques are very
hard to apply since the agent cannot observe the bidding patterns of
the other participants.

Although the agents are not required to perform the final allocation
of goods to their clients and report it back to the server, a major issue
in TAC-00 [6], [1], the allocation problem is relevant here as well.
What is referred to as the completion problem [3] can be stated as
follows: Given the current ticket holdings, the current market prices
(or maybe the estimated prices) and the client preferences find the
most profitable combination of tickets that need to be traded in or-
der to complete travel packages. The completion problem is a hard
one since the number of the available tickets is constrained by the
availability in the market and also the (estimated) prices need to be
taken into account. This problem is classified as NP-complete. The
optimum solution is not tractable via a brute force approach and thus
sophisticated search algorithms have to be employed. The computa-
tion time of the algorithm is vital.

Having already decided on the optimum packages, that is what
tickets and how many are needed, the problem is to decide when and

2 AA and AD are the actual arrival and departure days respectively.

how much to bid. The agent may also consider bidding for tickets not
currently included in the optimum list to maintain flexibility later in
the game. The bidding strategy can be divided into three parts, the
strategy for obtaining each of the three available resources, flight,
hotel, and entertainment tickets respectively.

The key resources, as it may have already become obvious from
the game description, are the hotel reservations, since they are vital
for the construction of feasible travel packages. Their limited avail-
ability makes them the most sought-after goods. Failing to acquire a
particular hotel reservation may jeopardize the whole travel package.
Things get even worse when the rest of the tickets have already been
secured. Hotel auctions are ascending-price ones, and consequently
once the price goes up there is no way back. An obvious strategy
would be for the agent to place its bids at a high price, say $1000. In
this case, it is most probable that the agent will win the rooms at a
price equal or lower than the bid price. An agent that bids according
to this strategy does not have to monitor the hotel auctions in order
to update its bids. If the bid is rejected this implies that the ask price
is much higher and therefore the reservation will not be beneficial
for the agent. Such a strategy has the drawback that the agent cannot
change its initial decision since bid withdrawal is not allowed.

The limited availability of hotel rooms creates a further dilemma.
Since it is almost certain that the prices of the flight tickets will in-
crease as time passes, the expenses will be minimum for an agent
that buys all the wanted tickets in the beginning of the game. This
would be optimal in a game that the demand of hotel rooms is lower
than the supply, for all the hotel auctions that an agent participates
in. On the contrary, if the demand is higher than the supply (this is
the case for most games), this strategy involves high risk. Buying
the flight tickets in the beginning also means committing early on
packages, and thus having less flexibility to move a client’s arrival or
departure days later in the game. The agent may fail to reserve some
of the hotel rooms needed to assemble the travel packages, and thus
additional flight tickets may have to be purchased later in the game in
order to acommodate changes. This entails that some of the initially
purchased flight tickets will remain unused while the expences will
increase. On the other hand, an agent could purchase the flight tickets
for each client when all the hotel rooms for this client are reserved,
but this means that the flight ticket prices may be significantly higher,
again leading to increased expenditure.

Although the entertainment tickets are not as important as the
other resources, the additional bonus that can be obtained can make
the difference and distinguish a good agent from a not so good one.
These are the only goods that can be both bought and sold. Some-
times it is more profitable to sell a ticket than to assign it to a cus-
tomer, a fact that adds to the complexity of the bidding strategy.

Last but not least, the agent has to take into consideration network
disruptions and delays, a typical phenomenon for network applica-
tions, and make sure that its bids arrive on time.

4 AGENT TYPHON

Agent Typhon was implemented in Delphi and is an optimal agent,
that is the agent always tries to achieve the best possible score given
the situation. This agent was inspired by RoxyBot which was one of
the most successful agents in TAC-00 [3], [1]. The high level strategy
illustrated in Figure 1 which has been used by most TAC agents was
followed for Typhon.

The key feature of this agent is the quality of the solution to the
completion problem as described earlier. The agent is required to
know at any given point the most profitable (or at least a very good)

R

yNo

Update
Game Data

Get Initial Game
Game Started Parameters

Estimate

closing prices

Run Completer

v

Process and
submit bids

Figure 1. Typhon’s high level strategy.

combination of the goods to be traded. Exhaustive search, unfortu-
nately, is not an option as the possible combinations are just too
many. The agent can afford only a few seconds of searching, typi-
cally 2-3 seconds at most, and ideally below 1 second. A variation
of the A* algorithm was implemented with a restriction on the max-
imum number of “open” nodes kept in order to achieve a good solu-
tion/computation time ratio. The algorithm has as input the clients’
preferences, the market prices and the current ticket inventory. The
output is a recommended travel package for each of the clients. The
algorithm executes in two phases. In the first one it searches for
flights and hotels and in the second one for entertainment events. The
algorithm does not search for single tickets but for ticket packages.
This is reasonable, since the goods are valuable only in combinations.

Each travel package consists of three numbers, the arrival day (be-
tween 1-4), the departure day (between 2-5) and the hotel type (0 or
1). There are 21 different packages including the null package. For
instance, a travel package has the form (1,3,1), which means arrival
on day 1, departure on day 3 and stay at the good hotel. An entertain-
ment package consists of four numbers. The first number indicates
the entertainment type (between 0-3) on day one, the second the en-
tertainment type for day 2 and so one. Zero value means no enter-
tainment event will be assigned for that day. A travel package cannot
have two events of the same type. There are 73 different entertain-
ment packages including the null package. For instance, the package
(0,0,3,1) represents that the client will be assigned an entertainment
of type three on day 3, an entertainment of type one on day 4 and no
events for days 1 and 2.

The algorithm starts execution from one initial state (node) where
no travel packages (TP) are assigned and proceeds by assigning TP to
the clients and evaluates the utility it gets. Each time a TP is assigned,
a different node is generated. Each node is evaluated by computing 3
numbers: g, h and f. g is the utility that has been obtained so far in
the tree search (including the current node) minus the cost so far. h is
the utility that is expected to be obtained from the rest of the search.
Finally, f is the sum of g and h and constitutes the fitness value,
which tells the algorithm how good the node is. h is the heuristic
function and is computed as follows: for each of the remaining clients
the algorithm assumes that the maximum possible utility will be ob-
tained from the travel part (/000+HP). Then it counts the tickets left
in the inventory to see if it has the necessary resources to satisfy the
clients left. If there are not enough resources, the algorithm subtracts
a cost for each ticket missing. If the ticket is an in-flight one, the
cost is that of the cheapest in-flight ticket in the game at that time.
The same applies to other missing resources (out-flight and hotels).
The heuristic function is highly optimistic as it assumes that the tick-

ets needed will be bought at the minimum possible cost, and also the
maximum utility will be obtained. Notably, already purchased tickets
are treated as a sunk cost (their cost is set to zero).

The algorithm keeps two lists of nodes. The open list, which con-
tains the nodes that have not been searched yet and the closed list
where all the nodes have been already searched. The high level struc-
ture of the algorithm is presented below:

Repeat

1. get the best node from the open list (maximum f)
2. add it to the closed list
3. expand it

i. generate all successors

ii. compute f for each one

iii. add them to the open list

until the search reaches depth 8 (all clients have been considered)

As expected the algorithm requires too much time to perform the
full search. The solution given to this problem is simple. Each node
can only have a limited number of successors instead of keeping all
of them (21 in total). Thus, although the algorithm generates all of
them, it finally keeps the best and discards the rest. Of course by
doing so the optimality of A* is gone, but this was necessary. The
best number of successors to be kept was found empirically to be
two. Keeping more does not improve the quality of the solution, but
it does increase the computation time exponentially.

The bidding strategy is determined by the output of the completion
algorithm. Once the completer assigns one travel package and one
entertainment package to each customer, the list of tickets that need
to be traded to satisfy the packages is generated. A maximum price
and a suggested one is computed for each ticket.

The agent computes a number, which expresses the probability
to stick with the current package for the client. The probability de-
pends on the total days of stay, the hotel (good or bad) and the days
(it is easier to secure rooms for days 1,4 than for days 2-3). It may
buy one flight for customers with average probability and no tickets
for the rest of clients are purchased. The probability thresholds are
parametrically defined. The agent waits until the game reaches 4+
minute, when the situation with the hotel rooms is supposed to be
clearer, to buy the rest of the tickets. The agent buys any additional
airline tickets needed immediately after the 4th minute.

The agent starts bidding with some delay in order to avoid affect-
ing the hotel prices and help them stay at lower levels. It starts bid-
ding at the 3rd minute, 1 minute before the first hotel auction closes,
and usually has two bidding opportunities/rounds before the closing:
it bids passively in the first round, but more aggressively in the sec-
ond one in order to avoid loosing too many tickets when the first
auction closes. The agent bids initially for both hotels but after the
4th minute it sticks with the hotel proposed by the completer. The
agent bids also for hotel rooms not included in the clients’ packages
attempting to buy rooms cheaply and use them if it later fails to se-
cure the desired rooms. The bids increase over time.

The agent both buys and sells entertainment tickets according to
the completer’s output. If there are tickets marked for selling, the
agent starts with a very high asking price. The price decreases lin-
early as the game progresses. The agent sells unwanted tickets at
their minimum price (set to $40) after the 11th minute. It does not
accept to sell tickets for less than $40 and help its opponents improve
their scores. For wanted tickets the agent starts with a low price and
gradually increases it as the game progresses. After the 11th minute
of the game the agent bids its maximum value, which is set at 90% of
the bonus value for the ticket. The agent withdraws bids for tickets
for which it is not interested any more.

5 AGENT CAISERSOSE

Agent CaiserSose was implemented in Java and its high level strat-
egy is described in Figure 2.

Game Started
Get Initial Game
Parameters

Determine flight tickets to bid for
Determine hotel rooms to bid for
Entertainment ticket allocation

— Monitor Market

* No
n .
ziucthﬁ Wi &, Monitor/Update
ose short Hotel bids
¢N0

nereases
Hotel Price

Completition
Algorithm

ailed
fo reserve hotet>

Update bids for
L— Entertainment
tickets

Figure 2. CaiserSose’s high level strategy.

In the beginning of the game the agent only holds the entertain-
ment tickets allocated by the server. In this initial state, given the
fact that the preferences of all clients are known, it determines what
flight and hotel tickets it needs to obtain.

The agent determines the flight tickets needed for each client, ac-
cording to his preferred arrival and departure date. It also determines
which flight tickets are likely to reach a high price (days 2-4) in the
beginning of the game and buys those first. The rest are purchased
later in the game. This provides for the flexibility to shorten the stay
of some clients, in case the agent fails to reserve some hotel rooms.
Although this leads to a penalty of 100 points for each day that the
vacation is shortened, it may be preferable since hotel room reserva-
tions might reach a price as high as $1000. The flight bids are placed
at a price a little higher than the ask price in each auction.

The agent decides which type of hotel will be reserved for each
client according to the following rules:

o A client that arrives in Tampa on dayl or day4 and leaves on day2
or day5 respectively, will be accommodated in 77.

o A client that will stay in Tampa for only one day (but different than
the above) will be accommodated in 7T if he offers a bonus > $80.
In the opposite case, he will be accommodated in SS.

o All clients who will stay in Tampa more than one day will be ac-
commodated in SS, unless they offer a bonus > $120 for 77.

These decisions do not lead to the highest score since not all clients
get the TT hotel. The agent attempts to balance the demand for hotel
rooms for 7T and SS. The hotel bids are placed at a price a little
higher than the ask price in each auction.

The allocation of the initial endowment of entertainment tickets to
clients and the decisions of which to buy/sell are taken as follows:

o Tickets for which no client offers bonus will be put up for sale.

o Tickets for which clients offer bonus < 100 will be put up for sale
for a price > 100. If they are not sold, then they will be reallocated.
e Tickets for which clients offer bonus > 100 will be held.

e If clients offer high bonus for tickets not in endowment, the agent
will attempt to purchase those tickets at price < bonus.

The buy bids for the entertainment tickets are initially placed at a
low price whereas the sell bids at a high price. As time passes the
price of the buy bids is increased and the price of the sell bids is de-
creased in order for the desired transactions to take place. The agent
must consider that by selling or buying a ticket will help another
agent make profit. If agent A sells a ticket to B for $10 and B gains
$100 by assigning this ticket to one of its clients, it is obvious that the
benefit is much greater for agent B. Thus, thresholds are set regard-
ing the lowest selling and buying prices that the agent is willing to
accept. Moreover, it seems reasonable to attempt to sell an entertain-
ment ticket for which no client offers bonus. In some cases though it
is preferable to sell a ticket even if some bonus can be gained from it.
For example, if a client offers $70 for a certain ticket but it is possible
to sell it at a higher price, the agent should try to do so.

In order to improve the agent’s performance, an event-driven ap-
proach was adopted. In particular, the agent constantly monitors the
hotel auctions until the game is over. Throughout the game, the agent
is aware of whether or not a hotel auction is bound to close shortly.
This is achieved by the use of an internal timer. The agent distin-
guishes between two cases (Figure 2):

1. A hotel auction will close shortly. In this case the agent monitors
its hotel bids until the auction closes. The goal is not to be overbid
at the last moment. If this happens, the agent places the bids again
at a price higher than the current ask price, no matter what the ask
price is. Since most agents follow the same strategy and place their
bids just before an auction is about to close, there is a chance that
the agent will not manage to update its bids, especially if there are
network delays.

2. No hotel auction will close shortly. The agent gets information

about the transactions that have taken place until this moment, as
well as the current ask prices for the auctions. There are three
cases that guide the agent’s behavior:

e There is an auction in which the agent participates and for
which the ask price has reached the price of the agent’s bid.
In this case the completion function is called to deal with this
situation (see below).

e The agent has failed to reserve the wanted amount of rooms in
an auction that just closed. The completion function is called.

e If none of the above is the case, the agent updates the bids
for the entertainment tickets. Firstly, it reruns the entertainment
tickets allocation algorithm in order to determine what tickets
need to be purchased/sold. This solves the problem of tickets
remaining unused if the vacation of some clients is shortened.
In this case the entertainment tickets allocation algorithm acts
as a part of the completion algorithm. In addition, the agent
lowers the prices for the sell bids, and increases the prices for
the buy bids. The constraints here are that the agent will not
sell a ticket for less than $50 and will not buy a ticket at a price
higher than the bonus the client offers minus $30.

The objective of the agent is to reach a final state in which it has
obtained all the goods that it initially bid for. However, in such a
game it is highly unlikely that the agent will reach the final desirable

state without having to reconsider. The completion algorithm has to
determine a new final state that the agent will try to reach during the
game. The agent needs to allocate the current holdings of goods, as
well as the hypothetical quantities of goods that might be purchased
to the eight clients, in a way that leads to an optimal score. At this
point, solving this problem is much more difficult than it was in the
beginning of the game, since some hotel auctions might have closed
or reached a high ask price.

The algorithm implemented for CaiserSose is rule-based and uses
greedy heuristics in order to find an acceptable solution that will
decrease the expenses for the agent. This is achieved by switching
clients from one hotel to the other, and by shortening the stay if pos-
sible. Each client is considered individually. The agent checks if it
is possible for the client to get the 77T or SS hotels. This is possible
if either all the hotel auctions pertaining to this client’s trip are still
open or, although some of them are closed, enough hotel rooms have
already been reserved so that it is possible to allocate one of them to
this client. Four cases are considered:

1. It is possible to accommodate the client in both hotels. The agent
calculates the expenses for each hotel and chooses whatever is
more beneficial, considering of course the bonus for the 77 hotel.

2. The client can only be accommodated in one type of hotel. In this
case, this type of hotel is the only choice for the agent.

3. This client cannot be accommodated in any hotel without shorten-
ing its vacation. In this case the agent explores ways of shortening
the client’s stay and calculates the cost of the hotel rooms as well
as the flight ticket(s) that must be now purchased. The most bene-
ficial option is then chosen.

4. If the flight tickets for this client haven’t been purchased yet, even
if the agent is able to offer a certain type of hotel (cases 1 and 2),
the completion algorithm will still consider shortening his vaca-
tion. This is done when it is more beneficial to receive a penalty
than to reserve one or more expensive hotel rooms.

After the decisions are made for all clients the agent calculates
the hotel rooms needed for each day and type of hotel and places
the bids at a price a little higher that the current ask price of each
auction. As for the flight tickets needed, the agent will bid for those
tickets after the 9th minute of the game. The completion algorithm
does not consider entertainment tickets at all. The reason is that the
main concern is to determine which type of hotel should be reserved
for each client. This does not interfere with entertainment tickets,
since the client will still be allocated the same entertainment tickets
independent of type of accommodation.

6 RESULTS AND CONCLUSIONS

In total twenty-eight teams, representing academic institutions, re-
search centers and companies from ten different countries entered
the competition [8]. The competition itself was organised into a pre-
liminary tournament and a final tournament [2]. Participation in the
preliminary round was open to all agents and its purpose was to de-
termine the sixteen agents that would proceed to the final tourna-
ment as well as their division in two “heats”. Typhon and CaiserSose
performed well and achieved the 18th and 15th places respectively,
and CaiserSose qualified for the finals®. The final tournament was
held in Tampa where the participants and agent developers had the
opportunity to present their work. The heat rounds determined the

3 Note that according to the TAC rules, even if two agents from the same
institution qualify, only one is allowed in the finals.

eight agents that would compete in the final rounds. The final rank-
ing of the eight finalists along with their affiliations is given in Table
1. Livingagents developed by the German software company Liv-
ing Systems AG achieved the highest average score. The agents de-
veloped by AT&T Research and Cornell University followed in the
lead. CaiserSose performed very well and it was placed 7th among
the eight finalist agents.

Table 1. Final ranking in the Trading Agent Competition 2001.

Pos. Agent Affiliation Avg Score
1. Livingagents living systems AG 3670.0
2. ATTAc AT&T Labs - Research 3621.6
3. Whitebear Cornell University 3513.2
4. Urlaub01 Penn State University 3421.2
5. Retsina Carnegie Mellon University ~ 3351.8
6. SouthamptonTAC ~ University of Southampton 3253.5
7. CaiserSose University of Essex 3074.1
8. TacsMan Stanford University 2859.3

We hope to be able to participate in future TACs and towards this
direction there are a number of possible avenues for future develop-
ment. One option is to integrate the two agents combining the A* ap-
proach of Typhon and the event driven behaviour of CaiserSose. This
was not possible in TAC 2001 since the close proximity of the pre-
liminary and final tournaments only allowed for fine tuning and not
major changes in an agent’s strategy. Another direction is to tackle
the problem using a multi-agent system where a number of agents
will be examining particular aspects of the trip and will negotiate
among themselves a bidding strategy.

Although the TAC market scenario presents some interesting prob-
lems, other issues that are equally challenging such as negotiations
for multi-attribute products and combinatorial auctions in which
agents are allowed to bid on bundles are not being addressed.

Drawing on our experience from the Trading Agent Competition
and motivated by our research interests in negotiation protocols, we
are in the process of implementing a generic server capable of run-
ning market-based scenarios. Although in some respects, the server
is similar in functionality to AuctionBot [10], it is more flexible re-
garding the implementation of e-markets by developers.

REFERENCES

[1] M. Boman, ‘Trading Agents’. AgentLink Newsletter, 6, 15-16, (2001).

[2] M. Fasli, ‘Trading Agent Competition 2001°. AgentLink Newsletter, 9,
13-14, (2002).

[3] A. Greenwald and J. Boyan, ‘Bidding Algorithms for Simultaneous
Auctions: A Case Study’, Proceedings of the 3rd ACM Conference on
Electronic Commerce, ACM Press, 115-124, (2001).

[4] R.H. Guttman, A.G. Moukas and P. Maes, ‘Agent-mediated electronic
commerce: a survey’, Knowledge Engineering Review, 13(2), 147-159,
(1998).

[S] M. Kumar and S. Feldman, ‘Internet Auctions’, 3rd USENIX Workshop
on Electronic Commerce, Boston, Mass, 49-60, (1998).

[6] P. Stone, M.L. Littman, S. Singh and M. Kearns, ‘ATTac-2000: An
Adaptive Autonomous Bidding Agent’, Journal of Artificial Intelli-
gence Research, 15, 189-206, (2001).

[7]1 TAC Game Description, http://auction2.eecs.umich.edu/game.html

[8] TAC List of Entrants, http://auction2.eecs.umich.edu/tac_entry.html

[9] P.R Wurman, W.E. Walsh and M.P. Wellman, ‘Flexible double auctions
for electronic commerce: theory and implementation’, Decision Sup-
port Systems, 24, 17-27, (1998).

[10] P. Wurman, M. Wellman and W. Walsh, ‘The Michigan Internet Auc-
tionBot: A Configurable Auction Server for Human and Software
Agents’, Proceedings of the Autonomous Agents Conference, 301-308,
(1998).

