An Intelligent Inference Approach to User Interaction
Modeling in a Generic Agent Based Interface System

Yanguo Jing, Nick Taylor, Keith Brown
Intelligent Systems Laboratory
Department of Computing & Electrical Engineering
Heriot-Watt University, Edinburgh, UK

EH14 4AS

+44 131 4495111 Ext. 4164
{ ceeyj, nick, keb } @cee.hw.ac.uk

ABSTRACT

Research has shown that a typical user exhibits a certain
pattern when interacting a computer system. This work
infers the user interaction habits automatically from the
actions that the user and the application produce. The user
interaction habits can enable an interface agent to provide
assistance to a user or operate the application on the user’'s
behalf. All these actions are automatically segmented into
several meaningful action sequences, which are stored in
the user’'s interaction history. An inference algorithm is
used to construct the user’s interaction model from his/her
interaction history. Probabilities of each action’s next
possible action are calculated. Interface agents then
provide assistance based on a user’s interaction model.
The interaction model is modified automatically as the
interface agents collect more actions. This method is
embedded within a generic agent based interface system.
Information on the prototype system, some experiments
and future work are presented.

Keywords
Intelligent interface agents, interaction habits, task, user
model, interaction model, inference

INTRODUCTION

The field of intelligent interface agents has emerged
during the past few years to address the increasing
complexity of current software systems. One of the key
problems is how to build up situation-action links. Maes
[7] used memory-based reasoning techniques to predict a
user's interests, however this method needs domain
knowledge to decide the elements of a situation. Bauer
[1][2] exploited clustering techniques to learn action
hierarchies in automated assistants. His algorithm learns
only the required steps to accomplish each top-level goal.
Garland and Lesh [3] tried to extend Bauer's work to
support hierarchical task models and optional steps. They
provided an algorithm for learning recipes, which are used
to decompose non-primitive actions into sub-goals. In the
APE project, Ruvini and Dony used an algorithm called
IDHYS [9] to learn the user's repetitive operations,

however the algorithm only targets the user’s repetitive
tasks. We are more interested in a user’s primitive actions
and the orders between these actions. We use actions
produced by users and applications to infer the user's
interaction habits. Research [5] has shown that a typical
user exhibits a certain pattern when interacting a computer
system. The “bottom up” method presented in this paper
can be used to recognize the patterns that are called in a
user’s interaction model in this paper.

This paper is organized as follows. The next section
discusses the details of the user interaction model
congtruction method. After that, we explain how this
method isimplemented in an agent based interface system
for an eye disorders diagnosis system (ARMD). Then
some preliminary experimental results are presented.
Finally, conclusions and future work are detailed.

THE INTERACTON MODEL CONSTRUCTION

As a user interacts with a system, many events are
generated and operations are undertaken. All these events
and operations are collected by an Observer. The
collected events and operations are segmented into several
meaningful sequences of operations, which are called
action sequences. These action sequences are stored in
the user’s interaction history (IH). A user’s interaction
model (IM) is inferred from al the collected actions to
represent hisher interaction habits. At the moment, the
interaction model inferring method takes into account the
order of just two actions (or events) in an action sequence.
There are two reasons for this: Firstly, the order between
two actions can be used to infer the order among several
(more than two) actions. Secondly, as the number of
actions whose order is taken into account increases, the
computational effort increases exponentially.

The whole method consists of four algorithms, the action
collection agorithm, the action seguences segmentation,
the interaction model construction algorithm and the
probability calculation algorithm.

Action Callection

The actions are collected by the Observer in our model
based intelligent interface agent (MI12A) architecture [7].
The Observer looks over the user’s shoulder, collects all
the user’s actions (through mouse and keyboard), selects
meaningful actions and sends them to the user model
management agent, where the interaction model is
produced and stored.

Action Segmentation Algorithm

All the actions sent to the user model management agent
need to be segmented into action sequences. A
meaningful action sequence consists of several user
actions, which are taken by the user to achieve particular
tasks. Rich and Sidner [8] used a recipe tree to help the
agent target this problem. Our approach is to distinguish
each action's function according to the task model.
Detailed information about the task model is beyond the
scope of this paper, please refer to [6]. The task model is
structured within a graph. Each user action is associated
with one specific task node in the task model. Figure 1
shows an example of a task model. In order to achieve
task T6, task T5 needs to be achieved; in order to achieve
T5, either T3 or T4 need to be achieved; in order to
achieve T4, either T1 or T2 need to be achieved; in order
to achieve T3, T1 needsto be achieved. Tasks T1, T2, T3,
T4, T5 are cdled T6's pre-conditions, task T5 is called
task T6's direct pre-condition. Tasks T3, T5, T6 are
called T1's post-conditions, Task T3 is called T1's direct
post-condition.

Figure 1 A Task Model Example

Let task(a) represent a function which returns an
associated task of action a. The segmentation algorithm is
givenin Figure 2:

1 Set action sequence Semp to empty.

2 For each action c’:l1 in the collected action lists - L, do

{
3 Ifaction &, is included in Semp or

task(&;)!=task(aj) or

task(&,) is not the direct post-condition of task(aj), then

{
4 Add Semp to the interaction history

5 Set action sequence Semp to empty

6 Add @ to S
7 aj =a, aj is the last added action in Serrp
}

Else

{
8 Add action a, to Serrp as the last added action in it.

©

aj =a, aj is the last added action in Semp
P}

Figure 2 The Segmentation Algorithm

An action sequence is terminated in one of the following
ways 1. When the new-collected action has already
appears in the action sequence. 2. When the new-collected
action corresponds to a different task to the last added
action in the action sequence. 3. When the new collected
action corresponds to a task that is not the direct post-
condition of the last added action’s corresponding task.

Consider the following example. Suppose the Observer
collects the action list { &,,, @,,, &,;, 8,,, Ay, By,
Q1. 8y, 85, Asp, gy, Agp, Ay, Ay} Nowlet @y,
a,, be associated with task T2; a,;, @,, be associated
with T4, a;,, a;, be associated with T5; a5, a4, be
associated with T6; a,,, &;, beassociated with T1. Using
the segmentation a gorithm, we get three action sequences
{ @y, 8y, Ay, A} {3y, Ay, 8y, By, By, Oy,
Qg1 Bgp} and{ Ay, Ay,}.

Interaction M odel Construction

The interaction model construction algorithm is shown in
Figure 3. As previoudy explained, this method only takes

into account the order of two actions. These two actions
congtitute an ordered action pair.

In the first step, we select ordered action pairs from the
interaction history. (al, a2) is an ordered action pair,

which means that action al is performed before action a2
is performed. Action al and a2 are not necessarily
contiguous actions in the action sequence in this
“candidate collecting” stage, but when we do the
probability calculation, only the contiguous action pairs
are taken into account.

In the second step, the final action pairs are selected,
based on a statistically derived threshold from the ordered
action pairs. The threshold is a percentage decided by the
user (default = 100%), which is used to determine
whether a particular pair of actions occurs sufficiently
often in a given order to be included in the final action
pairs. For example, if the threshold is set to 80% and
action al is performed before action a2 in 85% cases and
performed after action a2 in 15% cases in the interaction
history, then the ordered action pair (al, a2) is added to
the final action pairs (because 85% > 80%).

| 1. Ordered Pair Selection |

2. Final Action Pair Selection|

v

3. IM Construction

| 4. Prune Successor(s) |

| 5. Prune Predecessor(9) |

_____________ \ 2N

i Interaction Model i

Figure 3 Overview of the Interaction Model
Design Method

The selected final action pairs are added to a graph.
Pruning algorithms are used to simplify the graph. This
graph isthe final representation of the Interaction Model.

Here is a simple abstract example: Suppose we have the
following interaction history (IH), which consists of two
action sequences:

Sequence 1: al -> a2 -> a3 -> a4.

Sequence 2: a3->al -> a2 -> &4.
Using the method shown in Figure 4, the interaction
model isinferred in the following steps.
Step 1: We get the following ordered action pairs from
Sequence 1: (a3, ad), (a2, ad), (al, ad), (a2, a3), (al, a3),
(al, a@2) and the following ordered action pairs from
Sequence 2: (a2, ad), (al, a4), (a3, ad), (a3, a2), (al, a2),
(a3, al).

Step 2: We set the statistical threshold to 100%, then we
get the following final action pairs. (a3, a), (a2, &), (al,
a), (al, a2).

Step 3: The action pairs we get from the final action pairs
are added to a graph one by one (we use an arrow to
connect two actions in an action pair with the arrow
pointing to the second action in the action pair), Step 4
and step 5 are used to prune the graph. For example when
action pair (al, a2) is added to the tree, we get the graph
shown in Figure 4, but it still needs to be simplified, the
leaf al has two paths to a4. Using Step 4 - Prune
Successor, we remove the arrow between al and a4. The
reason why we don't remove the arrow between al and a2
is that if we do this, we will lose the order information
between al and a2, but if we remove the arrow between
al and &4, we still retain the information that a4 is a
successor to al. This is exactly the information the
Predictor needs from a user’ s interaction model.

Note: The interaction model is designed to represent a
user’s interaction habits and the interaction model in
Figure 5 means that actions a2 and a4 are likely to be
taken after action al. It is not necessary to follow the al-
>a2->a4 order. Figure 4 represents the same meaning, so
thisisavalid transformation.

Figure 4 An Interaction Model Example at
Step3

After step 3, step 4 and step 5, we get the tree shown in
Figure 5, which is the interaction model for this user,
representing his/her interaction habits.

In Figure 5, we call action al a direct pre-condition of
action a2; we call action a4 a direct post-condition of
action a2. Given an action pair, the Prune Successor
algorithm is used to remove the first action in this action
pair from the pre-condition of all the second action's post-
conditions. Given an action pair, a Prune Predecessor
algorithm is used to remove the second action from the
post-condition of all the first action's pre-conditions.

Note: An action’s next possible actions include not only
the node's direct post-conditions, but also all other post-
conditions. In Figure 5, action al’s possible next actions
include a2 and a4. The example in Figure 5 is a very
simple one, which only includes four actions. As the user
actions collected by the Observer increase, the user
interaction model will grow as well. The interaction
model given in the Prototype and Experiments section is

such an example.

Figure 5 A Final Interaction Model Example

Probability Calculation

A similar algorithm to IOLA is used to calculate the
probability of each node’s next possible action. IOLA is
proposed by B. D. Davision and H. Hirsh in [3]. IOLA
makes an assumption that each command depends only on
the previous commands. History data is used to count the
number of times that each command pair has occurred
followed each other and thus calculate the probability of a
future command. An n-by-n table is used to show the
likelihood of going from one command to the next. There
are some limitations to this algorithm.

1. The IOLA method is proposed for an ideal situation
where each command depends only on the previous
command, which is not the case in most applications. In
our experiences, when trying to achieve a specific task, a
user’s actions are most dependent on the previous actions
involved in that task, however, when a new task is
attempted, it is largely independent of the actions in other
tasks. This is the reason why we segment the collected
actions into meaningful action sequences, each of which
is supposed to achieve a specific task.

2. The IOLA method considers all of the user actions to
be potential next action candidate. We only take the
actions in post-conditions, which saves a great dea of
calculation time and memory space. Each node in our
interaction model has post-conditions associated with it,
along with the probability that each post-condition is the
next action. Figure 6 shows the probability calculation
algorithm. We adopt IOLA’s method for increase the
likelihood of the most recent post_condition. IOLA used a

constant a, which reduced the probabilities of non-recent-
observed post-conditions by multiplying them by a and
increase the probability of the recent-observed post-
condition to a*origina probability+(1-a).

1 Update (An action sequence AS)
{

2 For every node N in the interaction history

3 Let SET be the set that consists of all N’'s
post_conditions.
4 For every node M in SET

{
5 if action pair (N, M) is an immediate successor action
pair appears in AS, then
6 UpdateNode(N, M);

P B

1 UpdateNode(node N, node M)
{

2 if node N’s probability has not been initialized then,

3 Set all probability to O.
}
Multiply of each post-condition’s probability by o
add (1-a) to the probability of M

1

(62 IF

Figure 6 The probability calculation algorithm

How To Use The User Interaction M odel To Give Assistance
The assistance given is very straightforward. Once the
Observer agent observes a user doing a particular action

&, , it will send to the user modeling management agent,

who will inform the Predictor that &; is just observed, the
Predictor will select the action that has the highest
probability in @ ’s post-conditions to be the predicting
action based on the user’ sinteraction model (IM).

PROTOTYPE AND EXPERIMENTS

We implemented this method in an eye disorders
diagnosis system caled ARMD [6][7] using Java, Jess
and Jade. The main function of this system is to identify
indicators of age-related macular degeneration (ARMD).
A camera is used to obtain a raw image of a retina. A
validated artificial neural network (ANN) is used to
diagnose a patient’ s eye disorder. A patient and a patient’s
megdical record should be created or selected before a
diagnosis is attempted. To diagnose with the validated
ANN, avalidated ANN must first be selected and then the
diagnosis can be performed. If the ANN is not good
enough (in terms of its accuracy), it should be trained.
After the ANN istrained, it should be assessed to evaluate
its accuracy.

As an experiment, a user played a doctor’s role to use this
software to diagnose eye disorders. 102 user actions were
collected. These were segmented into 32 action sequences
in the interaction history (IH). Using the interaction model
construction methods introduced in this paper, we
obtained the interaction model shown in Figure 7. This
interaction model is used to represent the user's
interaction habits. For example, when the doctor selects
“Open a Patient’ s retina image” operation from the menu,
the Observer will collect this action and trandate it into a
form that can be understood by other interface agents. The
Predictor will use the prediction algorithm to predict the
next user action. Figure 7 shows that the Predictor
predicts the next action is “using the ANN to diagnose”.

 Disuie e GT=TES | et M=

ANN Image Expert DataBase Get the right diagnosis

[<[> o] e [| o [)
e re

You just Seloct the
o "Openr a Patient s retina

mage”.

Name: [John Smith

Address: |[C311 Lord Thomason Hall1 predict the next action
1314519999 ill be ¢ "using the ANN
Birthday: [10/Janr1 060 o diagnose".
Sex:
3 Interaction Made =

Male

This patinet's medical records-

Diagnosi 20/Jan/2002 ‘Dizu nnnnn
age

Treatment

1 el
~—

Figure 7 The ARMD System

~
I=}

@
=}

3y
=}

e

01 02 03 04 05 06 07 08 09
ALPHA Value

IN
S

w
S

Accuracy (%)

N
o

=
15}

o

Figure 8: A range of ALPHA values that affects
the predictive accuracy of the method.

Figure 8 shows a range of ALPHA values that affect the
predictive accuracy of the method. Figure 8 also shows
that the highest accuracy we achieved in this experiment
was 64.2% (when ALPHA=0.5). This is only a
preliminary result, more additional experiments with more
users are needed for the further evaluation of the system.
As we mentioned previously, although we only take into

account the order of two actions, we can still infer the
order of many actions from the interaction model and the
primary interactions are retained in the interaction history.
CONCLUSIONS

We have presented a user interaction model inference
algorithm and its implementation. A prototype system has
been presented using the methods described. The methods
presented in this paper seem to produce good results
based on our initial tests. This method is embedded in a
generic agent based interface system [7]. Although this
architecture is designed for the ARMD system, we believe
that it can also be used in other systems requiring
intelligent interface agents. More experiments and
evaluations are planned for the future. Future work also
includes building up a general and robust segmentation
method to segment the actions into meaningful action
sequences.

ACKNOWLEGEMENTS

This work is supported by a Heriot-Watt University
Scholarship and Computing & Electrical Engineering
departmental funds. We want to thank the anonymous
reviewers for providing wonderful feedbacks.

REFERENCES

[1] M. Bauer, Acquisition of Abstract Plan Descriptions
for Plan Recognition, AAAI’ 98, pp. 936 — 941, 1998.

[2] M. Bauer, From Interaction Data to Plan Libraries: A
Clustering Approach, 1JCAI’ 99, pp. 962 — 967, 1999.

[3] B. D. Davision, H. Hirsh, Predicting Sequences of
User Actions, the proceedings of AAAI’98, 1998.

[4] A. Garland, N. Lesh, Learning Hierarchical Task
Models by Demonstration, the proceedings of 11" Int.
Joint Conf. on Al, 2001.

[5] H. Hirsh, C. Basu, B. D. Davison, Learning to
personalize, Communications of the ACM, Val. 43, N. 8,
August, 2000.

[6] Y. Jing, K. Brown, N. Taylor, A Model Based
Architecture for Intelligent Interface Agents, proceedings
of the UK workshop on Computational Intelligence, pp.
169 — 174, 2000.

[7] Y. Jing, K. Brown, N. Taylor, Intelligent Interface
Agents for a System to Diagnose Eye Disorders, to appear
in the proceedings of the first joint conference of
Autonomous Agent & MultiAgent Systems (AAMAYS),
2002.

[8] P. Maes, "Agents that reduce work and information
overload", CACM, Val. 37, No. 7, pp. 30-40, 1994.

[9] C. Rich, C. L. Sidner, Segmented Interaction History
in a Collaborative Interface Agent, proceedings of the
international conference on Intelligent user interfaces, pp.
23 -30, 1997.

[10] J, Ruvini, C. Dong, The “APE” Project: target the
problem of decrease the burden of entering these
sequences of commands, proceedings of International
conference of Intelligent User Interfaces, 2000, pp. 229 —
232, 2000.

