
Progressive Focusing Search
Nicolas Prcovic

�
and Bertrand Neveu

�

Abstract. This paper deals with value ordering heuristics used in
a complete tree search algorithm for solving binary constraint sat-
isfaction problems. Their aim is to guide the search towards a so-
lution. First, we show the limits of the traditional prospective ap-
proach, which uses the size of the domains of the still unassigned
variables. In an advantageous context, where arc consistency is main-
tained and allows the time spent by the dynamic value ordering to be
negligible, the speedup is poor when the problems are hard. Then,
we present a new value ordering heuristic based on a learning-from-
failure scheme. Instead of making a choice a priori, an interleaving
search follows every sub-tree to gather information. After this learn-
ing phase, the algorithm focuses on the most promising one. This
new algorithm, named Progressive Focusing Search, is compared to
Interleaved Depth First Search and appears to be efficient for prob-
lems on the phase transition complexity peak.

1 Introduction

For solving a Constraint Satisfaction Problem (CSP) on finite do-
mains by a complete method, tree search algorithms based on depth
first search (DFS) are commonly used. In order to limit the combina-
torial explosion, different improvements of the standard backtracking
algorithm have been proposed. The main improvements are domains
filtering, backjumping and the use of variable ordering heuristics.

For finding only one solution, value ordering heuristics can also be
used, but they are generally considered to be less important for reduc-
ing the search tree. We will first present in section 2 some existing
value ordering heuristics. Until now, the main idea for choosing a
value is to study the effects of a choice in a prospective approach, as
does the Promises solutions heuristic (MP)[6]. The effects of instan-
tiating the current variable with every value are partially propagated,
before choosing the most promising one. We propose another ap-
proach based on a learning from failure scheme, using some knowl-
edge gathered during the search. In section 3, we show the limits
of the MP value ordering heuristic. The gains due to this heuristic
are impressive when the problems have many solutions, but become
negligible at the peak of complexity. The reason is the following : the
heuristic only has a partial information at the beginning of the search
and can make disastrous mistakes.

We propose in section 4 a new kind of heuristics for the first
choices. We generate a subpart of each subtree where the first vari-
ables are instantiated by each value in their domain. The informa-
tion gathered during such beginning of the search in each subtree is
then used to choose the most promising subtree to be first entirely
explored. We define a new algorithm named Progressive Focusing

�
LSIS, Université Aix-Marseille III, France�
INRIA-CERMICS, Route des lucioles, BP93, 06902 Sophia-Antipolis,
France

Search (PFS), that implements this idea. In section 5, we compare it
with Interleaved Depth First Search (IDFS) [10] on random CSPs.

2 Previous work on value ordering heuristics

In a standard tree search algorithm, two choices are made at each
step. First, the next variable to instantiate is chosen. The problem is
then decomposed into � subproblems, one for each value in the do-
main of that variable. The value choice determines thus which sub-
problem will be explored first by DFS.

The effects of these two choices are complementary. The variable
choice has an effect on the search tree itself and the value choice on
the branches that will be explored. The main goal in using variable
ordering heuristics is to build a tree as small as possible, i.e. limiting
the branching factors and in case of a choice leading to a failure,
finding this failure as soon as possible [15]. The hybrid heuristics as
min-domain+degree and min-domain/degree[1] based on the domain
size and the degree of the variables mix these two effects.

The goal of using value ordering heuristics is to avoid making a
bad choice, i.e. selecting a subtree without solution. Therefore, value
ordering heuristics use partial information to select the value to as-
sign to the current variable. This information can be computed once
at the beginning of the solving process or dynamically during the
search. The main information used by the dynamic heuristics is the
size of the domains of the future variables (i.e. the yet unassigned
variables). Domain sizes vary indeed when the search algorithm,
such as MAC3[13], performs a filtering in order to maintain arc con-
sistency.

This information is used in diverse ways in the following heuris-
tics. LVO-MC [4] selects the value with the greatest sum of numbers
of compatible values in the domains of future variables. Highest sup-
port [9] selects the value with the greatest sum of normalized sizes
of future variable domains by taking into account the inconsistencies.
With Max-domain-size [5], the values are ordered in the decreasing
order of the minimum domain size of the future variables. The idea
is to avoid fragile subproblems with small domains. ES Estimate so-
lutions [3] estimates the number of potential solutions by solving a
tree relaxation of the remaining problem. Promises solutions (MP)
[6] is a simple case of the preceding heuristic : the relaxation of the
remaining problem is the problem made of only the constraints con-
necting the current variable to future variables. The value with the
greatest product of domain sizes of future variables is chosen.

For computing for each value of the current variable the domain
sizes of future variables, one has to propagate the effect of the vari-
able instantiation with this value. In other words, one has to per-
form the propagation made by the Forward-checking algorithm in

�
In this paper, when we will refer to the MAC algorithm, it will be only the
degree of filtering performed (arc-consistency) when a value is assigned to
a variable and not the binary tree feature of the algorithm.

branches that maybe would not be explored, which can be costly.
Therefore, several static value ordering heuristics have been de-

fined, where the values are ordered before the search. The static least-
conflicts (SLC) heuristics [5] orders the values, by the number of
conflicts, in which they take part, the static max-promises (SMP), or-
ders them by the product of number of compatible values, and the
mean field heuristic performs some preprocessing based on Mean
Field Theory [2].

The main part of reported results have been obtained with the
Forward-checking [7] algorithm. It was observed that a dynamic
value ordering heuristic has an important overhead and becomes use-
ful only when the problem is difficult enough (i.e. needs more than
1000000 constraint checks in [4]). But, now, the problems are mostly
solved by a MAC-like algorithm maintaining his strong level of con-
sistency, and we will see that the overhead to compute a dynamic
heuristic and reorder the domains becomes negligible.

No experimental study has definitively showed that one value or-
dering heuristic is better than the others. We decided to study the
behavior of the promises solutions (MP) heuristic, which gives the
number of solutions in a subtree, if there were no constraints between
the future variables. We also decided to use MAC : the information
about the domain sizes of future variables is then more accurate than
with FC and the quality of the MP heuristic should increase.

3 Effects of the MP value ordering heuristic

We performed some experiments on binary random CSPs. We re-
strained the tests in zones where CSPs have solutions and where the
problems are not too easy. When MAC alone solves a problem with-
out any backtracking, there is no need of value ordering heuristics.
These heuristics have also no reason to be used for problems without
solutions.

3.1 Experimental results on random CSPs

We performed some tests using the C++ CSP Library by Hulubei [8],
a library for solving binary CSPs: we implemented the static max-
promises heuristic (SMP) and the dynamic max-promises heuristic
(MP). In order to study the importance of the value choice for the first
variable, we also performed tests where the max-promises heuristic
is used only for the first choice, all the others choices being done
in the natural ordering of the domains : we named this first choice
heuristic H1 and H0 the algorithm run without any value ordering
heuristic.

The tests were performed on random problems, using the gener-
ator of the library. A problem class is defined by 4 parameters : the
number of variables � , the size of the domains � , the ratio of exist-
ing constraints, determined by the density parameter � , and the ratio
of forbidden value pairs (tightness parameter �).

First, we ran tests with problems made of 50 variables and a do-
main size equal to 15. We made the density and the tightness param-
eters vary, in order to obtain difficult problems, while being solvable
in a reasonable amount of time (a few minutes per problem instance).

For each parameter set, we performed tests with the H0, H1, SMP,
and MP heuristics. The variable ordering heuristic used was the dy-
namic min-domain/degree heuristic, which selects the variable hav-
ing the minimum of the domain size divided by the degree, the degree
being the number of constraints between the variable to be chosen
and the future variables. The filtering algorithm was the built-in arc
consistency filtering AC3.

We report in the left part of table 1 the depth of the highest back-
track that occurred for a set of 100 problems with the different heuris-
tics. A result ��� ��� means that the �
	�� first choices were good choices
for all the 100 problem instances and it was not needed to backtrack
on them to find a solution and that � problems among 100 needed to
backtrack at this level � . This can be seen as a measure of the distance
from the peak of complexity, corresponding to the phase transition
zone, between solvable and unsolvable problems [14]. When the �
reported for the H0 algorithm is deep enough, it means that for all
problem instances, we did not meet any problem where the �
	�� first
choices caused a failure. We are then in a zone with many solutions.
Conversely, when backtracks occur at the first level, i.e. for some
problem instances the first choice led to a subtree without solution,
the problems are close to the peak of complexity.

The result presented in the right part of table 1 is the total cpu
time in minutes spent for finding one solution in all the 100 problem
instances for each parameter set (we used a Pentium III 500).

Table 1. Depth of highest backtrack (left), with the number of problems
with a backtrack at this depth, and cpu time in mn (right) spent for solving

100 instances with N = 50, S= 15, density D and tightness T.

D,T H0 H1 SMP MP H0 H1 SMP MP
.89,.10 4(3) 4(1) 7(7) 7(3) 1143 996 147 149
.75,.12 4(9) 4(4) 6(9) 6(1) 1140 980 196 156
.52,.16 4(2) 4(3) 6(7) 7(9) 133 130 39 21
.41,.20 2(2) 3(5) 4(1) 5(11) 323 206 61 57
.40,.20 4(16) 4(3) 5(2) 5(1) 72 39 13 11
.32,.25 2(20) 2(2) 2(1) 3(6) 337 187 98 83
.31,.25 2(2) 3(5) 4(4) 4(3) 66 42 17 10
.30,.25 4(5) 4(3) 5(1) 6(2) 10 6 2 2

We can see that the MP heuristic is very efficient for all these prob-
lems, that are far enough from the peak of complexity. The gain ob-
tained is a factor between 4 and 8. The overhead due to the compu-
tation of the heuristic is in fact negligible : the dynamic version of
the heuristic is almost always better than the static one. We can also
remark in analyzing the H1 results that a significant part of the gain
is often due to the first choice.

3.2 Inefficiency at the peak of complexity

A second set of tests has been performed closer to the peak of com-
plexity with domain sizes of 15 and 8. Then, the gain factor due to
the use of the MP heuristic goes down to 1.4 or 1.2 (see table 2).

As noted before, the subtree with the highest number of promises
has the greater probability to contain solutions. But, this subtree has
also the probability to have the greatest size and when the heuristic
fails, the damage is greater.

Still in the zone of problems with solutions, but closer to the peak
of complexity, such a failure occurs higher in the tree and can have
disastrous effects. This can explain why the heuristic is inefficient
near the peak, although the cases where it makes a mistake are much
fewer than those obtained by H0. Let us analyze in detail the results
near the peak, for example for �����
� , ������� ��� , and ������� ��� ,
the heuristic makes 18 erroneous choices for selecting the value for
the first variable. Without heuristic, an error occurs 50 times at the
first level in the set of 100 problem instances. But the longest time
needed for solving any instance is 14 minutes with the heuristic and
2 minutes without the heuristic. We can also remark that these er-
roneous first choices are critical for the global time for solving the
100 instances. Indeed, the heuristic has no effect in subtrees with no
solutions : these subtrees, when they are chosen, are to be entirely
explored.

In the problems far enough from the peak in the feasible zone there
always appeared a difference in the minimum depth levels where
a mistake is done by the algorithm with and without the heuristic.
The dynamic heuristic, informed by the former choices in the current
branch makes fewer mistakes and is more efficient.

Table 2. Results at the complexity peak for problems with 50 variables, a
domain size S, a density D and a tightness T.

S,D,T H0 H1,SMP,MP H0 H1 SMP MP
15,.25,.31 1(38) 1(16) 592 512 407 502
15,.20,.36 1(50) 1(18) 140 124 126 121
15,.14,.44 1(44) 1(12) 18 12 10 8
8,.50,.13 1(51) 1(26) 149 109 107 108
8,.44,.15 1(49) 1(27) 97 88 82 87

8,.435,.15 1(30) 1(9) 46 35 31 31
8,.315,.20 1(39) 1(18) 16 15 14 14

We see conversely that the MP dynamic heuristic is not able to
improve the results at the peak of complexity : it makes too often a
disastrous bad choice at the first level. The first choices are crucial,
and the heuristic cannot be improved by a top-down information in
the current branch. Since this kind of heuristic becomes inefficient,
instead of making a definitive choice for the first subtree at the be-
ginning of the search, we propose to gather some information by
beginning to explore each subtree. Then, with this bottom-up infor-
mation, we will choose the subtree to explore first completely. In the
next section, we will present an algorithm that implements this idea.

4 Ordering values by learning from failure

We want to design a specific value ordering for the variables at the
top of the search tree, where the MP heuristic is not effective. For
these variables the prospective approach will be substituted by an
empirical learning from failure approach. We will therefore define a
statistic, computed on a sample of each subtree at level � , and based
on the average branch length (ABL) i.e. the length between the top
of the subtree and a failure. We will first present a method where this
statistic is precomputed and further the Progressive Focusing Search
(PFS) algorithm which updates this statistic during the search and al-
lows itself to change the subtree to explore if ABL of current subtree
becomes bad.

4.1 The ABL statistic

We started with a basic idea : (1) run DFS on a subtree at level � and
stop it when a fixed number � of leaves has been generated, then run
DFS on another subtree for � other leaves and so on until every sub-
tree at level � has been visited, (2) extract an empirical information
from the sample of � leaves generated in each subtree and rank the
subtrees (i.e. order the values of the first variable), (3) finish running
DFS on the remaining branches of the best ranked subtree, then on
the second best ranked subtree and so on, until a solution is found or
the tree is exhausted.

It seems reasonable to assume that the subtree that has the longest
branch on average will contain the largest number of solutions. Let
us call ����� � , the depth of the �	��
 branch of the ����
 subtree. We can

measure the average length � � ��� � �

����������������� �� of the sample of �

branches generated for the � ��
 subtree. The subtrees can be ordered
by that � � ��� � criterion. So, the Average Branch Length (ABL) crite-
rion is the empirical way to order the values we decided to use.

An important problem is : how to fix the value � ? The ABL cri-
terion can allow us to reach a better value ordering than MP if the

sample is large enough. If the sample size is too small, the result-
ing value ordering will be not as good as the MP value ordering and
the search will be less efficient. If it is too large, the time spent for
finding the value ordering could be longer than the time saved on
the tree search. Increasing � makes the choices more accurate but the
potential gain smaller. If � is set to infinity, we fall back into a stan-
dard DFS. So, we will enhance the current algorithm by unifying the
sampling phase and the search phase.

4.2 The PFS algorithm

The idea is to update each average branch length during the search
phase. The new criterion is ��� ����� � , the average length of the ��� gen-
erated branches in the subtree � during the sampling and the search
phases. The subtree � with � � ��� � � ��� �"! � ��#�� � ��� � �%$�� will be
searched until ��������� � becomes lower than another �&�����'� � or the sub-
tree � is exhausted. Then the search will be continued in the subtree
which has the greatest � � ��� � � value. The advantage of continuing
to update � � ��� � � during the search phase is to allow the algorithm
to “change its decision” if it finds that the subtree it chose is not
as promising as it first appeared to be. As each � � will grow, each
� � ��� � � value will become more stable and the search will stay stuck
in a subtree until its exhaustion. This mechanism allows us to elim-
inate the sampling phase, which no longer needs to achieve a com-
pletely satisfying value ordering before starting the search. During
the search phase, each time a backtrack occurs in subtree � , the cur-
rent �(������� � value is updated and if the subtree � does not have the
greatest value anymore then the algorithm switches to the subtree
with the new greatest value.

Since the sampling is now integrated into the search phase, we can
skip the sampling phase. One branch is generated into each subtree
and the search starts in the subtree whose first branch is the longest.
Then, the subtree may be switched if its average branch length be-
comes lower than another. However, we have to consider the possibil-
ity that the first branch of a subtree is much shorter than the following
branches. In this case, the subtree could be never visited anymore. In
order to force the algorithm to visit several branches in each subtree,
we will measure a biased average.

The final version of the algorithm is the same as the one we have
presented before except that, instead of � � ��� � � , the new statistic for

switching between the subtrees is)*� ����� � �,+.- /10

 ����� ����2� ����� �
+.0
� � , where3

is a constant parameter and 4 is the number of variables of the
CSP.) � ��� � � is a biased average as it computes the average depth of
the branches as if a preprocessing phase had generated

3
branches of

length 4 . This algorithm, called Progressive Focusing Search (PFS),
is given in figure. 1. PFS starts the search by interleaving it on all the
subtrees beginning at depth � The subtrees at depth � are ordered in
the priority queue 5 according to their)*� value. During the search,
as the average length of the branches of these subtrees becomes more
and more significant, it will progressively alter the interleaving by fo-
cusing on the most promising subtree: the subtrees with the best av-
erage branch length will be visited more often until it gradually falls
into the previous mechanism, where the search will be maintained in
a subtree as long as it has the greatest � � ��� � � value.

Here are the properties of the)*� ����� � statistic and their conse-
quences on the tree search:

6 As 7 � ��� � �98 � ��� � �*: 4 , we have 7;� � 8) � ��� � �=<�� � ��� � � .) � � �
� �4 and) � ��� � � converges to � � ��� � � as � � increases.
This means that searching into subtree � makes ��� increase and
)*� ����� � 	 �(� ����� � decrease. So,)*� ����� � tends to decrease even if

PFS(�):
1 Insert the � nodes at depth � into the stack array Stack.
2 Set 5 to � ��� ��� � � ��� ���
3 �	� remove max(5)
4 WHILE top(Stack[�]) is not a solution
5 node � pop(Stack[�])
6 IF node = Failure
7 update E

8 insert(� , 5)
9 �	� remove max(5)
10 ELSE
11 push(children(node), Stack[�])
12 IF Stack[�] = �
13 IF 5 ���
14 return Failure
15 ELSE
16 �	� remove max(5)
17 return top(Stack[�])

Figure 1. Progressive Focusing Search

�(� ����� � remains constant. This makes the search switch artificially
between all the subtrees.

6) � ��� ��
 ��� �,+ - /10

 ����� ��� ������ � ��� �
+.0
� � 0

� � +.0
� �

+.0
� � 0

�) � ��� � �
 � ��� � � � �
+ 0
� � 0

� .

Thus,) � ��� ��
 �����) � ��� � � iff) � ��� � � <�� ��� � � 0
� .

At the beginning of the search, if
3 � � � then3 � 4 �
 ��� � ���� � � ��� � and) � ��� � ��� 4 < � ��� � � 0

� . So,
)9� ����� � will decrease and the subtrees will be often switched. Af-
ter a while, when

3�� � � , we will have
3 � 4 �
 ��� � ���� � � ��� � and

) � ��� � ��� � � ��� � � . So,) � ��� � � will decrease iff � ��� � � 0
� � � � ��� � � .

This means that) � ��� � � is more likely to decrease at the beginning
of the search than later. So, the interleaving will be progressively
reduced all along the search.6 If
3 � � then) � ��� � � � � � ��� � � . If

3�� � then) � ��� � ���,4 .
So, tuning

3
changes the speedup of convergence of) � ��� � � to

�(� ����� � , that is, the speedup of focusing on the subtree with the
greatest � � ��� � � value.

4.3 Comparison with IDFS

PFS can be compared to Interleaved Depth First Search (IDFS) [10].
IDFS has been designed to take into account the increasing quality
of the value ordering heuristic as the depth increases. Its behavior
can be opposed to the one of DFS. When meeting a dead end, DFS
undoes the last choices first whereas IDFS undoes the first choices
first. The justification is simple : the shallowest choices are the least
trustworthy so the deepest choices are more to be preserved. There
are two versions of IDFS : Pure IDFS and Limited IDFS.

Pure IDFS exactly behaves as presented. Limited IDFS restrains
this interleaving to a fixed depth � for a limited number of subtrees.
It exactly simulates the order of examination of the nodes by a paral-
lel tree search, with the interleaving depth and the number of active
subtrees corresponding to the distribution depth and the number of
processes.

In the rest of the paper, when we will refer to IDFS, it will implic-
itly be the limited version. IDFS does not make any choice until the
interleaving maximum depth � is reached. Every value for the � first
variables is indeed tried in an interleaved way.

Notice that IDFS is more efficient than DFS in the context we are
studying. It has be shown theoretically and practically [10, 11, 12]
that IDFS can outperform DFS when the quality of the value order-
ing heuristic increases with depth, which is the case of the dynamic
promises solutions heuristic (MP). Experimental results in the next
section will confirm that again.

At the beginning of the search, PFS behaves somewhat like Lim-
ited IDFS, in the sense that it generates one branch in each sub-
tree and will not generate another branch into that subtree before
it has visited all the other subtrees. When the tree search starts,
every) � � � � � 4 . So, the first subtree is selected, one branch is
generated until depth � � � � (where a backtrack occurs) and) � � ���
is set to a value lower than 4 . So, the search has to be contin-
ued into the second subtree, and the same process is repeated until
one branch has been generated into each subtree. Then, the sub-
tree � with the greatest)*� � ��� value is selected and)=� � � � is all
the more likely to become the lowest value that

3
is high. When3�� � � , if � � < � � ,) � ��� � � is often lower than) � ��� � � . If � � � � � ,

�) � ��� � � <) � ��� � � ��� � � � ��� � � < � � ��� � � � . So, PFS with a high
value for

3
will interleave the search as much as IDFS but not ex-

actly in the same order: a subtree which has generated less branches
than others will tend to be chosen, and if all the subtrees have gener-
ated the same number of branches, then the one having the greatest
�(� ����� � will be selected first. A PFS with a high value for

3
can be

seen as an IDFS which always re-orders the subtrees thanks to their
� � ��� � � values after having generated one branch in all of them. This
means that PFS with a high value for

3
should generate a little less

branches and nodes than IDFS. Now, we will see why a lower value
for
3

and a progressive focusing of the tree search may lead to a
higher performance.

PFS can be seen as a tree search which behaves like IDFS at the
beginning and progressively focuses on the most promising subtree,
behaving after a while like DFS. If we decide to use the average
branch length heuristic (ABL) for the � first variables and MP for the
4 	 � remaining variables, then :

6 At the beginning of the search, ABL is poorly informed and un-
certain. The quality of MP is better. Then, IDFS is more to be used
than DFS. So, PFS is right in starting by imitating IDFS.6 As the ABL estimates converge to the right values, there will be a
moment during the search where the quality of ABL will be better
than the quality of MP. Since the quality of the heuristic will not
decrease between depth 1 and depth �
 � , continuing to interleave
the search in the subtrees at depth � will become a waste. Then,
DFS will become a better algorithm to apply after that moment.
So, PFS is right in imitating DFS at this moment.

A progressive change makes the algorithm stable. The efficiency
of PFS depends on the speed of the focusing. Thus, attention has to
be paid to the tuning of

3
.

5 Experimental results

Experiments were made using the same random CSP generator as
before. The problems were chosen so as to remain at the left of the
complexity peak, where most problems have solutions. For each set
of CSP parameters, we ran several algorithms on the same 100 in-
stances of problems all having at least one solution. All algorithms
maintained arc-consistency, used the dom/degree dynamic variable
ordering heuristic and the dynamic max-promises solutions heuris-
tic. The algorithms were : DFS, IDFS and PFS (3), where � is the

depth of interleaving. Our goal was not to find the optimal parame-
ters to maximize the gains of PFS over DFS and IDFS but to begin
to study how this gain varies when approaching the complexity peak
or when � and

3
vary.

We began by checking if PFS could be more efficient on problems
of same size (50 variables, domain size 8) as in section 3 at the left
of the complexity peak (see table 3).

Table 3. Experiments with ������� , ���
	 , ������
���� and � varying.
We always reported the total constraint checks (in millions) over the 100

random problem instances.

T 1000/1275 1020/1275 1040/1275 1060/1275

DFS 2060 2290 7872 21070

IDFS � 541 894 3093 8720
IDFS � 1233 1555 3808 8176

PFS � (5) 707 680 2246 8721
PFS � (5) 1216 1452 3487 8029

We can notice that when problems became harder, PFS was more
efficient and interleaving at depth 2 became better than at depth 1.
In order to see what could happen if the interleaving depth increased
again, we continued the tests on problems with ����� in order to
limit the number of stacks (see table 4).

Table 4. Variation of problem hardness and interleaving depth.
Experiments with ��� � ��� , ����� and various (�����) settings. For the

parameter set (0.166, 0.125), two problems had no solution.

D,T .158,.125 .162,.125 .166,.125 .327,.0625 .336,.0625

DFS 109 598 1306 384 2005

IDFS � 102 509 1302 198 1230
IDFS � 60.1 298 979 142 605
IDFS � 73.9 308 718 197 597

PFS � (5) 91.9 520 1483 121 1223
PFS � (5) 49.9 195 973 137 505
PFS � (5) 69.7 204 597 175 444

We also made
3

vary. When
3

was high (
3 � � � � �), PFS was

always slightly better (saving up less than 1%) than IDFS . When3
had small values, we could obtain even better results than with3 � � but the gain was not high. For example, for the problems in

the third column of table 4, the results varied between 563 and 659
when � :

3
: � � .

We can notice that :

6 IDFS outperformed DFS on hard problems.6 A deeper interleaving was better when the problems became
harder.6 PFS best outperformed DFS (savings of up to 78%) and IDFS (up
to 35%) when problems were hard.6 The efficiency of PFS over DFS seems to increase as the problems
become harder.

We noticed that the PFS results had a lower standard deviation
than DFS and IDFS. When the problem was easily solved by DFS,
IDFS and PFS produced more nodes. When the problem took a long
time to be solved by DFS (because large subtrees without solution
were explored), PFS usually produced much less nodes.

That IDFS outperforms DFS on hard problems confirms the in-
terest of avoiding to choose between the possible values for the first
variables. Interleaving is a good option when the quality of the value
ordering heuristic is increasing with depth. The performances of PFS
over IDFS show that there is a time when focusing on a single subtree
becomes better than keeping on interleaving.

The gains of PFS over IDFS were not very high. One reason can
be that the random CSPs we tested were regular. So, there was not
always a really better subtree to focus on in order to accelerate the
search. We expect PFS to exhibit better performances on less bal-
anced CSPs. As the average branch length criterion is very simple, a
more accurate criterion should also produce better results.

6 Conclusion and perspectives

We have shown the inefficiency of the prospective approach of value
ordering for hard problems with solutions. We have begun to explore
the possibilities of a learning from failure scheme. Simply measur-
ing the average branch length of subtrees for the value ordering made
PFS obtaining better results than DFS or IDFS. Yet, the ABL crite-
rion is very simple. To enhance the results of PFS over IDFS, there
must be some more accurate criteria that still have to be found. It
would be also useful to find an automatic way to fix

3
to its best

value. We intend to study this point by trying two approaches: (1)
precomputing

3
thanks to the CSP characteristics or (2) adjusting3

during the search on criteria that still have to be determined.
We think the empirical approach for (re)ordering values is promis-

ing for accelerating the search in hard problems. Where the tradi-
tional prospective approach becomes inefficient, an empirical ap-
proach can replace it advantageously.

REFERENCES
[1] C. Bessière and J.C. Régin, ‘MAC and combined heuristics: two rea-

sons to forsake FC (and CBJ?) on hard problems’, in Proc of CP’96,
volume 1113 of LNCS, pp. 61–75, (1996).

[2] B. Cabon, G. Verfaillie, D. Martinez, and P. Bourret, ‘Using Mean
Field Methods for Boosting Backtrack Search in Constraint Satisfac-
tion Problems’, in Proceedings of the

� � ��
 European Conference on
Artificial Intelligence, pp. 165–169, (1996).

[3] R. Dechter and J. Pearl, ‘Network–based heuristics for constraint–
satisfaction problems’, Artificial Intelligence, 34, 1–38, (1988).

[4] D. Frost and R. Dechter, ‘Look-ahead Value Ordering for Constraint
Satisfaction Problems’, in Proceedings of the

� � ��
 International Joint
Conference on Artificial Intelligence, (1995).

[5] Daniel H. Frost, Algorithms and Heuristics for Constraint Satisfaction
Problems, Ph.D. dissertation, University of California - Irvine, 1997.

[6] P. A. Geelen, ‘Dual Viewpoint Heuristics for Binary Constraint Satis-
faction Problems’, in Proceedings of the

� � �
 European Conference on
Artificial Intelligence, (1992).

[7] R. M. Haralick and G. L. Elliott, ‘Increasing Tree Search Efficiency for
Constraint Satisfaction Problems’, Artificial Intelligence, 14, 263–313,
(1980).

[8] T. Hulubei, ‘The CSP Library’, http://www.cs.unh.edu/˜tudor/csp/,
University of New Hampshire, (1999).

[9] J. Larrosa and P. Meseguer, ‘Optimization-based Heuristics for Maxi-
mal Constraint Satisfaction’, in Constraint Programming CP’95, vol-
ume LNCS 976, pp. 103–120, (1995).

[10] P. Meseguer, ‘Interleaved Depth-First Search’, in Proceedings of the� � �
 International Joint Conference on Artificial Intelligence, pp.
1382–1387, (1997).

[11] P. Meseguer and T. Walsh, ‘Interleaved and Discrepancy Based Search’,
in Proc. of the

��� ��
 European Conf. on Artificial Intelligence, (1998).
[12] N. Prcovic and B. Neveu, ‘Ensuring a Relevant Visiting Order of the

Leaf Nodes during a Tree Search’, in Constraint Programming, CP’99,
volume LNCS 1713, pp. 361–374, (1999).

[13] D. Sabin and E. C. Freuder, ‘Contradicting Conventional Wisdom in
Constraint Satisfaction’, in Proceedings of the

� � ��
 European Confer-
ence on Artificial Intelligence, pp. 125–129, (1994).

[14] B. M. Smith and M. E. Dyer, ‘Locating the Phase Transition in Binary
Constraint Satisfaction Problem’, Artificial Intelligence, 81, 155–181,
(1996).

[15] B. M. Smith and S. A. Grant, ‘Trying Harder to Fail First’, in Pro-
ceeedings of the

��� ��
 European Conference on Artificial Intelligence,
(1998).

