
Competing in a Queue for Resource Allocations among 
Non-Cooperative Agents 

Pinata Winoto1 and Tiffany Ya Tang2 

 
Abstract. In this paper, we investigate a multi-agent non-
cooperative game for resource allocations based on an M/D/1 
queuing model. Specifically, agents with common goals to 
maximize utility are deployed to compete with each other to bid or 
bribe for quicker service provided by the server. The bid/bribe of 
each agent in the queue is not revealed, but the outcomes, in terms 
of the pair of (bid/bribe; total waiting time), are publicly available 
from the server. Agents choose from one of three available 
strategies: random strategy, Nash equilibrium strategy and linear 
regression strategy, for their decision-makings. Bayesian update is 
integrated into the linear regression technique for searching an 
optimal bid/bribe. Besides, weighted average, second order 
autoregressive process (AR(2)), and random walk are utilized to 
predict service speed. After each agent obtained service, it re-
evaluates its strategy and adjusts it accordingly. Results show that 
in the long run, the dominant strategy depends on the service speed. 
When the service speed is low, random strategy dominates the 
society. But if the service speed is high, linear regression strategy 
dominates. The model can be extended to study agent-based social 
simulations and decentralized scheduling for resource allocations in 
an open multi-agent system. 

1. INTRODUCTION 
It is common practice to use FIFO setting in a queue. However, 
when customers have different valuations of waiting time or 
urgencies, FIFO setting is not appropriate. Many modifications are 
available, such as, multi-priority/multi-class setting [2], and priority 
pricing setting [1, 4, 6, 8, 9]. This paper starts with the same issue, 
buying position in an M/D/1 queue by customers through 
legal/illegal activities. It is a non-cooperative repeated game, where 
each player is randomly selected to have the opportunity to enter 
the queue. Each player does not know how long the queue is, and 
he can choose whether to enter the queue by paying a non-revisable 
bid to the server or not enter the queue at all. The payoff depends 
on the waiting time spent in the queue and how much he has paid. 
The waiting time depends on the bid he has paid and those of other 
players have paid. The results show that in the long run, dominant 
strategy in the society depends on the server’s service speed. For 
instance, random strategy (in terms of bid) may dominate the queue 
if the service speed is too low. But when the service speed is very 
high, a regression strategy is dominant. Two prospective 
applications of this model are agent-based social simulation and 

decentralized scheduling for resource allocation [10] for open 
multi-agent systems. In the context of social simulation, we study 
the equilibrium of bidding/bribing strategy used by customers in a 
queue. Customers (agents) could adopt illegitimate way (bribe) in 
the dirty competition for the service. Indeed, agents will act based 
upon normative rational behavior (in terms of von Neumann-
Morgenstern Expected Utility) in their decision-makings [5, 11]. 
However, if we regard the bribe as a legitimate action, the system 
becomes a closed-bid auction for buying a position in a queue. This 
approach becomes decentralized scheduling [10], for resource 
allocation such as queuing for remote method/object invocation, 
printing, and so on in a multi-agent system.  

2. THE SIMULATION 

2.1 The M/D/1 queue 
There is one queue with one server at the end of it. Customers come 
to the queue according to a Poisson process with a mean rate of m 
customers per unit time. The server distributes a service that has 
constant value P, with service speed, u service per unit time. Each 
customer has different value of waiting time v generated from 
uniform cumulative distribution A(v) = Av, v ∈  [0, v1], and v1 is 
common knowledge. When a customer comes to the queue, he can 
decide not to enter the queue, or pay a bid x (non-revisable and 
non-refundable) to the server. Thus, if a customer must wait in the 
queue for W unit time after giving bid x, then the net profit he gets 
is P – x – vW. When a new customer enters the queue, the server 
will reorder the queue according to the bids received, with highest 
bid be served first. The queue is assumed to exist for a long time.  

Let z = mPA and r = m/u. Then according to Lui[7], if r > z / (1 
+ z) and all customer with )1(1 zrzvv +≤  join the queue and 
bid under the following equation: 

 
and customers with )1(1 zrzvv +>  do not join the queue, then 
these strategies form a Nash equilibrium, i.e., no customer will 
deviate from its strategy because it is the best to maximize his 
profit. Moreover, if r ≤ z / (1 + z), and all customers bid: 
 

 
(2) 
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then these strategies also form a Nash equilibrium. 
Given these bidding strategies, Lui[7]1 argues that the server 

could maximize his income (sum of all bids received) by adjusting 
the service speed u such that it is not too small or too big, i.e.,  

  
(3) 

 
Intuitively, if the service speed is very fast, then most customers are 
willing to wait, and yet give few bids. As the service speed goes 
slower, most customers will not choose to wait, thus compete to 
buy better positions in the queue by raising their bids. But if the 
service speed goes too slow, some customers become desperate and 
will not join the queue at all, which will reduce the total bids.  

The main drawback of this setting lies in that the decisions are 
made in the equilibrium state, i.e., the queue exists for a long time, 
and everyone knows the coming rate and the strategy used by 
others, the service speed is exactly u*, and none of the customers 
knows the length of the queue. Two questions can be addressed in 
this case: What happens if some of the agents do not play Nash 
equilibrium strategy? And what happens if the service speed does 
not follow Nash strategy? 

2.2 Experimental design 
In addition to playing Nash equilibrium strategy, all agents could 
choose two other strategies: random and linear regression. In 
random strategy, an agent randomly decides whether to enter queue 
or not, and draws a random bid from uniform distribution [0, X]. 
The chance is set to v/2v1 for not entering the queue, e.g., if v = 4 
and v1 = 10, then by 20% chance he will not enter the queue. 

All agents can learn not only from their own experiences but 
also from those of others and use linear regression methods to 
predict their waiting time. They are capable of memorizing up to 
100 pair values of bid and waiting time, and using up to 50 pairs for 
the regression. And then compute their optimal bid: 

     (4) 
 
Where W(x) is obtained from the linear regression: 
 

W -1 = a + b x2 + ε                      (5) 
 
A Least Squares method is used to solve it. And an agent will 

stay out of the queue if and only if the optimal G < 0. The only 
problem is whether the past data is trustworthy. For example, we 
cannot neglect the inconsistency of the server in setting his service 
speed. Thus, only some of the data may be useful in the regression 
while others become out of date or erroneous. Hence, at any time 
each agent holds a belief for the reliability of any pair of data and 
updates them through Bayesian update. Intuitively, if an agent runs 
regression from a set of data and the forecast made is close to the 
actual result, then he will still rely on them in the future. In our 
simulation we set the belief level to [0, 1] with initial belief equals 
to 0.5.  

                                                                 
1 In Lui[7], he studied the optimal service speed to maximize the bribes 

received in a queue. As we treat bribe as legitimate payment (bid), the 
whole system becomes auction.  

Let the difference between the inverse expected waiting time 
from regression with the inverse actual waiting time be ∆Wt

-1, the 
prior belief is bt-1, and s is the standard error of the regression then 
we define the posterior belief as  

 

bt  = 1 – ( 1 – bt-1 ) ( ∆Wt
-1/s )   if  ∆Wt

-1/s  ≤ 1 

bt  = bt-1 ( s / ∆Wt
-1 )    if  ∆Wt

-1/s  > 1         (6) 
 
Agents will select up to 50 data where the data with higher belief is 
more likely to be selected.  

Agents who adopted this strategy may also rely on the service 
speed. If the service speed is very volatile then the accuracy of the 
present data is low; thus some adjustments are needed. There are 
many methods to predict future service speed, but three methods 
are adopted in our experiment: weighted average, random walk and 
second order autoregressive (AR(2)). AR (2) is defined as 

 
(7) 

 
Where µ is the constant coefficient of regression, γ1 and γ2 are 
coefficients for lagged (past) service speeds, and εt is residual of 
regression.  

After an agent collects the time series data for service speed 
from AR (2), he will predict  future service speed, and adjust 
current optimal bid accordingly. A trend to slower service speed 
indicates that the server tries to increase his total revenue by 
inducing higher x as W(x) increases. Hence a higher optimal bid is 
needed in the future in order to offset the increasing waiting time. 
The procedure for adjustment is given as follow: 
 

x*new = [1 + (ut / ut+W*  – 1) /2]  x*old  (8) 
 

But to avoid winner’s curse, he may reject to respond or even 
reduce the optimal bid by probability pd, i.e., he will reduce his 
optimal bid randomly from 0% to 10%. The initial pd for any 
forecasting method is randomly given from 0 to 1, and the next pd is 
updated according to equation (13) described later. The same 
procedure applies for decreasing service speed. If the service speed 
stays unchanged, then agent does not need to adjust his optimal bid.  

The adjustment explained above is valid for AR(2) model, 
because both random walk and weighted average can not be used 
directly to forecast future trend. In later cases, the following 
additional computations are needed. 

If an agent uses weighted average (WA), then the difference 
between recent average speed and past average speed will 
determine the trend of future service speed. In our setting, the 
number of samples for averaging is 10, and the lagged is also 10. 
The weights are in the order from 1 to the sample size. Thus, the 
difference is: 

 
 

(9) 
 
 
 
Where i represents the lagged from present, e.g., i = 0 represent 
current value, i = 1 represents 1-lagged value, etc. A positive ∆u 
represents an increasing service speed. The rest of adjustment 
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process is the same as those in AR(2), except that 1/ut+W* = 
(W*/∆u) / ut.  

If an agent uses random walk, then the difference is always 
zero, that is, no adjustment is needed, because the agent believes 
that the expected value of future service speed equals to current 
one. 

Each agent can choose one out of three strategies {Nash, 
Random (ZI), Linear Regression (LR)}. If he chooses Nash or 
Linear Regression, then he needs to choose a method to predict 
service speed, i.e., {WA(10, 10), AR (2)-30, Random walk (RW)}. 
In all, 7 different strategies are provided. For the first few periods, 
all agents can use random strategy (ZI) or (Nash, RW). After 
certain periods, they are free to choose other strategies and rank 
these strategies based on their experiences and preferences. All 
agents iteratively compute the most preferred method to predict the 
service speed. And those agents who received services will rank the 
strategies for bidding. If the strategy produces a “satisfactory” 
outcome, i.e., at least as good as the expected one, then its rank will 
increase, otherwise decrease. The rating is from 0 to infinite, with 
random initial rate ∈ [75, 125]. The new rating is given by, 

 
New rating = Satisfaction + Old rating  (10) 

 
where 

Satisfaction = 1+ 5η 
η = (Actual Gain – Expected Gain) / Expected Gain     (11) 

 
to rank the strategies. Or 
 

Satisfaction = 1 + 50(0.2 – ϕ) 
ϕ = | Actual value – Forecast value | / Range of value   (12) 

 
to rank the forecasting methods.  

Moreover, pd is updated by: 
 

 pd
new = (1.2 – ϕ) pd

old  (13) 
 
Whenever an agent is selected to enter a queue, he will choose the 
strategy with the highest rating. If there is more than one strategy 
with highest rating, he will choose one of them randomly. 

2.3 Risk of being penalized 
In previous setting we assume that customers involve in a 
legitimate auction, therefore we do not impose any risks to both the 
bidder and server. But as described before, this simulation can be 
extended easily for simulation of bribery behavior. Thus, we add 
the deterrence effect in our model, e.g., the probability that any 
briber and bribee may be arrested will increase with regards to an 
increasing bribe. And if they are arrested, then both will be 
penalized to pay certain amount of fine F, which is assumed to be 
constant.2 If we assume that both the customer and the server are 
risk neutral, i.e., their decisions are based on von Neumann - 
Morgenstern expected utility, then the server could determine the 
                                                                 
2 One may think to use an increasing fine with regards to an increasing bribe 

given/received as a more realistic setting. However, we choose a constant 
fine for two reasons: firstly, make the model simple and easy to be 
studied; and secondly, follow the result of crime studies that increasing 
fine is less important compared to increasing the probability of 
apprehension in deterring crime [5]. 

optimal service speed u* such that maximizing his total expected 
revenue from all customers, i.e., 

 
(14) 

  subject to: queue length ≤ N 
 
Where pa(x) is the probability of apprehension, xi = x(u) is the bribe 
received from customer-i and F is the fine paid if arrested, and 
pa(0) = 0 and pa(P) = 1.  

Customer-i determines the optimal bribe using a similar 
formula, i.e.,  

(15) 
 
Where G(x) is the expected net profit. If the value inside the 
bracket is less than zero, then the customer will not join the queue. 
It may occur even when the expected gain G(x) is large. 

Under this setting, there may exist many corner solutions to 
customer problem such that x(v) = 0 for more than one v. But if 
more than one customer does not bribe, one of them can take 
advantage by giving an infinitely small bribe. The only difference 
is to use equation (15) rather than equation (4). 

3. RESULTS AND DISCUSSIONS 
A simulator is designed to construct thousand agents, each of whom 
is capable of memorizing 100 sets of data for service speed, 100 
pairs for (bid, waiting time) and its corresponding belief value, the 
ratings for all 7 strategies, and several other parameters. Newton’s 
method and Simulated Annealing method are used in solving 
optimization problem. We choose pa(x) = x/P, x∈ [0, P] for the 
probability of apprehension. This function is not fully supported by 
empirical evidence; instead, we choose it for the purpose of 
simulation only.  

Figure 1 shows a kink increasing relationship between service 
time (inverse of service speed or time per unit of service) and 
average social loss. Social loss is the total loss due to waiting in the 
queue. Intuitively, longer service time causes the queue to grow 
faster; therefore social loss rises faster. But whenever the average 
number of incoming customers (incoming rate) is less than the 
service speed, the length of the queue is always near zero. 
Therefore the curve is flat near the origin. But when the service 
speed is smaller than the incoming rate, then the length of the 
queue grows faster, which increases the waiting time and social 
loss. This phenomenon is shown as the steep curve. 
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Figure 2 and 3 show the participation rate and server’s total 
revenue. As more people are reluctant to join the queue if the 
expected waiting time becomes longer, the participation rate 
decreases in terms of service time. Figure 3 shows that the server’s 
total revenue is a decreasing function in terms of service time.  
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Figure 2.    Participation Rate 
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Figure 3.    Server’s Revenue 

 

Figure 4 and 5 show the dynamic of the dominant strategies of 
customers who join the queue (in 20 moving average trend line). 
The vertical axis represents the fraction of customers using one of 
three available strategies. The horizontal axis represents the 
periods. Figure 4 is the typical pattern when the service speed is 
high. And figure 5 is the typical pattern when the service speed is 
low. Figure 4 shows the dominance of Linear Regression in the 
long run, while figure 5 shows the dominance of random strategy in 
the long run. In both cases, Nash strategy is dominated. Figure 6 
and 7 show the actual gain made by the same agents in figure 4 and 
5. From those 4 figures, we can conclude that using Linear 
Regression strategy could better predict the expected gain in high- 
service-speed-queue (figure 4 and 6). Higher accuracy of linear 
regression prevents agents from joining the low-service-speed-
queue (figure 5 and 7), which facilitates the dominance of random 
strategy. 
Figure 8 shows the situation when the service speed is volatile. The 
result is roughly the mix of figure 4 and 5. This unstable service 
speed also leads to an increase of the social loss, approximately 
5600 compared to average social loss in stable service speed 
(approximately 4700). The main reason is that an increase of 
uncertainty raises error in prediction, which in turn raises social 
loss. 

0

0.2

0.4

0.6

0.8

1

1.2

1 68 13
5

20
2

26
9

33
6

40
3

47
0

53
7

60
4

67
1

73
8

80
5

87
2

93
9

20 per. Mov. Avg. (Rand)

20 per. Mov. Avg. (LiReg)

20 per. Mov. Avg. (Nash)

 
Figure 4.    Strategies in High-Service-Speed-Queue 
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Figure 5.    Strategies in Low-Service-Speed-Queue 
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Figure 6.    Average Gain by Customers in High-Service-Speed-Queue 
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Figure 7.    Average Gain by Customers in Low-Service-Speed-Queue 
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Figure 8.    Strategies in Random/Volatile-Service-Speed-Queue 
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Figure 9.    Strategies in the Presence of Punishment 

 
Figure 9 shows how the strategy changes when the risk of 

punishment is introduced into the system. Just like when the service 
speed is very low, many of  ‘good’ predictors avoid giving bribe 
and thus will not join the queue, leaving random strategy dominate 
the queue. 

4. CONCLUDING REMARKS 
As stated before, the flexibility and extendibility of this model is 
one of the main contributions of this work. On one hand, it tries to 
enrich the agent-based social simulation by proposing experiment 
in queuing model where agents could take legitimate/illegitimate 
action. On the other hand, it studies the resource allocation in 
queuing model through priority pricing mechanism. Generally, 
three main conclusions could be derived from the study: 

� In most cases when not all parties follow Nash equilibrium 
strategy, Nash equilibrium strategy is not a dominant strategy 
as shown in the experiment. It is dominated by linear-
regression strategy (with various learning processes) and 
random strategy. 

� Lower service speed will have negative impact on the revenue 
of both server and customers (see fig. 1 and fig. 3). 

� Holding service speed constant will reduce the social cost; and 
making the bribe legal (as non-refundable auction) will 
increase participation rate and the social welfare. 

In spite of it, more works needs to be conducted, among them: 

•  Extending the current model to many other types of single-
server-queue, or to multiple-server-queue system. 

•  Implementing more complex strategies in agents’ decision 
process. 
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