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Abstract. Constraint Satisfaction and Optimization are important The rest of the paper is organized as follows. In Section 2 we

areas of Artificial Intelligence. However, in many real-life applica- give the basic definitions. In Section 3 we provide an algorithm that

tions, more functions should be optimized at the same time; the usexchieves the set of non-dominated solutions in a multi-criteria opti-

needs to be provided a set of solutions and a posteriori choose thmization problem. Section 4 provides some experimental results and
most preferable. Section 5 summarizes related works. Conclusions follow.

In this paper, we propose an algorithm for solving Multi-Criteria
Optimization problems in this setting. The algorithm is complete,2
i.e., it finds all the non-dominated solutions, and does not make any
assumption on the structure of the constraints nor on the type of thgve introduce some definitions used in the rest of the paper.
objective functions. It exploits Point Quad-Trees for the representa-
tion of the non-dominated frontier, in order to efficiently access theDefinition 1 A Constraint Satisfaction Problem (CSR)a triple
data. We describe the implementation and give experimental resultsX, D, C) where X = {X1,...,X,} is a set of variablesD =
showing that our algorithm outperforms widely used methods. {D1,..., Dn}is the set of domains and is a set of constraints. An
Assignmentd = {X; — wv;} is a function that maps some of the
variables to values in the corresponding domairTodal assignment
involves all the variables. &easible Solutiors a total assignment

Constraints are widely used in many fields, because they are declatatisfying all the constraints.

ative and efficiently solved. The usually addressed constraint prob- ) o

lems fall into one of two frameworks: Constraint Satisfaction Prob-Definition 2 AConstraint Optimization Problem (COR)a quadru-
lems (CSP) and the Constraint Optimization Problems (COP) [18]. APl€ (P f, T, <) such thatP is a CSP(T, <) is a totally ordered set
CSP consists of a set of variables ranging on given finite domains ar?d/ : D1 x ... x Dy — T'is a function that maps each assign-
subject to a set of constraints. A solution of a CSP is an assignmefffént to a value. ADptimal Solution's a feasible solution aof that

of values to variables satisfying all the imposed constraints. A COpnaximizes the functiofi.

is a CSP with an associated function that must be optimized. Very . . o

popular techniques are maintaining (Generalized) Arc Consistency With no lack of generality, we consider maximization problems.
(MAC) for solving CSPs and additional Branch and Bound (B&B) For our needs, we will define the Multi-criteria Optimization Prob-
for COPs [18]. lem as follows:

However, in real-life problems, the optimization function is not
always clear. Often the user would like, ideally, to optimize two or — .
more, possibly conflicting, criteria at the same time. In some CaseéquadrupleR N <P’f. = (f1,.., fm), T, <) such thatP is a (.:SP’
the criteria can be combined in a single function, e.g., by means of'’ "’ fm are functionsf; : D1 x ... x Dn — T and(T, <) isa
weighted sum, or distance from the ideal point. In other cases, thIeOtally ordered set.
user cannot define a priori a combination, but would like to know . .
various, possibly all, t%e tradeoff solutions, and choose a posteri- Tn.l S called theCntgnop Space_ln the rest qf the paper, vectors
ori one of them. The user can be able to make better choices afté? Criterion Space are indicated with an over line (eXj),
knowing a variety of “good” (non subsumed) solutions, rather than
defining a priori a combination, or a preference among solutions. Th
concept of multi-criteria optimization or Pareto optimality [10] was

defined to address these problems. The feasible solutions are rankﬁ)%finition 5 Given a MOPR — (P, J,T,<), an assignmens is
by means of a partial order (instead of the total order induced by, "\ L S oo ot is a féas’,ibfe_sé)lution o and 35’
the optimization function): intuitively, a feasible solutiéh is sub- o

i !
sumed by another solutio$h, iff it gives worse (or equal) results in solution of P such thatf($) = f(5").
all the functions. As a result, the set of all non-dominated points in \y will consider as solution of the MOP the set of non-dominated
the CSP solution space are obtained. In this paper, we describe #asible assignments.
efficient algorithm that provides the non-dominated points in a CSP;
it is based on the concept of Optimization Nogoods and uses spatial
data structures to arrange the set of nogoods. 2.1 Algorithm van Wassenhove - Gelders

Definitions

1 Introduction

Definition 3 A Multi-criteria Optimization Problem (MOP)s a

Definition 4 GivenA, B € T™, we say that3 dominatesA4, (writ-
fena < B)iff v, 4; < B..

1 University of Ferrara, V. Saragat 1, 44100 Ferrara, Italy, email: mga-Usually, to find the non-dominated frontier, the optimal value is
vanelli@ing.unife.it found in one direction and then the search is restarted constraining



the search space to better values for the other function. This algo- We now show a generic tree-search algorithm that exploits opti-
rithm has been widely used [5]; the first reference we are aware ofization nogoods. We have a séf of active problems, initially

is by van Wassenhove and Gelders [19]. The algorithm can be desontaining only the original CSP. While the set is not empty, we

scribed as follows; note that it is applicable only to MOPs with two have an iteration. In each iteration a problem is selected from the

objective functions. set AP; if the selected problem can be shown unfeasible without
search (line 5) (e.g., because one domain is empty), we do not con-
. find the optimal solution wrt. function f2 sider it (it was simply removed from the sét). If the problem can
let us call it Os. Let A «—Os be directly solved (without search), and has only one solufioh
. impose the constraint fi> fi(4) (line 6), thenSol, is not dominated by any previous solution, and
. maximize  f. If a solution m exists, then it we record it in the se. We also add the corresponding optimization
is non-dominated; else go to Step 5. nogoodng(fi(Sy), ..., fm(Sp,)) as anm-ary constraint to all the
. Let A« fi(m). Go to Step 2. active problems. If the selected problem cannot be directly solved,
. Stop. we branch (line 9), i.e., we generate the set of its children and add

them to the active problems.

3 An Algorithm for solving MOPs
. . _ let CSP=(X,D,C)
Branch and Bound (B&B) [8] is an efficient, widely used method for et ¢, .. 7.1 be the criteria

solving COPs; it could be described as follows: first we find a solu- 1. |ot AP = {C'SP} % Set of Active Problems
tion (typically using a tree search), then we add a further constrainty. ¢ . 0 % Set of Current Solutions

whose meaning is “new solutions must better than the current 3. \yhile AP £0

best”. Thus, the optimality problem is converted into a sequence ofy.  chopose P e AP, AP — AP\ {P}

satisfiability problems. Operationally, the constraint can be propa-5. it inconsistency _detected( P) go to 3
gated with bounds, obtained by solving a relaxation of the original g. i p has only one solution Sol,
problem. Of course this means keeping memory of the best solution % Add the optimization nogood to all the active problems
achieved so far. Various implementations have been provided for this;. YQ € AP,Q = (X,, Dy, Cy),
basic idea, for example in Constraint Logic Programming [11]. Cy — Cy U {ng(f1(Soly), ..., fm(Solp))}
The optimization function can also be considered as a variable of % remove frons the solutions subsumed By, and addSol,
the CSP, linked with other variables by means of a consftalifiuis, 8: S« S\ {K € S|f(K) < f(Sol,)} U {Sol,}
the optimization constraint can be considered as a sabgbods Else % Branch - ? ?

A nogoodis an gssignmenlil such th'at there is no ungnumerated ' Generate the set CP of children of P
solution contalnl_ngA. For example, ifX andY range in the sgt 10 AP — APUCP
{0..4}, the functionf(X,Y) = X + Y can be represented With ;1. 4 While
a variable F' with domain {0..8}, linked with X andY" with the 12-Return S
constraintF’ = X +Y . Once afeasible solution is found, e §X —
1,Y — 0}, we learn that the optimal solution will have a greater
value inF, so we can infer the nogood$” — 0} and{F — 1}.

For Multi-Criteria optimization, we can have a variable for each
criterion (we call themi'criterion variables”), and the inferred no-
goods will involve more variables. For ease of presentation, we ex-

The space complexity of the algorithm, as for algorithm
van Wassenhove and Gelders,(%|S|), in fact both algorithms
record the whole set of nondominated solutions.

tend the concept of nogood as follows: 3.1 Organization of optimization nogoods

Definition 6 An Optimization Nogoodis a set of assignments In many CLP(FD) systems [2, 1] each objective function can be rep-
{Fi — v1,...,Fr — v} such thatvfi < vi,...,fr < vg, resented as a domain variable, i.e., a variable with a domain. Consid-
{F\ — f1,...,F, — f}is anogood. ering f = (f1, f2,. .., fm) the vector of all the objective functions,

- o . ) the domain of the vector functighis the cartesian product of the do-
Intuitively, an optimization nogood prohibits dominated values for yains of the scalar functionfts = Dy, x Dy, x...x Dy, . Ideally,

the criterion variables. In the previous example, since a solution withye would like to delete from the domaiB; all the area forbidden

I = 1 was found, we can infer the optimization nogopl — 1}. py the optimization nogoods; but we can only restrict the domains of
We now define how to learn optimization nogoods during a B&B the functionsf;, andD; must always be the Cartesian product of the
search and how to exploit them to reduce the search space. scalar domains. The following proposition provides a method to de-

An optimization nogood can be inferred whenever a feasible sogjge if a domain can be reduced by the set of optimization nogoods.
lution is found: the value of all the objective functiorig’ —
v1,. .., Fn — vy is an optimization nogood. In fact, we are not proposition 1 Let S be the set of previously found solutionfs =
interested in an assignmedt if a feasible assignmem that is bet- (f1, f2, ..., fm) the objective functionD;, is the domain off;,
ter w.rt. all the criteria exists. For example, if a feasible assignmenf g, = maz(D;,), GLB; = mm(ij_ Let us call DB, =
A is known and it contains the bindinds — 1 andF» — 2, we (LUB, ..., LUBi,;,GLBZ-, LUBit1, ..., IiUBm); i.e., the vector
know that an assignment witf} — 1, F> — 1 is dominated. which is “the best in all possible directions except directitn

Nogoods can be used to delete inconsistent values from the do- The domainD; can be reduced by the set of optimization nogoods
mains of the criterion variables. Each optimization nogood can b

considered as am-ary constraint that prohibits worse combinations
of values for the criterion variables.

Only if 3i € {1..m}, 3s € S such thaiDP; < f(s).

Proof. Suppose that the valug can be deleted frondy, by some
optimization nogood. This means that all the valueg é6r which
2 Bounds can be employed with this implementation also. fi = v; are dominated by that nogood.




In particular, there will be a solutiors such thatf(s) dominates (075
the point(LUB., ..., LUB;_1,v;, LUB;41,...,LUB,,) so, for tran-
sitivity, DP; < f(s). (545) (80,65)

Denver Buffdo .
(35,50) Chicago

Proposition 1 explains that in order to perform a reduction of chicago
the domainsDy,, ..., Dy, , we only need to check if the points (@535

Omaha

DP,...,DP,, lie in the forbidden area. For example, consider Denver  Toronto  Omahia  Mobile

Fig. 1. The gray area is forbidden by the optimization nogoods, rep; i) %\ %\ %\ %\
resented as a set of non-dominated solutions. The domgiis the G20 @5 ] o J '\
rectangle in the middle: itis the cartesian product of the dom@ins Miam | Buffalo Atlanta Miami
andDy, . Since we only consider reductions of the domdins and
Dy,, we can only delete the hatched area (in fact, the dmm&n

must always be a rectangle). This means that we can redyamly
if the pointsD P, and D P; lie in the forbidden (gray) area.
From this observation follows that we do not have to check the,

current domain off against all the optimization nogoods; if we are is very important because the check for domination is performed in

able to access the nogoods efficiently, we can have the same pru(ral\-/ery node of the treg:i) The dominationbetween points is easily

. . . . U verifiable: the area dominated by a point in a Quad-Tree is simply the
ing by checking onlyn points. Since the nogoods are points in the : . L
criterion space, arranging them in a spatial data structure seems Wis%W quadrant, while the area that dominates a point is the NE guad-
pace, ging P rant. So, if we store only non-dominated solutions, the SW quadrant
f, Non-dominated of anodeP is always empty, because it represents the area dominated
A «— solution by P. Also, the NE quadrant is empty as well, because if some points

were in that quadranf? would be dominated and could be removed.

Figure 2. Example: records in a Quad-Tree

LUB, S Thus, in two dimensions each node has only two childfén) The
) Dr insertion of points can be obtained@(log|S|) time complexity.
DP: /% As an example, in Fig. 3 we can see a Quad-Tree representation of
Dfy /‘ S, the set of solutions in Fig. 1. The Quad-Tree corresponding to a set
7/ of points is not unique: it depends on the insertion order.
Reduction
of Dfy % . oA

GLB1 | Forbidden DP:
Area
GLB; LUB; f
Df; 2
Reduction
of sz
Figure 1. Region forbidden by the set of optimization nogoods F"'ﬂige“

» f;

. In our exper?ments, we adopted the Poi-nt Qu.ad-Tree represent@_ﬂ-lgure 3. A Quad-Tree correspondent to a set of non-dominated solutions
tion [16]. A Point Quad-Tree (in the following, simply Quad-Tree)

contains points in a space; historically, it has been defined for two

dimensions [3], but can be easily extended to any number of dimen-

sions. For ease of presentation, we will give our examples in 2D, but One drawback of Quad-Trees is that deleting a point can be ex-
all the following considerations can be extendedtdimensions un-  pensive, as it often requires the re-arrangement of the tree rooted in
less stated otherwise. A Quad-Tree can be considered an adaptatithve deleted node. The algorithm by Samet [15] is often used,; it con-
of the binary search tree to more dimensions and it is based on thasts of §) finding a suitable new candidate as root of the subtree and
principle of recursive decomposition of the original space. Each ele{ii) re-inserting some children of the deleted node. In a way, we are
ment of the tree is either a leaf or a branch node. In two dimensionsmoving” the root to a new location; so, in order to maintain the tree
each branch node is identified by a couple of coordingies”) and  consistent, we need to re-arrange the points that moved from a quad-
has four children (Fig. 2), representing the four quadrants in whictrant to another. For example, in Fig. 4 when we move the root from
the space is divided by the cartesian axes translated into the point to B we need to re-arrange the points in the gray area.

(X,Y). The quadrants are normally labeled NW (for North-West), However, in our instance, a deletion occurs only if a better point is
NE, SW and SE. In three dimensions, it is usually called Oct-Treefound, thus, a possible strategy is to substitute the old point with the

because each node has eight children. new one. In this case, many of the points that should be re-arranged
We believe that the Quad-Tree representation of the set of optiin the Samet algorithm [15] are dominated by the new solution, so
mization nogoods is suitable for a series of reaséi)skirst of all, they can be deleted as well. In Fig. 4, we need to delete the4oot

the Quad-Tree allows to access the data structué(ing|S|) time because a better poift was found. If we decide that the new root is
complexity, if S is the current set of non-dominated solutions; this B, we do not need to re-arrange the points in the gray area, because




5 Table 2. Experimental results on Multi-Knapsack with more objective
functions
i i Number of ltems 2D 3D 4D
N 10 0.04s | 0.09s | 0.14s
i i 11 0.06s | 0.11s 0.33s
i gl 12 0.09s | 02s 0.46 s
13 0.13s | 0.33s | 0.97s
1 14 0.21s | 0.68s 1.76s
I 15 0.34s | 162s | 3.45s
16 04s 2.25s 9.11s
17 0.79s | 5.67s | 10.31s
Figure 4. Point deletion in a Quad-Tree 18 18s 79s 2472 s
19 245s | 16.98s| 53.47s
20 4.7s 24.06s| 144.97s
21 11.37s| 57.04s| 286.65s
they are dominated b as well. 22 18.07s| 63.31s| 507.9s
We also performed some tests on random CSPs, generated as pro-
4 Experimental Results posed in [13]. A CSP is generated given four parameters: the number

n of variables, the size of each domain, the probability that a
We performed some experiments with a multi-knapsack problentonstraint exists on a couple of variables and the conditional proba-
and with randomly-generated problems. In the experiments, we usegllity 4 that a couple of assignments are inconsistent given that the
depth first search. variables are linked by a constraint. For simplicity, we randomly gen-
A knapsack problem consists of a set of items, with weight anderated linear objective functions. In the graph in Fig. 5, each bar rep-
profit associated to each item, and a total capacity of the knapsackesents the average of ten problems, with: 10, d = 15, constraint
The task is to find a subset of items that fits into the knapsack andensityp ranging from 20 to 100%, and tightnegérom 10 to 90%.
maximizes the profit [9]. The single-objective problem can be ex-
tended to multi-objective by allowing an arbitrary number of knap-
sacks [20]: given a set efitems and a set af: knapsacks, with

pi,; profit of itemj according to knapsack
w;,; weight of itemj according to knapsack
¢; capacity of knapsack

find a vectorz = (z1,22,...,2,) € {0,1}°, such that
Vi e {L2,...,n} 37 _jwi;r; < ¢ and for which

f(z) = (f1(@), f2(T),..., fm(T)) is maximum, wheref;(z) =
> 5—1 pijz; andz; = 1iffitem j is selected.

We compared our algorithm with the algorithm by van Wassen-
hove and Gelders (Section 2.1); we can see the results on Table 1
(obtained with ECEPS’ [2] running on a 4 x UltraSPARC Il 300
MHz with Solaris). Our algorithm performs better; moreover, the
speedup is higher in difficult instances. Our method is also appli-
cable to problems with more than two objective functions; in Table 2
timing results are given for problems with more criteria (obtained Figure 5. Performance of Multi-B&B on randomly-generated MOPs
with ECL*PS’ running on a Pentium |l 400 MHz with Linux).

Seconds

Table 1. Experimental results on Multi-Knapsack with 2 objective In Fig. 6 the ratio of the timing results for the same problems is
functions shown. Our algorithm is up to 18 times faster than the algorithm
Number of items| van Wassenhove-Gelderis Multi-B&B+Quad-tree by van Wassenhove-Gelders, while it is never worse than 32%. It is
17 3.15s 1.39s worth noting that the instances in which our algorithm is slower than
18 8.58s 2.77s van Wassenhove-Gelders are usually easy instances. For example,
;g 276754255 ‘7‘-322 the worst ratio is 0.75, which is due to problems solved on average
21 46.51 s 20.31s in 0.082 seconds by Multi-B&B and in 0.062 by van Wassenhove-
22 59.61s 2925 Gelders. On the other hand, one of the best ratios (nearly 18), was ob-
23 185.52s 57.75s tained in a class of problems where van Wassenhove-Gelders took on
24 178.35s 73.945s average 13067 seconds (about 3 hours and a half) while our method
22 2225?6553 f;;‘ngSS was able to find the non-dominated frontier in about 12 minutes.
27 600.22 s 196.19 s
28 888.8 s 325.12s
29 2133.42s 659.23 s 5 Related work
30 3693.23 s 1207.17s Usually, multi-criteria problems are addressed by translating the

problem into one or more problems with a single objective, each
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6 Conclusions

We presented an algorithm that extends Branch-and-Bound for
Multi-criteria Optimization in CLP{' D). The algorithm is complete,
meaning that it finds the whole non-dominated frontier. It is applica-
ble to any CSP, as it does not make any assumption on the structure
of constraints, nor on the type of objective functions. It infers no-
goods for each feasible solution found and it uses Point Quad-Trees
to efficiently store the set of nogoods. We compared the algorithm
with a widely used method and it resulted more efficient, particu-
30 larly in the difficult instances, both in multi-knapsack problems and
in randomly-generated problems.
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