
Combining hypertree, bicomp, and hinge decomposition
�

Georg Gottlob and Martin Hutle � and Franz Wotawa ���

Abstract. Solving Constraint Satisfaction Problems (CSP) is in
general NP-complete. If the structure of the CSP is a tree, then the
computation can be done very effectively in a backtrack-free man-
ner. There are several methods for converting CSPs in their tree-
structured equivalent, e.g., hinge decomposition. More recently hy-
pertree decomposition was developed and proved to subsume all
other previously developed structure-based decomposition methods.
In this paper we report recent results of a hypertree-decomposition
implementation. We further have combined hypertree decomposi-
tion, biconnected component decomposition (bicomp), and hinge de-
composition to improve running time and to make hypertree decom-
position applicable on larger CSP instances. The formal requirements
and the empirical results of the combined algorithms are reported.

1 Introduction

Solving Constraint Satisfaction Problems (CSP) is in general in-
tractable but there are various subsets of CSPs that can be solved
in polynomial time. Some of them can be identified by analyzing
the structure of the CSP. If the CSP is tree-structured, then there ex-
ists a very efficient algorithm for solving the CSP. Therefore, much
effort has been spent in compiling CSP to their tree-structured equiv-
alent. These decomposition techniques include biconnected compo-
nent [4] (BICOMP), hinge [8] (HINGE), and more recently hyper-
tree decomposition [6, 5] (HYPERTREE). Gottlob and colleagues [7]
compared different structural decomposition methods. They proved
that hypertree decomposition is the most general method. Although,
the complexity of hypertree decomposition is polynomial in the hy-
pertree width, some problem instances can hardly be solved in rea-
sonable time. Our empirical analysis showed that hypertree decom-
position runs out of memory even for a CSP describing a 32-bit dig-
ital full adder (which comprises 160 constraints) on a SPARC Ultra
1 with 512 MB of main memory. The used implementation based on
a slightly improved version of the opt-k-decomp algorithm given
in [6]. There are other structural decomposition method we have not
considered in our current work, e.g., tree clustering [3] and (hyper)
cutset [2]. These methods should be considered in future extensions.

In this paper we describe the empirical results when applying
opt-k-decomp to different problem instances, and show how the
algorithm can be improved. The main idea of the combination is to
first apply BICOMP on the original problem, then HINGE on the
nodes of the resulting tree, and finally HYPERTREE. This saves time
because the more time consuming decomposition methods are ap-
plied on smaller instances of the original problem. All of them com-
pute the decomposition in polynomial time. From [7] we know that
�

This work was partially supported by Austrian Science Fund project N Z29-
INF and DaimlerChrysler.�
Technische Universität Wien, Institut für Informationssysteme, Database
and Artificial Intelligence Group, Favoritenstraße 9-11, A-1040 Vienna,
Austria, email: � gottlob,hutle � @dbai.tuwien.ac.at	
Technische Universität Graz, Institute for Software Technology, Inf-
feldgasse 16b/II, A-8010 Graz, Austria, email: wotawa@ist.tu-graz.ac.at

Authors are listed in alphabetical order.

both BICOMP and HINGE are weaker than hypertree decomposition
with respect to their width.

Our experimental results show that for some instances this combi-
nation of decomposition methods lead to a substantial improvement
of running time. In order to combine the approaches we introduce
an unified framework and describe the combination process in de-
tail. Without restricting generality we assume that the hypergraphs
of the CSPs are connected and reduced. Note that the connected sub-
hypergraphs of such an unconnected hypergraph can be solved inde-
pendently.

�
�

��� ���

���

���

���

���

���

� �

���

���

� �

� �

���

���
���

� �

���

Figure 1. A hypergraph associated with a CSP (taken from [8])

This paper is organized as follows. In Section 2 and Section 3 we
describe the biconnected component decomposition and the hinge
decomposition respectively. In the next section we introduce the
combination of BICOMP, HINGE, and HYPERTREE. After that we
present empirical results of the decomposition techniques and their
combination. Finally, we conclude the paper.

2 Biconnected component decomposition

A biconnected component of a graph ���! #"%$'&)(is a maximal set
of vertices *,+-" such that its induced subgraph of � is connected
and remains connected after any one-vertex removal, i.e., * has no
separating vertex. In particular biconnected component can be a sin-
gle vertex that is not element of another biconnected component. It
is well known that all biconnected components of a graph � can be
computed in linear time. In [1] an algorithm for computing all bicon-
nected components is given.

In order to make use of biconnected components for decomposing
a CSP we first map the hypergraph . that is given by the variables
and the scopes of the constraints to its primal graph �/�0 #"%$'&)(. Any
node 1324" represents a variable of the CSP. Two nodes 1 � $51 � 23"
are connected if they are element of the same hypergraph edge. In the
next step the biconnected components 6 of the primal graph � are

computed. These biconnected components naturally induce a tree-
structured decomposition

����� $�� � $�� �
	
where � �

maps nodes from���
to a set of associated constraints and � �

maps nodes from
���

to
a set of associated variables. For convenience we further introduce
the function ��
�
�� returning the root of the decomposition, and the
functions ������� 1�� , ������� �!��� 1 returning the parent and the children of
a given node, respectively.

A biconnected component decomposition of the given graph �
can be obtained as follows. Let 6 be the biconnected components of
� .

1. Let " be the empty set.
2. Select an element � from 6 and remove it. Create a node 1 with� � 1�(�#� .
3. Add 1 to

� �
and " , and let it be the root of the tree, i.e., 1 �$��
�
�� .

4. The tree is constructed in a breadth first manner. This is done by
successively processing all nodes in " . Each node 1 is processed
as follows:

(a) Remove 1 from " .

(b) For each �&%�2 6 with ��%�'(� � 1�(*)�,+ do:

i. Create a new node 1 % and add it to
� �

and " . This node will
be processed after all other nodes in " are processed.

ii. Update the data structure. Let ������� �!��� 1% 1 % (� + ,���-��� 1�� 1 % (� 1 , � � 1 % (�,� % , and add 1 % to �.����� �!��� 1% 1�(.
5. For each node 142 ���

update the � �
value. This value is given by� � 1�(�0/� �1 � $.2.232 $�154 (36 �1 � $.2.2.2 $7154 (20.98:/&1 � $32.2.2 $�1;4;< +� � 1�(�< .

6. Return
����� $=� � $�� �>	

.

Figure 2 shows he result of BICOMP when applied on the hyper-
graph which is given in Figure 1. We see that the only variable that
is shared between the vertex /�? � $�? � $�? 	 $�?
 $�?&@&< and vertex /�?�A�< is1
 . The same holds for other connected vertices as specified by the
following propositions.

� �CB ��� B ��� B � � B ���

� � � �

���

Figure 2. The resulting tree after applying BICOMP.

Proposition 2.1 Let
����� $�� � $�� �>	

be a biconnected component de-
composition and 1 $ 1 � $51 � 2 ���

be nodes where 1 is not the root
node and 1 �)� 1 � .
D 1 does exactly share one variable with its parent.

� � 1�(�'E� � F���-��� 1�� 1�(5(
�9/&1�<
D No two different nodes share the same constraints.

� � 1 � (�'(� � 1 � (�,+
From the definition of biconnected components the following

proposition follows immediately.

Proposition 2.2 Let
��� � $�� � $�� � 	

be a biconnected compo-
nent decomposition and let 1 2 ���

be a node, thenGIHFJ�K.L M M M L J�NPO�Q!R�STH 4 O /�1 � $.2.2.2 $�15UV< �$� � 1�(.
There are no elements in � �

that are not covered by a constraint,
i.e., a hyper-edge, in � �

. Moreover, the connectedness condition that
holds for every node of a hypertree decomposition also holds for
nodes of a biconnected component decomposition. The connected-
ness condition says that if a variable 1 is element of � � 1�(and� � 1 % (, then 1 must be element of � � 1 % % (where 1 % % lies on the
path between 1 and 1�% . This condition must be true because of fol-
lowing observation. Assume variable 1 occurs in � � 1�W (of one or
more nodes 1 � , . . . , 1YX . If Z �\[, the variable 1 cannot be element of� �

of another node 1�%P)�-1 because of the definition of biconnected
components. Otherwise, there must be a direct connection between
the nodes 1 � $.2.2.2 $ 1 X . Hence, the condition is valid.

Lemma 2.3 The connectedness condition holds for the biconnected
component decomposition.

This lemma is important to ensure that a hypertree decomposition
can be combined with biconnected component decomposition.

3 Hinge decomposition

Gyssen et al. [8] introduced the concept of hinge decomposition for
decomposing CSPs. HINGE can be seen as an extension of BICOMP,
since HINGE makes use of separating edges instead of separating
vertices. Hinges are defined as follows:

Definition 3.1 (Hinge) Let #"%$'&)(be a reduced and connected hy-
pergraph, and let . be either & or a proper subset of & containing
at least two edges. Let . � $.2�232 $'.]U be the connected components
of &_^ . with respect to . . The . is called a hinge if, for � �[�$.2.2�2 $a` , there exists an edge ��W in . so that G .bW (7' G .3(+c��W .
The edge ��W is called a separating edge for .dW .

This definition makes use of the notation of connected components
with respect to a set . + & . A set e + &,^ . is called connected
with respect to . if, for any two edges � $�f 2ge , there exists a
sequence � � $.2.2.2 $�� 4 of edges in e such that (i) � � �h� ; (ii) for���\[�$�2.232 $51i^:[, � W 'i� W j � is not contained in

G . ; and (iii) �&4 �#f .
The maximal connected subsets of &k^-. with respect to . are
called the connected components of &,^ . with respect to . .

A separating edge partitions the hypergraph into (one or more)
sub-hypergraphs which are connected only by this edge. Therefore,
when we compute all minimal hinges, i.e., hinges that do not contain
any other hinge, we can build up a tree with the hinges as vertices
that are connected by their separating edge.

Definition 3.2 (Hinge-tree) Let #"%$'&)(be any hypergraph. A hinge-
tree of #" $'&)(is a tree �l $7m (with nodes l and labeled arcs m , so
that:

1. The tree nodes are minimal hinges of #"%$'&)(.
2. Each edge in & is contained in at least one tree node.
3. Two adjacent tree nodes share precisely one edge of E which is

also the label of their connecting tree arc; moreover, their shared
vertices are precisely the members of this edge.

4. The vertices of " shared by two tree nodes are entirely contained
within each tree node on their connecting path.

An algorithm for computing hinge-trees can be found in [8]. Com-
puting a hinge-tree is of order n 76 "E6!o�6 &:6 � (when representing the

edges as bit arrays. When storing the vertices of an edge as a sequen-
tial collection (e.g., a linked list, array) n �`9o36 &:6 � (can be achieved,
where ` is the maximal number of vertices in an edge.

The hinge-tree of the example CSP from Figure 1 is depicted
in Figure 3. Hinge-trees can also be represented as hypertrees��� � $7� � $�� � 	

, with:

D � � are all nodes of the hinge-tree.D � � of a node is equal to the edges (e.g., constraints) stored in the
node.D � � of a node is equal to the variables of the node’s edges.

��� B � �

� � B � � B � � B � �

��� B ��� ��� B ������ B ���

Figure 3. A resulting tree after applying HINGE.

From the definition of hinge-trees follows immediately that hinge-
trees and their equivalent hypertrees fulfill the connectedness condi-
tion.

4 Combining biconnected component, hinge, and
hypertree decomposition

In this section we introduce how the considered decomposition tech-
niques can be combined. The basic idea is to first use the result of one
decomposition technique and then apply the other technique on the
subproblems that are induced by the � sets of the nodes. What we get
is a incremental refinement of the hypertree. Due to the hierarchy of
decomposition methods given in [7] it make only sense to apply BI-
COMP on the original hypergraph. Take the result and apply HINGE
(to all biconnected components), and finally apply HYPERTREE (to
all hinges).

The following algorithm takes a hypertree that is computed by
one decomposition method and applies the second decomposition
method on the resulting nodes. In order to get a correct decompo-
sition the algorithm has to take care of the intersection variables be-
tween the � sets of connected nodes.

Algorithm combine(
� � $ � � $'.)

Input: 2 decomposition methods
� � $ � � , where

� � is weaker than� � with respect to their width; . the hypergraph of a CSP.
Output: A hypertree representing the decomposed CSP

1. Take . and compute the decomposition
��� � $�� � $�� � 	 with method� � .

2. Return travTree (� � � $�� � $�� ��� $ � �)
Algorithm travTree(� � � $=� � $�� ��� $ � �)

Input: A hypertree � � � $�� � $�� � � ; a decomposition method
� � .

Output: A hypertree representing the decomposed CSP

1. Let
��� $���$�� 	

be an empty decomposition.

2. Starting from the root of
� � traverse the tree in a breadth first

manner and process each node. A node 1 is processed as follows:

(a) Compute a decomposition
��� � $7� � $�� � 	 for the CSP that is in-

duced by � � 1�(using method
� � . If 1 is not the root node of� � , then the � � value of the root node of

� � must contain the
elements � , where � �,� � 1�(�'E� � F������� 1�� 1
(5(.

(b) Add all vertices and arcs of
� � , the entries of � � and � � to��� $���$�� 	

.

(c) If 1 is not the root node, make an arc in
�

from ��
�
�� � � (to
a node ` of the

� � decomposition of ������� 1�� 1�((which is an
element of

�
) where � + � � �`3(. If ��
�
�� � � (and ` have the

same � value, then ��
�
�� � � (can be removed from the resulting
decomposition and all arcs going to ��
�
�� � � (are redirected to` .

3. Return the resulting decomposition
��� $���$a� 	

.

Figure 4 shows the result when applying one decomposition
� �

to the result of another decomposition
� � . The root node of the con-

verted subtree of node 1 must have the variables � in its � set, i.e.,� + � F������� 1�� 1
(5(. One of the nodes that have the variables �#%
in their � set must be connected with the root nodes of the converted
trees of 1 ’s children.

Decomposition Method D

Decomposition Method D

M

children(n)

parent(n)

n

M

M’

M

M’

1

2

Figure 4. The idea behind combine and travTree

The combine algorithm can be extended to combine an arbitrary
number of decomposition methods. Assume

� � $32.2.2 $ � 4 where
� W

is weaker than
� W j � with respect to their width. The general combi-

nation algorithm combine+ is given by:

combine+ � � $.2.2.2 $ � 4 $'.3(�
�
� � � .3(if n=1

travTree � 4 $ combine+ � � $.232.2 $ � 4�� � $'.3(5(otherwise

In the empirical results section the combination of all three de-
composition method is called HYBRID. HYBRID is defined as
combine+(HYPERTREE,BICOMP,HINGE, .)where . is the orig-
inal hypergraph of the CSP.

In the following we argue about the correctness of combine.

Definition 4.1 (OEIC property) A decomposition method
�

for a
CSP is said to have the One Edge Interface Covering (OEIC) prop-
erty iff the intersection of the variables of an arbitrary vertex 1 and

Figure 5. The adder example decomposed by different decomposition
strategies

Figure 6. The adder example for larger problem sizes

Figure 7. The switch&bulb example decomposed by different
decomposition methods

Figure 8. The switch&bulb example for larger problem sizes

its parent are completely covered by one edge in �� 1
(and one edge
in �� F���-��� 1�� 1�(5(.

The OEIC property of the weaker decomposition method
� � of

the combination algorithm is important to ensure that an arc can al-
ways be added to the resulting tree during computation in step 2c of
the travTree algorithm. However, this property is not sufficient. It
must also be guaranteed that it is always possible to compute a de-
composition of the induced sub-problem of a vertex 1 (that is given
by its edges) where the root captures all intersecting variables of 1
and 1 ’s parent.

Theorem 4.1 Let
� � , � � be two decomposition methods. A CSP

can be correctly decomposed using combine iff:

D � � has the OEIC property.D � � returns a tree whose root contains a given hyperedge of the
hypergraph to be decomposed.

It is obvious that both conditions of Theorem 4.1 hold for BICOMP
and HINGE. But the second condition does not hold in general for
minimal width hypertree decomposition, or for hypertree decomposi-
tions of a given width. The requirement that the variables of a certain
edge must appear in the root may, in general, increase the width of a
decomposition. However, in the special case where for each node 1 ,

� 1�(always contains all variables of 1 , the second condition is sat-
isfied. If there is no solution of HYPERTREE of a given width where
the second condition satisfied, then there must be a decomposition of
a larger width where the condition is true. In the worst case the hy-
pertree width of the decomposition is equal to the number of edges
of the problem. However, in all examples we have used to test com-
bine it was always possible to find a decomposition that captures
the given variable set.

5 Empirical results

We implemented our approach in Cincom Smalltalk VisualWorks
5i.4 to gain empirical results for the decomposition methods and
their combination. For this purpose we used three scalable CSP ex-
amples, i.e., a digital full adder, an electronic bridge circuit, and a
switch&bulb example. The adder is a model of a full adder where
the constraints represent the logic gates. By connecting the outgoing
carry of such an adder with another instance of the adder we get a se-
quence of full adders of arbitrary length. The bridge circuit is formed
by resistors. There the sequence is achieved also by connecting their
inputs and outputs. The switch&bulb example is another electrical
circuit where the single elements of the sequence are loosely cou-
pled by a bulb that drives a photo-resistor. These examples have the
major advantage that they are scalable. Therefore, they allow us to
test our approach on problems of different sizes.

All measures were taken on a Windows 2000 Workstation with
1.5GB RAM and an AMD Athlon 1.2 GHZ CPU. Each running time
was measured five times and averaged to obtain a single value. The
running times are given in milli-seconds. In order to avoid garbage
collecting of the Smalltalk engine during the tests, we invoke the
system’s garbage collector each time before starting a single mea-
surement run.

The full adder example: For the first tests we measured how dif-
ferent decomposition methods perform on the adder example. Let’s
consider a sequence of 1 instances, i.e. an 1 -bit adder. BICOMP and
HINGE can decompose the problem very well so that for increas-
ing 1 the bicomp- and the hinge-width remains constant. Therefore,
we have a very good performance for our HYBRID decomposition
method. The empirical results obtained for 1- to 10-bit adders are
given in Figure 5. Note that the y-axis shows the execution time in
milliseconds on a logarithmic scale. The x-axis shows the number of
bits of the adder. Since each adder comprises of five constraints this
value has to be multiplied by five to yield the number of constraints.
BICOMP and HINGE perform much better than HYPERTREEwith

increasing number of bits. The hypertree decomposition can - in con-
formity with the theory - easily be identified with a complexity lower
than exponential (which would be a straight line in the logarithmic
scale). The hybrid decomposition methods require a little bit more
time than BICOMP and HINGE because they had to perform addi-
tional computations. However, the additional required running time
is the same for all hinges respective biconnected components. There-
fore, we only get a small linear overhead. The fluctuations of the
curves for small time measures are due to inaccuracies of these small
intervals.

To get rid of this and better analyze the different hybrid methods
we took HYPERTREE out of the race and increased the number of
full adders by 50 for each step (see Figure 6). Now the curves part
into two groups: those that use BICOMP (with linear running time)
and those that use only HINGE (with cubic running time). Note that
the fluctuations of HINGE and HINGE+HYPERTREE are not due to
incorrect measurements, indeterministic influences, or system loads.
All values are averaged over 5 measures and both methods have the
peaks at the same points. In addition we measured first all methods
for one instance size and then proceeded with the next size. Since the
other methods had not this peaks we expect that implementation spe-
cific parameters generate this peaks. In particular the hash and grow
functions of the Smalltalk set implementation are good candidates as
the source of this phenomenon.

The Switch and Bulb Example: Like the adder example, this
scalable problem can be decomposed by BICOMP and HINGE.
Therefore, the results are very similar to those of the adder. Figure
7 shows the results for all methods and sequences of 1 to 10 switch
and bulb circuits. Figure 8 omits HYPERTREE and yields the running
time results for larger instance sizes.

The Bridge Example: The Bridge example can be separated only
into 7 hinges, independent of the size. 6 of those hinges are just small
subproblems. Therefore, there is one large hinge that contains al-
most the whole hypergraph. So HYBRID is just a little bit faster than
HYPERTREE. The measurements underpin this observation. Only
HINGE and BICOMP are significant faster than the hypertree decom-
position but they lead to decompositions with a width that depend on
the CSP size. I.e., if the instances become larger the width increases
as well.

Finally, we compare the different examples decomposed with a
full hybrid decomposition (BICOMP,HINGE,HYPERTREE). What
we see is that all times BICOMP and HINGE allow to decompose the
original problem in smaller sub-problems, HYBRID shows a very
good running time performance. If BICOMP and HINGE do not lead
to sub-problems of a small width, there is almost no performance

Figure 9. The performance of different decomposition methods on the
bridge example

gain. However, since both decomposition techniques can be per-
formed in a very short time compared to HYPERTREE it is always
a good idea to make use of them. Although in cases where HYPRID
does not lead to a substantially better running time performance, it
performs equally well than HYPERTREE alone (see the results for
our bridge circuit example).

6 Conclusion

In this paper we introduce a framework for combining hypertree
decomposition, hinge decomposition, and biconnected components
decomposition. Moreover, we presented first empirical results that
show that the combined HYPRIDmethod improves running time and
allows the application of hypertree decomposition on larger problem
instances. Although, performance gain of HYPRID depends on the
underlying structure of the CSP, the overhead costs are small. Even
for CSPs where HINGE or BICOMP cannot be applied well, the run-
ning time of the HYPRID method is almost equal to the running
time of HYPERTREE alone. Since the proposed combination does
not guarantee to work on all CSP instances, future research should
deal with improving opt-k-decomp with respect to its space and
time requirements.

REFERENCES
[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of

Computer Algorithms, Addison-Wesley Publishing Company, 1974.
[2] Rina Dechter, ‘Constraint networks’, in Encyclopedia of Artificial Intel-

ligence, 276–285, Wiley and Sons, (1992).
[3] Rina Dechter and Judea Pearl, ‘Tree clustering for constraint networks’,

Artificial Intelligence, 38, 353–366, (1989).
[4] Eugene C. Freuder, ‘A Sufficient Condition for Backtrack-Bounded

Search’, Artificial Intelligence, 32(4), 755–761, (1985).
[5] Georg Gottlob, Nicola Leone, and Francesco Scarcello, ‘Hypertree De-

composition and Tractable Queries’, in Proc. 18th ACM SIGACT SIG-
MOD SIGART Symposium on Principles of Database Systems (PODS-
99), pp. 21–32, Philadelphia, PA, (1999).

[6] Georg Gottlob, Nicola Leone, and Francesco Scarcello, ‘On Tractable
Queries and Constraints’, in Proc. 12th International Conference on
Database and Expert Systems Applications DEXA 2001, Florence, Italy,
(1999).

[7] Georg Gottlob, Nicola Leone, and Francesco Scarcello, ‘A compari-
son of structural CSP decomposition methods’, Artificial Intelligence,
124(2), 243–282, (December 2000).

[8] Marc Gyssens, Peter G. Jeavons, and David A. Cohen, ‘Decomposing
constraint satisfaction problems using database techniques’, Artificial In-
telligence, 66, 57–89, (1994).

