
An Algorithm for Multi-Criteria Optimization in CSPs
Marco Gavanelli1

Abstract. Constraint Satisfaction and Optimization are important
areas of Artificial Intelligence. However, in many real-life applica-
tions, more functions should be optimized at the same time; the user
needs to be provided a set of solutions and a posteriori choose the
most preferable.

In this paper, we propose an algorithm for solving Multi-Criteria
Optimization problems in this setting. The algorithm is complete,
i.e., it finds all the non-dominated solutions, and does not make any
assumption on the structure of the constraints nor on the type of the
objective functions. It exploits Point Quad-Trees for the representa-
tion of the non-dominated frontier, in order to efficiently access the
data. We describe the implementation and give experimental results
showing that our algorithm outperforms widely used methods.

1 Introduction

Constraints are widely used in many fields, because they are declar-
ative and efficiently solved. The usually addressed constraint prob-
lems fall into one of two frameworks: Constraint Satisfaction Prob-
lems (CSP) and the Constraint Optimization Problems (COP) [18]. A
CSP consists of a set of variables ranging on given finite domains and
subject to a set of constraints. A solution of a CSP is an assignment
of values to variables satisfying all the imposed constraints. A COP
is a CSP with an associated function that must be optimized. Very
popular techniques are maintaining (Generalized) Arc Consistency
(MAC) for solving CSPs and additional Branch and Bound (B&B)
for COPs [18].

However, in real-life problems, the optimization function is not
always clear. Often the user would like, ideally, to optimize two or
more, possibly conflicting, criteria at the same time. In some cases,
the criteria can be combined in a single function, e.g., by means of
weighted sum, or distance from the ideal point. In other cases, the
user cannot define a priori a combination, but would like to know
various, possibly all, the tradeoff solutions, and choose a posteri-
ori one of them. The user can be able to make better choices after
knowing a variety of “good” (non subsumed) solutions, rather than
defining a priori a combination, or a preference among solutions. The
concept of multi-criteria optimization or Pareto optimality [10] was
defined to address these problems. The feasible solutions are ranked
by means of a partial order (instead of the total order induced by
the optimization function): intuitively, a feasible solutionS1 is sub-
sumed by another solutionS2 iff it gives worse (or equal) results in
all the functions. As a result, the set of all non-dominated points in
the CSP solution space are obtained. In this paper, we describe an
efficient algorithm that provides the non-dominated points in a CSP;
it is based on the concept of Optimization Nogoods and uses spatial
data structures to arrange the set of nogoods.

1 University of Ferrara, V. Saragat 1, 44100 Ferrara, Italy, email: mga-
vanelli@ing.unife.it

The rest of the paper is organized as follows. In Section 2 we
give the basic definitions. In Section 3 we provide an algorithm that
achieves the set of non-dominated solutions in a multi-criteria opti-
mization problem. Section 4 provides some experimental results and
Section 5 summarizes related works. Conclusions follow.

2 Definitions

We introduce some definitions used in the rest of the paper.

Definition 1 A Constraint Satisfaction Problem (CSP)is a triple
〈X, D, C〉 whereX = {X1, . . . , Xn} is a set of variables,D =
{D1, . . . , Dn} is the set of domains andC is a set of constraints. An
AssignmentA = {Xi 7→ vi} is a function that maps some of the
variables to values in the corresponding domain. ATotal assignment
involves all the variables. AFeasible Solutionis a total assignment
satisfying all the constraints.

Definition 2 AConstraint Optimization Problem (COP)is a quadru-
ple 〈P, f, T,≤〉 such thatP is a CSP,〈T,≤〉 is a totally ordered set
andf : D1 × . . . × Dn 7→ T is a function that maps each assign-
ment to a value. AnOptimal Solutionis a feasible solution ofP that
maximizes the functionf .

With no lack of generality, we consider maximization problems.
For our needs, we will define the Multi-criteria Optimization Prob-

lem as follows:

Definition 3 A Multi-criteria Optimization Problem (MOP)is a
quadrupleR = 〈P, f = (f1, . . . , fm), T,≤〉 such thatP is a CSP,
f1, . . . , fm are functionsfi : D1 × . . .×Dn 7→ T and〈T,≤〉 is a
totally ordered set.

T m is called theCriterion Space. In the rest of the paper, vectors
in Criterion Space are indicated with an over line (e.g.,X).

Definition 4 GivenA, B ∈ T m, we say thatB dominatesA, (writ-
tenA � B) iff ∀m

i=1Ai ≤ Bi.

Definition 5 Given a MOPR = 〈P, f, T,≤〉, an assignmentS is
a non-dominated solutionif it is a feasible solution ofP and @S′

solution ofP such thatf(S) � f(S′).

We will consider as solution of the MOP the set of non-dominated
feasible assignments.

2.1 Algorithm van Wassenhove - Gelders

Usually, to find the non-dominated frontier, the optimal value is
found in one direction and then the search is restarted constraining

the search space to better values for the other function. This algo-
rithm has been widely used [5]; the first reference we are aware of
is by van Wassenhove and Gelders [19]. The algorithm can be de-
scribed as follows; note that it is applicable only to MOPs with two
objective functions.

1. find the optimal solution wrt. function f2;
let us call it O2. Let ∆← O2

2. impose the constraint f1 > f1(∆)
3. maximize f2. If a solution π exists, then it

is non-dominated; else go to Step 5.
4. Let ∆← f1(π). Go to Step 2.
5. Stop.

3 An Algorithm for solving MOPs

Branch and Bound (B&B) [8] is an efficient, widely used method for
solving COPs; it could be described as follows: first we find a solu-
tion (typically using a tree search), then we add a further constraint
whose meaning is “new solutions must bebetter than the current
best”. Thus, the optimality problem is converted into a sequence of
satisfiability problems. Operationally, the constraint can be propa-
gated with bounds, obtained by solving a relaxation of the original
problem. Of course this means keeping memory of the best solution
achieved so far. Various implementations have been provided for this
basic idea, for example in Constraint Logic Programming [11].

The optimization function can also be considered as a variable of
the CSP, linked with other variables by means of a constraint2. Thus,
the optimization constraint can be considered as a set ofnogoods.
A nogoodis an assignmentA such that there is no unenumerated
solution containingA. For example, ifX and Y range in the set
{0..4}, the functionf(X, Y) = X + Y can be represented with
a variableF with domain{0..8}, linked with X and Y with the
constraintF = X+Y . Once a feasible solution is found, e.g.,{X 7→
1, Y 7→ 0}, we learn that the optimal solution will have a greater
value inF , so we can infer the nogoods{F 7→ 0} and{F 7→ 1}.

For Multi-Criteria optimization, we can have a variable for each
criterion (we call them“criterion variables”), and the inferred no-
goods will involve more variables. For ease of presentation, we ex-
tend the concept of nogood as follows:

Definition 6 An Optimization Nogoodis a set of assignments
{F1 7→ v1, . . . , Fk 7→ vk} such that∀f1 ≤ v1, . . . , fk ≤ vk,
{F1 7→ f1, . . . , Fk 7→ fk} is a nogood.

Intuitively, an optimization nogood prohibits dominated values for
the criterion variables. In the previous example, since a solution with
F = 1 was found, we can infer the optimization nogood{F 7→ 1}.
We now define how to learn optimization nogoods during a B&B
search and how to exploit them to reduce the search space.

An optimization nogood can be inferred whenever a feasible so-
lution is found: the value of all the objective functions(F1 7→
v1, . . . , Fm 7→ vm) is an optimization nogood. In fact, we are not
interested in an assignmentA′ if a feasible assignmentA that is bet-
ter w.r.t. all the criteria exists. For example, if a feasible assignment
A is known and it contains the bindingsF1 7→ 1 andF2 7→ 2, we
know that an assignment withF1 7→ 1, F2 7→ 1 is dominated.

Nogoods can be used to delete inconsistent values from the do-
mains of the criterion variables. Each optimization nogood can be
considered as anm-ary constraint that prohibits worse combinations
of values for the criterion variables.
2 Bounds can be employed with this implementation also.

We now show a generic tree-search algorithm that exploits opti-
mization nogoods. We have a setAP of active problems, initially
containing only the original CSP. While the set is not empty, we
have an iteration. In each iteration a problem is selected from the
set AP ; if the selected problem can be shown unfeasible without
search (line 5) (e.g., because one domain is empty), we do not con-
sider it (it was simply removed from the setAC). If the problem can
be directly solved (without search), and has only one solutionSolp
(line 6), thenSolp is not dominated by any previous solution, and
we record it in the setS. We also add the corresponding optimization
nogoodng(f1(Sp), . . . , fm(Sp)) as anm-ary constraint to all the
active problems. If the selected problem cannot be directly solved,
we branch (line 9), i.e., we generate the set of its children and add
them to the active problems.

let CSP = 〈X, D, C〉
let {f1, . . . , fm} be the criteria

1: let AP = {CSP}% Set of Active Problems
2: S ← ∅% Set of Current Solutions
3: While AP 6= ∅
4: choose P ∈ AP , AP ← AP \ {P}
5: if inconsistency detected(P) go to 3
6: if P has only one solution Solp

% Add the optimization nogood to all the active problems
7: ∀Q ∈ AP, Q = 〈Xq, Dq, Cq〉,

Cq ← Cq ∪ {ng(f1(Solp), . . . , fm(Solp))}
% remove fromS the solutions subsumed bySolp and addSolp

8: S ← S \ {K ∈ S|f(K) � f(Solp)} ∪ {Solp}
Else % Branch

9: Generate the set CP of children of P
10: AP ← AP ∪ CP
11:End While
12:Return S

The space complexity of the algorithm, as for algorithm
van Wassenhove and Gelders, isO(|S|), in fact both algorithms
record the whole set of nondominated solutions.

3.1 Organization of optimization nogoods

In many CLP(FD) systems [2, 1] each objective function can be rep-
resented as a domain variable, i.e., a variable with a domain. Consid-
eringf = (f1, f2, . . . , fm) the vector of all the objective functions,
the domain of the vector functionf is the cartesian product of the do-
mains of the scalar functions:Df = Df1×Df2×. . .×Dfm . Ideally,
we would like to delete from the domainDf all the area forbidden
by the optimization nogoods; but we can only restrict the domains of
the functionsfi, andDf must always be the Cartesian product of the
scalar domains. The following proposition provides a method to de-
cide if a domain can be reduced by the set of optimization nogoods.

Proposition 1 Let S be the set of previously found solutions,f =
(f1, f2, . . . , fm) the objective function,Dfi is the domain offi,
LUBi = max(Dfi), GLBi = min(Dfi). Let us callDPi ≡
(LUB1, . . . , LUBi−1, GLBi, LUBi+1, . . . , LUBm); i.e., the vector
which is “the best in all possible directions except directioni”.

The domainDf can be reduced by the set of optimization nogoods

only if ∃i ∈ {1..m}, ∃s ∈ S such thatDPi � f(s).
Proof. Suppose that the valuevi can be deleted fromDfi by some
optimization nogood. This means that all the values off for which
fi = vi are dominated by that nogood.

In particular, there will be a solutions such thatf(s) dominates
the point(LUB1, . . . , LUBi−1, vi, LUBi+1, . . . , LUBm) so, for tran-
sitivity, DPi � f(s).

Proposition 1 explains that in order to perform a reduction of
the domainsDf1 , . . . , Dfm , we only need to check if the points
DP1, . . . , DPm lie in the forbidden area. For example, consider
Fig. 1. The gray area is forbidden by the optimization nogoods, rep-
resented as a set of non-dominated solutions. The domainDf is the
rectangle in the middle: it is the cartesian product of the domainsDf1

andDf2 . Since we only consider reductions of the domainsDf1 and
Df2 , we can only delete the hatched area (in fact, the domainDf

must always be a rectangle). This means that we can reduceDf only

if the pointsDP1 andDP2 lie in the forbidden (gray) area.
From this observation follows that we do not have to check the

current domain off against all the optimization nogoods; if we are
able to access the nogoods efficiently, we can have the same prun-
ing by checking onlym points. Since the nogoods are points in the
criterion space, arranging them in a spatial data structure seems wise.

f1

f2

Forbidden
Area

Df1

Reduction
of Df1

Df2

Reduction
of Df2

DP2

DP1

LUB2GLB2

GLB1

LUB1

Non-dominated
solution

Df
_

Sx

Sy

Figure 1. Region forbidden by the set of optimization nogoods

In our experiments, we adopted the Point Quad-Tree representa-
tion [16]. A Point Quad-Tree (in the following, simply Quad-Tree)
contains points in a space; historically, it has been defined for two
dimensions [3], but can be easily extended to any number of dimen-
sions. For ease of presentation, we will give our examples in 2D, but
all the following considerations can be extended toN dimensions un-
less stated otherwise. A Quad-Tree can be considered an adaptation
of the binary search tree to more dimensions and it is based on the
principle of recursive decomposition of the original space. Each ele-
ment of the tree is either a leaf or a branch node. In two dimensions,
each branch node is identified by a couple of coordinates(X, Y) and
has four children (Fig. 2), representing the four quadrants in which
the space is divided by the cartesian axes translated into the point
(X, Y). The quadrants are normally labeled NW (for North-West),
NE, SW and SE. In three dimensions, it is usually called Oct-Tree,
because each node has eight children.

We believe that the Quad-Tree representation of the set of opti-
mization nogoods is suitable for a series of reasons.(i) First of all,
the Quad-Tree allows to access the data structure inO(log|S|) time
complexity, if S is the current set of non-dominated solutions; this

(35,50)
Chicago

(5,45)
Denver

(25,35)
Omaha

(50,10)
Mobile

(85,15)
Atlanta

(90,5)
Miami

(60,75)
Toronto

(80,65)
Buffalo

Chicago

Denver Toronto Omaha Mobile

Buffalo Atlanta Miami

Figure 2. Example: records in a Quad-Tree

is very important because the check for domination is performed in
every node of the tree.(ii) Thedominationbetween points is easily
verifiable: the area dominated by a point in a Quad-Tree is simply the
SW quadrant, while the area that dominates a point is the NE quad-
rant. So, if we store only non-dominated solutions, the SW quadrant
of a nodeP is always empty, because it represents the area dominated
by P . Also, the NE quadrant is empty as well, because if some points
were in that quadrant,P would be dominated and could be removed.
Thus, in two dimensions each node has only two children.(iii) The
insertion of points can be obtained inO(log|S|) time complexity.

As an example, in Fig. 3 we can see a Quad-Tree representation of
the set of solutions in Fig. 1. The Quad-Tree corresponding to a set
of points is not unique: it depends on the insertion order.

f1

f2

Forbidden
Area

Figure 3. A Quad-Tree correspondent to a set of non-dominated solutions

One drawback of Quad-Trees is that deleting a point can be ex-
pensive, as it often requires the re-arrangement of the tree rooted in
the deleted node. The algorithm by Samet [15] is often used; it con-
sists of (i) finding a suitable new candidate as root of the subtree and
(ii) re-inserting some children of the deleted node. In a way, we are
“moving” the root to a new location; so, in order to maintain the tree
consistent, we need to re-arrange the points that moved from a quad-
rant to another. For example, in Fig. 4 when we move the root from
A to B we need to re-arrange the points in the gray area.

However, in our instance, a deletion occurs only if a better point is
found, thus, a possible strategy is to substitute the old point with the
new one. In this case, many of the points that should be re-arranged
in the Samet algorithm [15] are dominated by the new solution, so
they can be deleted as well. In Fig. 4, we need to delete the rootA
because a better pointB was found. If we decide that the new root is
B, we do not need to re-arrange the points in the gray area, because

A

B

Figure 4. Point deletion in a Quad-Tree

they are dominated byB as well.

4 Experimental Results

We performed some experiments with a multi-knapsack problem
and with randomly-generated problems. In the experiments, we used
depth first search.

A knapsack problem consists of a set of items, with weight and
profit associated to each item, and a total capacity of the knapsack.
The task is to find a subset of items that fits into the knapsack and
maximizes the profit [9]. The single-objective problem can be ex-
tended to multi-objective by allowing an arbitrary number of knap-
sacks [20]: given a set ofo items and a set ofm knapsacks, with

pi,j profit of itemj according to knapsacki,
wi,j weight of itemj according to knapsacki,
ci capacity of knapsacki,

find a vector x = (x1, x2, . . . , xo) ∈ {0, 1}o, such that
∀i ∈ {1, 2, . . . , n} :

∑o
j=1 wi,jxj ≤ ci and for which

f(x) = (f1(x), f2(x), . . . , fm(x)) is maximum, wherefi(x) =∑o
j=1 pi,jxj andxj = 1 iff item j is selected.
We compared our algorithm with the algorithm by van Wassen-

hove and Gelders (Section 2.1); we can see the results on Table 1
(obtained with ECLiPSe [2] running on a 4 x UltraSPARC II 300
MHz with Solaris). Our algorithm performs better; moreover, the
speedup is higher in difficult instances. Our method is also appli-
cable to problems with more than two objective functions; in Table 2
timing results are given for problems with more criteria (obtained
with ECLiPSe running on a Pentium II 400 MHz with Linux).

Table 1. Experimental results on Multi-Knapsack with 2 objective
functions

Number of items van Wassenhove-Gelders Multi-B&B+Quad-tree
17 3.15 s 1.39 s
18 8.58 s 2.77 s
19 7.74 s 4.38 s
20 20.52 s 7.74 s
21 46.51 s 20.31 s
22 59.61 s 29.2 s
23 185.52 s 57.75 s
24 178.35 s 73.945 s
25 229.5 s 94.41 s
26 250 s 133.98 s
27 600.22 s 196.19 s
28 888.8 s 325.12 s
29 2133.42 s 659.23 s
30 3693.23 s 1207.17 s

Table 2. Experimental results on Multi-Knapsack with more objective
functions

Number of Items 2D 3D 4D
10 0.04 s 0.09 s 0.14 s
11 0.06 s 0.11 s 0.33 s
12 0.09 s 0.2 s 0.46 s
13 0.13 s 0.33 s 0.97 s
14 0.21 s 0.68 s 1.76 s
15 0.34 s 1.62 s 3.45 s
16 0.4 s 2.25 s 9.11 s
17 0.79 s 5.67 s 10.31 s
18 1.8 s 7.9 s 24.72 s
19 2.45 s 16.98 s 53.47 s
20 4.7 s 24.06 s 144.97 s
21 11.37 s 57.04 s 286.65 s
22 18.07 s 63.31 s 507.9 s

We also performed some tests on random CSPs, generated as pro-
posed in [13]. A CSP is generated given four parameters: the number
n of variables, the sized of each domain, the probabilityp that a
constraint exists on a couple of variables and the conditional proba-
bility q that a couple of assignments are inconsistent given that the
variables are linked by a constraint. For simplicity, we randomly gen-
erated linear objective functions. In the graph in Fig. 5, each bar rep-
resents the average of ten problems, withn = 10, d = 15, constraint
densityp ranging from 20 to 100%, and tightnessq from 10 to 90%.

20 30 40 50 60 70 80 90 100

90

80

70

60

50

40
30

20
10

1

10

100

1000

10000

100000

S
ec

o
n

d
s

Density

Tightness

Figure 5. Performance of Multi-B&B on randomly-generated MOPs

In Fig. 6 the ratio of the timing results for the same problems is
shown. Our algorithm is up to 18 times faster than the algorithm
by van Wassenhove-Gelders, while it is never worse than 32%. It is
worth noting that the instances in which our algorithm is slower than
van Wassenhove-Gelders are usually easy instances. For example,
the worst ratio is 0.75, which is due to problems solved on average
in 0.082 seconds by Multi-B&B and in 0.062 by van Wassenhove-
Gelders. On the other hand, one of the best ratios (nearly 18), was ob-
tained in a class of problems where van Wassenhove-Gelders took on
average 13067 seconds (about 3 hours and a half) while our method
was able to find the non-dominated frontier in about 12 minutes.

5 Related work

Usually, multi-criteria problems are addressed by translating the
problem into one or more problems with a single objective, each

20 30 40 50 60 70 80 90

10
0

90

60

30

0.1

1

10

100

Ratio

Density

Tightness

1-2

0-1

-1-0

Figure 6. Ratio of computation time of WG and Multi-B&B

solved through standard single objective algorithms. Some methods
convert the MOP into a COP. TheWeighting Objective Method[17]
considers a linear combination of the objective functions, with posi-
tive coefficients that sum up to one. The coefficients are assumed be-
forehand, and they can be varied to obtain other solutions. However,
if the problem’s criterion space (i.e., the image through the objective
functions of the set of solutions) is not convex, there is no guarantee
that all the nondominated points can be generated.

TheHierarchical MethodandTrade-Off Method[17] rank the ob-
jective functions in order of importance. A solutionS′ is found op-
timizing only the most important function (sayf1), then functionf1

is converted into a constraint; the obtained problem is then solved
optimizing with respect to functionf2 and so on.

The Global Criterion Method[14] tries to minimize a distance
from the ideal solution. The ideal solution is computed by solving
all the COPs with only one objective function. The ideal value for
the functionfi is obtained by solving the problem with onlyfi as
objective function; in this way an ideal vectorS0 = (s0

1, . . . , s
0
m)

is obtained. Now a new COP is solved whose objective function is

f(x) =
∑m

i=1

(
s0

i−fi(x)

s0
i

)p

, wherep defins the type of distance.

In Goal Programming[17] [7] the objectives are conceptualized
as goals, then priorities or weights are defined for goals. Now, devi-
ational variables are defined to measure how much a given goal has
been achieved. For instance, for an objectivemax(fi(x)) (i.e., max-
imizefi(x)) a goal is defined: it can be a realistic or utopian valueti.
Then the goal is changed into two constraints statingfi(x) − d−i =
ti, d−i ≥ 0. We obtain a problem with more variables, where we have
to minimize all thedi; this problem is usually addressed by weight-
ing factors or priorities, falling thus in one of the previous categories.

Note that all these methods do not provide the whole efficient fron-
tier (the set of non dominated points), but they only find one solution
that will hopefully satisfy the user. Also,Interactive methods(that
try to interact with the user to find a solution that he/she finds accept-
able) have been described [17].

Various methods have been developed for the linear case [12]
(where constraints are linear), but they are beyond the scope of this
work. The interested reader can refer to [17].

It is worth noting that all these methods try to translate a MOP
into one or more COPs; they do not address directly the MOP prob-
lem. Other methods address the MOP but are incomplete, exploiting
genetic algorithms [4] or tabu search [6].

6 Conclusions

We presented an algorithm that extends Branch-and-Bound for
Multi-criteria Optimization in CLP(FD). The algorithm is complete,
meaning that it finds the whole non-dominated frontier. It is applica-
ble to any CSP, as it does not make any assumption on the structure
of constraints, nor on the type of objective functions. It infers no-
goods for each feasible solution found and it uses Point Quad-Trees
to efficiently store the set of nogoods. We compared the algorithm
with a widely used method and it resulted more efficient, particu-
larly in the difficult instances, both in multi-knapsack problems and
in randomly-generated problems.

ACKNOWLEDGEMENTS

I would like to thank Carmen Gervet and Michela Milano for very
useful suggestions on this work. I also wish to thank the anonymous
referees for their comments.

REFERENCES
[1] M. Carlsson, J. Wid́en, J. Andersson, S. Andersson, K. Boortz, H. Nils-

son, and T. Sj̈oland, ‘SICStus prolog user’s manual’, Technical Report
T91:15, Swedish Institute of Computer Science, (June 1995).

[2] ECRC and IC-Parc,ECLiPSe User Manual, Release 5.2, IC-Parc, Im-
perial College, London, UK, 2001.

[3] R.A. Finkel and J.L. Bentley, ‘Quad trees: A data structure for retrieval
on composite keys’,Acta Informatica, 4(1), 1–9, (November 1974).

[4] C.M. Fonseca and P.J. Fleming, ‘An Overview of Evolutionary Al-
gorithms in Multiobjective Optimization’,Evolutionary Computation,
3(1), 1–16, (Spring 1995).

[5] C. Gervet, Y. Caseau, and D. Montaut, ‘On refining ill-defined con-
straint problems: A case study in iterative prototyping’, inPACLP-99,
pp. 255–275, London, (1999).

[6] M.P. Hansen, ‘Tabu search for multiobjective optimization: MOTS’, in
13th International Conference on Multiple Criteria Decision Making
(MCDM’97), Cape Town, South Africa, (January 1997).

[7] Y. Ijiri, Management Goals and Accounting for Control, North Holland,
Chicago, 1965.

[8] E.L. Lawler and D.E. Wood, ‘Branch-and-bound methods: a survey’,
Operations Research, 14(4), 699–719, (1966).

[9] S. Martello and P. Toth,Knapsack problems: algorithms and computer
implementations, John Wiley & Sons, 1990.

[10] V. Pareto,Cours d’Economie Politique, F. Rouge, Lausanne, 1896.
[11] S. Prestwich, ‘Three implementations of branch-and-bound in CLP’,

in Proceedings of Fourth Compulog-Net Workshop on Parallelism and
Implementation Technologies, Bonn, (September 1996).

[12] M.J. Rosenblatt and Z. Sinuany-Stern, ‘Generating the discrete efficient
frontier to the capital budgeting problem’,Operations Research, 37(3),
384 – 394, (May - June 1989).

[13] D. Sabin and E.C. Freuder, ‘Contradicting Conventional Wisdom in
Constraint Satisfaction’, inProc. of PPCP’94, volume 874 ofLecture
Notes in Computer Science, pp. 10–20, (May 1994).

[14] M.E. Salukvadze, ‘On the existence of solution in problems of opti-
mization under vector valued criteria’,Journal of Optimization Theory
and Applications, 12(2), 203–217, (1974).

[15] H. Samet, ‘Deletion in two-dimensional quad trees’,Communications
of the ACM, 23(12), 703–710, (December 1980).

[16] H. Samet, ‘The quadtree and related hierarchical data structures’,ACM
Computing Surveys, 16(2), 187–260, (June 1984).

[17] R.E. Steuer,Multiple Criteria Optimization: Theory, Computation, and
Application, Wiley, New York, 1986.

[18] E.P.K. Tsang,Foundation of Constraint Satisfaction, Academic Press,
1993.

[19] L.N. Van Wassenhove and L.F. Gelders, ‘Solving a bicriterion schedul-
ing problem’,European Journal of Operational Research, 4(1), 42–48,
(1980).

[20] E. Zitzler and L. Thiele, ‘Multiobjective Evolutionary Algorithms: A
Comparative Case Study and the Strength Pareto Approach’,IEEE
Transactions on Evolutionary Computation, 3(4), 257–271, (1999).

