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Abstract.
In this work we present an approach for the synthesis of object

models (expressed as Constraint Satisfaction Problems, CSPs) from
views or partial models (expressed, in their turn, as CSPs as well).

The approach we propose is general enough to consider different
types of features and relationships in the views. This is achieved by
introducing the notion of model representation, where features, rela-
tionships and their domains are expressed. The (complete) model can
be synthesized through a proper algorithm, which provides a labeling
between the (complete) model and the partial models’ components.
The generated CSP representing the synthesized model must satisfy
(or, better, entail) any constraint among features and any relationship
occurring in each partial model.

The framework is applied for synthesizing object models (i.e.,
CSP descriptions). We provide two basic approaches for synthesizing
a minimal or a correct model, and we experiment them by consider-
ing some case studies in artificial vision.

1 Introduction

In Computer Vision, many different types of problems are addressed.
Among them, both Image Recognition and Visual Search require the
process to have a model or a set of models at disposal. In both prob-
lems, the association process between the image and the model is
very complex, and heavily influenced by the type of model itself.
The nature of the model will also influence the matching algorithm,
and the expressiveness of possible queries.

Constraints have been proved a very general methodology for
modeling objects in Computer Vision, since they can use many dif-
ferent representations: they can take into account many different fea-
ture types such as surfaces, lines, etc., and different kinds of relations
among features. Furthermore, constraint-based models can be easily
defined independently from visual deformations. They are also addi-
tive in the sense that if a model is not selective enough to distinguish
an object, it can be easily extended and refined later on by adding
new constraints.

For these reasons, constraints have been used for object modeling
and for solving the matching problem of Computer Vision since the
beginning of the study of Constraint Satisfaction [11]. The model of
the object must be reliable and general: for this reason, it is often
based on geometric and topological relations among features (see,
for instance, [4, 6, 10]). Each object can be represented by a con-
straint graph, where each characterizing primitive feature is a node
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and relations among object parts (i.e., features) are represented by
arcs. An equivalent representation can be given as Constraint Satis-
faction Problem (CSP, for short in the following).

In many cases, the model of the object is not directly available and
its creation is left to a human operator. When this operation is diffi-
cult, an automatic model construction procedure would be useful.

It is reasonable to suppose that the data for the model construction
problem are images representing different views of the object. In the
literature, this problem has been approached for particular cases. For
example, the construction of viewer-centered 3-D models from in-
tensity images is considered in [9]; GEON-based (see Biederman’s
theory of recognition by components in [3]) model construction has
also been addressed, for example in [12] or in [13].

In this paper, we present an approach for the synthesis of object-
centered models, considering partial models (views) as input data.
Both the input views and the target models can be represented as
CSPs, and the model construction problem itself can be considered a
CSP as well.

Our approach differs from those of the previously cited works in
that it assumes no strict hypotheses about the nature of the primi-
tives chosen to describe the objects and their views, and the possible
relations among them; indeed, the concepts our work is based upon
are not even intrinsically linked to Computer Vision. The algorithms
here proposed are designed to deal with high level descriptions of
the object views; these descriptions are supposed to be acquired by
a low level processing system, such as a range image segmentation
system. The nature itself of the available information does not affect
the algorithms directly. This lets our work achieve higher generality,
and a wider range of applicability (possibly even outside the field
of Computer Vision), although with the drawback of a lack of error
tolerance with respect to input data and, in general, of less accurate
domain-specific results, if compared to existing works (at least, at
this stage of our research).

The notion of model representation is first introduced (in Section
2), where features, relationships and their domains are expressed.
The (complete) model can be synthesized through a proper algo-
rithm (discussed in Section 3), which provides a labeling between the
(complete) model and the partial models’ components. The generated
CSP representing the synthesized model must satisfy (or, better, en-
tail) any constraint among features and any relationship occurring in
each partial model. In this respect, the object model generation can
be considered, in its turn, a CSP, since it consists in finding a labeling
for the elements of the generated object model (i.e., the variables of
the problem) consistent with the constraints of the problem (i.e., with
the constraints involved in the partial models or views).

We provide different implementations of the approach (in SWI-
Prolog [1] and by exploiting the Constraint Handling Rules [7] li-



brary of SICStus Prolog [2]) in order to synthesize aminimal or a
correctmodel (see Section 3). Section 4 discusses experimental re-
sults obtained by applying the implemented algorithms to some case
studies in artificial vision. We then conclude and mention future work
in Section 5.

2 Problem representation

To achieve higher generality, in this section we define the concepts
involved in the problem formulation, at the highest possible level
of abstraction. We avoid mentioning here a priori hypotheses about
the kind of primitives chosen for the model representation. Concrete
examples are shown in section 4.

2.1 Model representation

A model is a triple(E,A,R) in which:

• E is the element set.
An element is an entity which is considered atomic at the chosen
level of abstraction.E is supposed to be a finite set.

• A is the attribute set.
An n-ary attribute is meant to describe a feature of ann-ple of el-
ements. Attributes may be real (i.e., representing a feature whose
value can vary continuously and subject to measurement and rep-
resentation errors) or discrete (i.e., representing a feature whose
value belongs to a discrete set). Attribute values are vectors, whose
number of components is called thedimensionof the attribute.
Formally, ann-ary attribute with dimensionm is described by a
function
a : S ⊆ En → B
whereB is the set of finite open intervals in<m for real attributes
and the cartesian product ofm discrete sets for discrete attributes.

• R is the relation set.
Relations are defined in the ordinary mathematical way, i.e., an
n-ary relationr is a subset ofEn, if E is the elements set.

Given such representation, it is straightforward to express the
model as a CSP, whereE is the set of variables,A andR define
constraints respectively over and among elements ofE.

2.2 Labeling

A labeling function defines the correspondence between a view of
an object and a (complete) model. For any given element of a view
the value of alabeling function is the correspondent element of the
model. More formally, alabelingof a view with a model is a func-
tion:
l : EV → EM
whereEV is the element set of the view andEM is the element

set of the model.
The labeling must be injective (i.e., any element of the view must

have only one correspondent element in the model).
Given this function, the functions
ln : EnV → EnM
[eV 1, eV 2, ..., eV N ]T 7→ [l(eV 1), l(eV 2), ..., l(eV N )]T

are also defined.
In order to identify correct labeling functions, we introduce the

notion of compatibility constraints over attributes and relations as
follows .

Two values of a discrete attribute are compatible if they are equal.

Two values of a real attribute are compatible if their intersection is
non-empty.

An n-ary attributeaV defined for a view is compatible for a given
labeling l with the correspondent attributeaM defined for a model
if for any n-ple eV of elements of the view for which the attribute
is defined, the attribute is also defined forln(eV ) and the values are
compatible.

An n-ary relationrV defined for a view is compatible for a given
labelingl with the correspondent relationrM defined for a model if
for anyn-pleeV of elements of the view:
eV ∈ rV ⇔ ln(eV ) ∈ rM .
If all the attributes and the relations of a view are compatible with

their corresponding elements of a model for a labelingl, l is said to
be acompatible labelingof the view with the model.

If there exists a compatible labeling of a given view with a given
model, the view is said to be aview of the model.

Notice that compatibility constraints imply that only view-
invariant attributes and relations can be used for views and model
descriptions.

2.3 Problem statement

The problem considered here can thus be stated as:
“Given a set of views of an object, find a model such that all of the

views areview of the model”.
In the following, we will refer to this as amodel synthesisproblem.
A solution to the problem is defined by both the model and the

labeling functions for the views.

2.4 Quality of solutions

For any model synthesis problem, there is at least one trivial solu-
tion, obtained by the juxtaposition of the views. This is achieved by
constructing a model such that each element of each view is labeled
with a distinguished element of the model. Obviously, this solution
is of no use whenever a more concise model is of interest to be used
later on, for instance, in visual search.

In this case, it makes more sense to search for solutions by per-
forming a better synthesis of views, i.e., by labeling elements of dif-
ferent views with the same element of the model, keeping theview of
relation between the views and the model valid.

The set of all the possible solutions is quite huge for practical prob-
lems. However, we identify two classes of especially significant so-
lutions among them:

• minimal solutions, the solutions whose model has the minimal car-
dinality compatible with compatibility constraints;

• correct solutions, the solutions whose labeling iscoherent, i.e., if
two elements of different views represent the same entity of the
object, then they are labeled with the same element of the model
and vice-versa.

Notice that, with the notions above, minimal solutions are possibly
incorrect.

3 Searching for solutions

In this Section we present two basic approaches which have been
followed and implemented for searching solutions to the synthesis
problem. They focus respectively on one of the two classes of solu-
tions mentioned in the previous Section, namelyminimalandcorrect
solutions.



3.1 A standard backtracking approach

The first approach generates minimal solutions for the synthesis
problem. The approach starts by considering the minimal cardinal-
ity equal to the maximum view cardinality (which is a lower bound
for the model cardinality, because of the injectivity of the labeling
function). This assumption may be revised later on, if proved wrong
during model construction. In this case, the process is newly started,
with a cardinality increased by one.

3.1.1 Algorithm

The algorithm we have devised follows a standard backtracking ap-
proach. Basically, two ways of performing backtracking are consid-
ered: the first is over the number of elements of the generated model,
the second over the possible labeling between views’ elements and
model’s elements.

The main cycle of this algorithm is sketched here, using Prolog
syntax:

get_model(Views,Model,Labels):-
get_min_card(Views,MinCard),
build_model(MinCard,Views,Model,Labels).

build_model(Card,Views,Model,Labels):-
label_views(Card,Views,
([],[],[]), % the empty element,

% attribute and relation lists
Model,Labels),
!.

% choice point on model cardinality
build_model(Card,Views,Model,Labels):-

NewCard is Card+1,
build_model(NewCard,Views,Model,Labels).

label_views([],_,Model,Model,[]).
label_views([View|MoreV],Card,

OldM,NewM,[ViewL|MoreL]):-
label_view(View,Card,OldM,IntM,ViewL),
label_views(MoreV,Card,IntM,NewM,MoreL).

label_view(([],_),_,Model,Model,[]).
label_view(([Elem|MoreE],Info),Card,

OldM,NewM,[(Elem,Label)|MoreL]):-
%choice point on labeling
choose_label(Card,Label),
update_model(Info,Elem,Label,OldM,IntM),
label_view((MoreE,Info),IntM,NewM,MoreL).

Once a cardinality for the model to be constructed is chosen, the
approach starts by constructing the labeling functions for each view
while constructing the model according to the views’ data, applying
astandard backtrackingprocedure.

The procedure for labeling a view (label view/5predicate) takes
the view’s data and the temporary model (resulting from previous
views processing) as input parameters, and returns the labeling func-
tion for the view and the updated temporary (final if the view is the
last) model as output parameters.

For each element in a view, an attempt is made (chooselabel/2
predicate is non-deterministic) to assign it one of the possible label-
ing values (i.e., one of the still not assigned model elements), and

to update the model (updatemodel/5predicate) with the view’s data
concerning the element.

If the updating succeeds, the program considers the next element,
and so on for all the elements and views. Anyway, all the other pos-
sible labeling values are left open as choice-points for possible back-
tracking.

If the updating fails (for example because it would imply differ-
ent values for a discrete attribute), the program tries another labeling
value. If no value allows a successful updating, the choice points for
previous elements and views are considered. If no possible choice
produces a consistent model, then the model cardinality has been un-
derestimated, and the whole process is repeated after increasing the
cardinality by one (choice point for thebuild model/4predicate).

3.1.2 Implementation

The algorithm which generates minimal solutions for the synthesis
problem has been implemented in the Prolog language and tested
using SWI-Prolog (see [1]).

The program takes two files as input: thetemplate file, describing
arity and dimension of attributes and arity of relations, and theviews
file which contains the description of object views. Both files (se-
quences of Prolog facts) are parsed, and loaded into an appropriate
data structure to increase efficiency.

The program produces two output files (again, sequences of Prolog
facts): themodel file, describing the model, and thelabeling file, with
the values of the labeling function for all views.

3.1.3 Complexity

This algorithm guarantees the minimality of the solution, but its com-
putational complexity (factorial over the number of elements of the
model and exponential over the number of views in the worst case)
may, in many practical cases, make it not viable.

Thus, we have also implemented a modified version of the pro-
gram which limits the backtracking to a single view, i.e., adds a new
element to the model when it cannot find a consistent labeling for a
view, without reconsidering the labeling for the previous views.

This version can generate non-minimal solutions, but its complex-
ity is dramatically reduced.

3.2 A CSP approach

A searching algorithm for correct solutions must face many inherent
difficulties:

• the number of solutions is huge for practical problems;
• there are no given criteria to determine whether a solution is cor-

rect;
• the available information about views may not be sufficiently char-

acterized to guide the labeling choices.

Thus, it is very important to design the algorithm so that it uses
the available information to guide the process of solution building.

For this purpose, the approach which has appeared most appro-
priate is to use the conceptual paradigm ofConstraint Satisfaction
Problemsto express the problem.



3.2.1 The synthesis problem as CSP

As well as the model descriptions, the synthesis problem can be
stated as aConstraint Satisfaction Problem(CSP) on finite domains.

This can be achieved associating view elements to variables and
model elements to domains. The constraints among variables are
alldifferentamong variables representing elements of the same view,
and inequality constraints amongn-ples of elements of different
views with incompatible values of attributes and relations.

A solution of such CSP will also be a solution of the synthesis
problem, because the inequality constraints guarantee theview of re-
lation between any of the views and the model.

3.2.2 The ad hoc constraint handler

Although there are several available systems for solving CSPs on
finite domains (for example, CLP(FD) extensions of Prolog sys-
tems), the direct use of any of them, as well as some (however solv-
able) practical problems, would have generated difficulties concern-
ing search strategy and complexity.

Thus, we have developed a constraint handler tuned for this prob-
lem, using the Constraint Handling Rules (CHR) language (see [7]),
which is perfectly suitable for high-level design of constraint sys-
tems. We used the reference implementation of the language, the
CHR library of SICStus Prolog (see [2]).

The views descriptions to be processed are contained in a file to
be consulted by the SICStus interpreter. A utility program is pro-
vided which converts theviews filefor the Prolog program into the
equivalent CHR program.

The handler is based on aforward checkingalgorithm which uses
the available inequality constraints to reduce the domains of the vari-
able during labeling. There are, however, some differences between
our approach and that of most CSP(FD) solving systems. Mainly:

• instead of taking the variable domains as data for the problem, the
handler builds the domains dynamically. Specifically, when a vari-
able is found which has an empty domain, instead of considering
this as a failure and generating backtracking, the handler adds a
new element to the domains of all uninstantiated variables. This is
equivalent to adding a new element to the model as soon as, for
the chosen labeling, the model cardinality is not sufficient.
This choice has the main aim of limiting complexity, because
allowing unconditioned backtracking would have generated the
same complexity problems highlighted in the previous Section for
the Prolog program; however, after a full solution has been built,
it is possible to backtrack the labeling choices;

• if all the possible inequality constraints were derived from at-
tribute and relation values and stored before the beginning of the
labeling procedure, they would number in tens of thousands for
practical problems. Moreover, most of them could not be used for
domain reduction at early labeling steps, because, except for unary
attributes and relations, inequalities concernn-ples of elements.
This would be yet another heavy complexity related problem.
Instead, the handler only derives and stores, during the labeling
procedure, those inequality constraints which are applicable to
domain reduction, i.e., those which have an already instantiated
member. A check is also done to prevent multiple imposition of
constraints, which would be harmless but uselessly expensive.

It is apparent that preventing backtracking implies that any non-
coherent labeling will not be recovered until a full solution has been
constructed, which will be necessarily be erroneous.

To address this problem, we have implemented a heuristic system
which, at each labeling step, chooses the variable to be instantiated
according to thefirst fail principle, and assigns it the value which is
most probably the correct one according to a heuristic function3.

The function has been designed to assume higher values for those
variable-value couples which make a better match between the avail-
able information about the variable (taken from the view) and about
the value (taken from the model), applying theleast constraining
principle. The function can be customized by assigning weights to
attributes and relations and to specific values of these, so defining
which are considered more significant and should guide the labeling
procedure.

4 Experimental results

To test both the algorithms, we consider a case which is quite com-
mon in Computer Vision applications: we assume as data of the prob-
lem the description of multiple views of polyhedra, using information
of the same kind of what can be extracted by a segmentation system
from range images. A sample polyhedron with sample views is rep-
resented in Figure 1.

xtrl1 xtrl2 xtrl3

xtrl4 xtrl5 xtrl6

xtrl7 xtrl8 xtrl9

xtrl10

Figure 1. An example of multiple views of an object

Indeed, the input files for the programs have been obtained by au-
tomatic processing of files whose format is the same of the output
files generated by the segmentation system adopted in [5].

In more detail,

• model elements are surfaces;

3 It is however possible to disable thefirst fail criterion, and sort, instead, the
possible labeling by the heuristic function value.



• model attributes are:

– shape: a discrete unary attribute with dimension 1, representing
the number of vertexes of its argument;

– angle: a real binary attribute with dimension 1, representing the
angle between the normal of its two arguments;

– destr: a real ternary attribute with dimension 1, representing the
angle between the vectorial product of the normal of the first
two arguments and the normal of the third (which reduces to 0
for a right-handed triple of versors and toπ for a left-handed
triple of versors);

• model relations are:

– touches: a binary relation representing the existence of a com-
mon edge of its two arguments;

– commonvertex: a ternary relation representing the existence of
a common vertex of its three arguments;

Two different working hypotheses can be made:

• variable orientation: view images are taken by a single sensor by
rotation of the object;

• fixed orientation: view images are taken by multiple sensors, with
the object position fixed, as in stereo-vision for instance.

The difference is that in the first case the spatial orientation of the
same surface is in general not the same in different views, so it cannot
be used as an attribute (it is notview invariant), whereas in the second
it can be used in the form of thenormal unary real attribute with
dimension 3 during model generation, although, obviously, it cannot
be part of the model definition when it is used for object recognition.

We have run the tests in both conditions over a sample database of
four synthetic objects.

Table 1 summarizes, for both variable and fixed orientation, how
many out of four minimal and correct solutions are found by:

• the Prolog program with full backtracking (Prolog A);
• the Prolog program with only view backtracking (Prolog B);
• the CHR program using no heuristics (CHR no heu);
• the CHR program using heuristics (CHR heu).

Program Variable Orientation Fixed Orientation

minimal correct minimal correct
Prolog A 4 / 4 0 / 4 4 / 4 3 / 4
Prolog B 3 / 4 0 / 4 4 / 4 3 / 4

CHR no heu 0 / 4 0 / 4 4 / 4 3 / 4
CHR heu 0 / 4 0 / 4 4 / 4 4 / 4

Table 1. Test results

It can be immediately noticed that results, especially as far as cor-
rect solutions are concerned, are much better in the case of fixed
orientation: this is quite obvious, since space orientation allows the
programs to uniquely identify the surfaces unless the object has par-
allel surfaces. When this is the case, only the CHR program, by using
appropriate heuristics, constructs a correct solution.

As far as minimal solutions are concerned, the algorithm with view
backtracking only (Prolog B) behaves almost as fine as the full back-
tracking version (Prolog A), and, most of all, its computation time is
much shorter and less influenced by the data.

However, it is worth to remind that all of the programs find ac-
tual solutions to the synthesis problem: this means that, if the chosen
views set is representative enough, all the obtained models are suit-
able for object recognition applications.

5 Conclusions and Future Work

In this work, we have introduced a (CSP) perspective for the synthe-
sis of object models from object views, represented as partial models.
Both partial and generated models can be expressed, in their turn,
as CSPs as well. The approach here presented shifts up, at model
generation level, the nice properties of constraint-based models in
Computer Vision, such as reliability and generality with respect to
considered features and relationships among them.

We have introduced the model generation problem as a CSP prob-
lem, and we have proposed an approach for its solution as general
algorithm. Different implementations have been provided, respec-
tively by using SWI-Prolog and by exploiting the Constraint Han-
dling Rules library of SICStus Prolog. The implementations respec-
tively generateminimalandcorrectmodels, and have been tested on
some examples in the Visual Search domain.

Future work will be devoted to integrate the approach here pre-
sented with the Interactive CSP approach of [8], where domain vari-
ables are generated interactively. This can be useful in the implemen-
tation of the proposed CSP approach for the synthesis problem, being
the number of model elements (i.e., domains in the CSP approach)
not known at the beginning of the generation process.

Possible future improvements of the CHR algorithm are the in-
tegration of domain-specific knowledge (such as geometric consis-
tency checks over the resulting models) and the implementation of
a selective backtracking strategy, which would allow retracting the
most uncertain (with respect to the implemented heuristics) labeling
choices.
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