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Abstract. Due to the proliferation of online auctions, there is an
increasing need to monitor and bid in multiple auctions in order to
procure the best deal for the desired good. Against this background,
this paper reports on the development of a heuristic decision making
framework that an autonomous agent can exploit to tackle the prob-
lem of bidding across multiple auctions with varying protocols (in-
cluding English, Dutch and Vickrey). The framework is flexible, con-
figurable and enables the agent to adopt varying tactics and strategies
that attempt to ensure the desired item is delivered in a manner con-
sistent with the user’s preferences. In this context, however, the best
strategy for an agent to use is very much determined by the nature of
the environment and by the user’s preferences. Given this large space
of possibilities, we employ a genetic algorithm to search (offline) for
effective strategies in common classes of environment. The strategies
that emerge from this evolution are then codified into the agent’s rea-
soning behaviour so that it can select the most appropriate strategy
to employ in its prevailing circumstances.

1 INTRODUCTION

Online auctions are a popular and effective medium for procuring
goods and services. However, as the number of auction sites in-
creases (there are currently more than 2000 [1]), consumers are faced
with the problem of monitoring many sites, picking which auction to
participate in, and making the right bid to ensure that they get the de-
sired item under conditions that are consistent with their preferences.
These processes of monitoring, selecting and making bids are both
complex and time consuming. The task becomes even more complex
when there are different start and end times and when the auctions
employ different protocols (e.g. English, Dutch, Vickrey). To assist
consumers in this task, simple bidding robots and auction search en-
gines have been developed. However, they typically have the problem
of only automating part of the process, or only being able to operate
at a single auction site, or only operating with a single auction proto-
col.

To address these shortcomings, it is necessary to develop an au-
tonomous agent that can participate in multiple heterogeneous auc-
tions, that is empowered with trading capabilities and that can make
purchases autonomously. In more detail, the agent should monitor
and collect information from the ongoing auctions, and determine
what price it should bid in each auction. Given the complexity, dy-
namism and time-constrained nature of this environment, the most
practical basis for the agent’s decision-making model is a heuristic
one. To this end, [2] reports on the development of such a decision-
making framework. In this model, the agent’s behaviour is expressed
as a series of tactics and strategies that vary the agent’s bidding be-
haviour according to the user’s objectives and the prevailing auction
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context. The empirical evaluation of this model showed the benefits
of being able to act across multiple auctions, but also highlighted the
high degree of dependence between the efficacy of an agent’s strat-
egy and the environment it was operating in. Given this observation,
the aim of this paper is to determine what strategies are effective in
a range of common environments. To achieve this, we decided to
use genetic algorithms (GAs) since they are a well-proven method of
searching large problem spaces [8]. Thus, we evolve agent strategies
in an offline fashion and codify the result of this process into a meta-
level reasoner that can select the strategy according to the agent’s
assessment of its prevailing context.

The remainder of the paper is structured as follows. Section 2
presents an overview of the decision-making framework. Section 3
describes how GAs were used to evolve bidding strategies accord-
ing to the target environment. Section 4 reports on the outcomes of
this evolution process. Section 5 discusses related work and Section
6 presents our conclusions and further work.

2 BIDDING STRATEGY FRAMEWORK

Before describing the decision-making framework, it is necessary to
detail our assumptions about the environment. Firstly, we consider
three auction protocols: English, Dutch and Vickrey (three of the
most common types). Secondly, all auctions have a known start time
and English and Vickrey auctions have a known end time. Thirdly,
our bidding agent is given a deadline (tmax) by when it must obtain
the desired item and it is told the consumer’s private valuation (pr)
for this item. Fourthly, the agent must not buy more than one instance
of the desired item.

The agent’s decision-making model works in the following man-
ner (see [2] for a complete description). The bidder agent builds an
active auction list (auctions that have started but not reached their
end times, denoted asL(t)) and gathers relevant information (e.g.
start and end times, current bid values) about them. It then calculates
the current maximum bidit is willing to make at thecurrent time.
This current maximum bid, by definition, will always be less than
or equal to the private valuation. To determine the current maximum
bid, the agent considers severalbidding constraintsincluding the re-
maining time left, the remaining auctions left, the user’s desire for a
bargain and the user’s level of desperateness. For each such bidding
constraint, there is a corresponding function that suggests the value
to bid based on that constraint at that time. These (polynomial) func-
tions (based on [6]) are parameterized by two key values:k (range
[0..1]) is a constant that determines the value of the starting bid andβ
(range [0.005 - 1000]) defines the shape of the curve (and so the rate
of concession topr). As an example, whenk ≥ 0.5 andβ ≥ 1, the
agent demonstrates a reasonable degree of desperateness and starts
bidding close topr and quickly reachespr. At the other extreme,
the agent can demonstrate hard bargaining behaviour (k < 0.5 and



β < 1), where it makes a low initial bid and only concedes up topr

in a very slow fashion. All behaviours in between are also possible
by setting the parameters appropriately. At any given time, the agent
may consider any of the bidding constraints individually or it may
combine them depending on the situation (what the agent sees as be-
ing important at that point in time). If the agent combines multiple
bidding constraints, it allocates a weight to each of them to denote
their relative importance. The set of functions is referred to as the
tactics and the combination of these tactics are referred to as the
strategy. Based on the value of the current maximum bid, the agent
selects the potential auctions in which it can bid and calculates what
it should bid at this time in each such auction. The auction and cor-
responding bid with the highest expected utility is then selected from
the potential auctions as the target auction. Finally, the agent bids in
the target auction.

A series of experiments were conducted in a controlled environ-
ment to test the efficiency (in terms of success rate and average pay-
off) of the agent’s strategy (details can be found in [2]). The results
of these experiments led to several conclusions. Firstly,pr is one of
the most important factors that needs to be considered when deter-
mining the strategy that should be employed by the agent. This is
important, for example, since an agent with a very lowpr cannot
practically look for a bargain and the agent should therefore consider
this when accepting the user’s preferences. The second observation
is that the remaining time and auction tactics are the key determi-
nants of successful behaviour. Thirdly, the strategies to be used by
the agent need to be dynamic, since not all strategies work well in all
situations. Thus, a successful strategy in one situation may perform
badly in another. Nevertheless, it is possible to determine that certain
classes of strategy are effective in environments that have particular
characteristics. In this case, the key defining characteristics of an en-
vironment were found to be the number of auctions that are active
beforetmax and the time the agent has to purchase the item. Given
this, it was decided to evolve strategies that are effective in these
classes of environment.

3 EVOLVING STRATEGIES

The performance of the bidding agent is heavily influenced by the
strategy employed, which, in turn, relates to the values ofk andβ in
the given tactics and the weights for each tactic when these are com-
bined. The number of strategies that can be employed is infinite, so,
therefore, is the search space. Thus, handcrafting strategies as in [2],
is not realistic in the long term. Thus, a means of automating the pro-
cess of finding successful strategies is necessary. Here, we decided
to use GAs to search offline for the most successful strategies in the
predefined environments. Taking account of the above experimen-
tal observations, we defined four such environments. The first one
(STLA) is where there is a short bidding time (10 ≤ tmax ≤ 20) and
a small number of active auctions in the marketplace (|L(t)| ≤ 10).
The second environment (STMA) is where there is a short bidding
time but the number of active auctions is large (10 ≤ |L(t)| ≤ 45).
The third environment (LTLA) is where the allocated bidding time is
long (20 ≤ tmax ≤ 100) and where the number of active auctions is
small. Finally, the last environment (LTMA) is where there is a long
bidding time with many active auctions. Naturally, finer subdivisions
are possible but the focus here is in demonstrating that strategies can
be successfully evolved for broad classes of environment. Evolving
for these subcategories is left as future work at this point.

3.1 Encoding the Strategies

The individuals in the populations are the bidding agents and their
genes consist of the parameters of the four different tactics and the
relative weight for each tactic. The individuals are represented as an
array of floating points values of:

• k andβ for the remaining time left tactic (rt)
• k andβ for the remaining auctions left tactic (ra)
• k andβ for the desire for a bargain tactic (ba)
• k andβ for the desperateness tactic (de)
• the relative weights for the four tactics (wrt, wra, wba, wde)

3.2 Computing the Fitness Function

The fitness function measures how well the individual performs
against the others. Designing the fitness function is one of the key
facets of GAs and so here we consider three plausible alternatives.
These are the individual’s success rate in obtaining the item (Fitness
Equation I) and two variations based on the average utility. In the
first case (Fitness Equation II), the agent gets a utility of 0 if it fails
to obtain the item. If it is successful, the utility(U) of winning in
an auctioni with bid v is computed asUi(v) = ((pr − v)/pr) + c,
wherec is an arbitrary constant ranging from 0.001 to 0.005 (these
values were picked by empirical evaluation) to ensure that the agent
does not get a utility of 0 when the winning bid is equivalent to the
private valuation. The second utility function (Fitness Equation III) is
similar to Fitness Equation II but the individual is penalised if it fails
to get the item. In this case, the penalty incurred ranges from 0.001
to 0.005. These values were chosen to analyse how the population
evolves with varying degrees of penalty. Intuitively, Fitness Equation
I should be used if delivery of the item is of utmost important, Fitness
Equation II should be used if the agent is looking for a bargain and
Fitness Equation III should be used when delivery of the item and
looking for bargain are equally important. The fitness score is then
computed by taking the average utility from a total of 2000 runs. It is
necessary to run these 2000 times to decrease the estimated standard
error of the mean to a statistically significant level (when the number
of runs is 500, the standard error of the mean is 5.0458, but this figure
is reduced to 1.1559 when the number of runs is increased to 2000).

 

Randomly create initial bidder populations; 
While not (Stopping Criterion) do 

Calculate fitness of each individual by running the 
marketplace 2000 times; 

 Create new population   
  Select the fittest individuals (HP); 

 Create mating pool for the remaining 
population; 

Perform crossover and mutation in the 
mating pool to create new generation(SF); 

  New generation is HP + SF; 
End while 

Figure 1. The Search for Strategy Algorithm



3.3 Searching for Successful Strategies

The algorithm for searching for acceptable strategies in a given envi-
ronment is shown in Figure 1 and is elaborated upon in the remainder
of this subsection.

3.3.1 Create Initial Bidder Population

The initial bidder populations represent the starting point of the
search and consist ofN = 50 individuals that are generated ran-
domly from the range of specified values. These values are based on
the polynomial functions defined in [2]. For the remaining time and
the remaining auctions left tactics, the values are0 ≤ k ≤ 1 and
0.005 ≤ β ≤ 1000. In the desire for a bargain tactic, the values are
0.1 ≤ k ≤ 0.3 and0.005 ≤ β ≤ 0.5. The values fork andβ in the
desperateness tactic are0.7 ≤ k ≤ 0.9 and1.67 ≤ β ≤ 1000.

3.3.2 The Selection Process

The purpose of the selection process is to ensure that the fitter indi-
viduals are chosen to populate the next generation in the hope that
their offspring will in turn have higher fitness. “Elitism” is used here
to force the GAs to retain some number of the best individuals at
each generation [8], since such individuals can be lost if they are
not chosen to reproduce or if they are destroyed by crossover and
mutation. Ten percent of the best individuals are copied to the new
population to ensure that a significant proportion of the fitter individ-
uals make it to the next generation. The remaining ninety percent of
the individuals in the population are then selected using Tournament
Selection [4]. The selection is performed by choosing some number
ψ (here 2) from the population and the best individual in this group
is copied into the intermediate population (which is referred to as
the mating pool). This process is repeated for 90% ofN times. This
selection technique is known to work well since it allows a diverse
range of fit agents to populate the mating pool [4]. Once the mating
pool is created, the individual with the highest fitness is selected and
moved to the new generation. The remaining individuals go through
the process of crossover and mutation before making it to the new
population. The new population includes a group of the fittest indi-
vidual and the offspring generated from the reproduction process.

3.3.3 The Crossover Process

This process exchanges the genes between the individual agents.
Two individuals are randomly selected from the mating pool with
crossover probability ofpc = 0.6, and the crossover point (c) is equal
to 2. Crossover probability is the rate at which the population ex-
changes genetic materials [8]. More specifically, two individuals are
picked from the population. Two crossover points are then randomly
picked. These points are where the two individuals will exchange
their genetic material. The exchanging of genetic material process is
performed using anextension combination operator[3], which works
by taking the difference between two values of the crossover point,
adding this difference to the higher (giving the maximum range) and
subtracting it from the lower (giving a minimum range). The new val-
ues are then generated between the minimum and maximum range.

3.3.4 The Mutation Proces

Mutation allows the population to explore the search space but at
a slower rate. In this work, the individuals from the population are

selected to mutate with a probability ofpm = 0.02. The gene from
the chosen individual is picked randomly and a small value (0.05)
is added or subtracted, depending on the range limitation for that
particular gene. The mutation process is only applied to the values of
k andβ for each tactic. The weights are not considered here because
adding a small value to the weight requires a renormalisation and
will have very little effect on the agent’s overall behaviour.

3.3.5 The Stopping Criterion

The process terminates when the population converges. This is the
condition where the population evolves over successive generations
such that the fitness of the best and the average individual in each
generation increase toward a global optimum [8] (here defined as the
highest peak in the search space [8]). In this case, the population
always converges before 50 iterations (typically between 24 and 40).

4 EXPERIMENTAL EVALUATION

The aim of these experiments is to determine which strategies are
effective in particular environments. The GAs are run in the four dif-
ferent environments (in which the agent’spr is set to 75). For each
environment, we use the three different fitness functions described in
Section 3.2. Apart from determining the strategies that work well in
a given context, these experiments also aim to evaluate the strategies
in terms of their success rate (the number of times, as a percentage,
the agent is successful in obtaining the item) and average payoff (in
terms of utility) in a similar manner to [2]. However, the key differ-
ence is that, here, the performance of the agents is evaluated based
on an environment that has a particular set of characteristics. The
performance of the evolved strategies is then compared with that of
a control modelC. C ’s strategy is to bid in the auction that has the
closest end time where the current bid is less than itspr. This model
was chosen because it performed well in the experiments reported in
[2]. We also ran another set of experiments in the sub-environment of
short time less auctions in which the value ofpr is varied between a
low value of 68, a medium of 76 and a high value of 82. The purpose
of this is to determine how the strategies evolve when varyingpr.

Turning to the first set of experiments (summarized in Table 1).
These results show the best strategies that have evolved for the
different classes of environment. Each column contains the result-
ing strategies for each environment using Fitness Equations I, II
and III. The values for the tactics are expressed as a pair ofk
andβ and the weights for the bidding constraints are expressed as
(wrt, wra, wba, wde). When a particular tactic is not present in the
evolved strategy, the column corresponding to it is blank. The utili-
sation of the different fitness functions reflects the varying behaviour
that the agent can employ in a given situation. It can be observed
that the agents that utilise Fitness Function I (where delivery is of
utmost important) did indeed score a higher percentage in terms of
success rate than the agents that used the other two fitness functions
and the control modelC, for all the environments. Agents that used
Fitness Equation II achieved the highest utility in all the environ-
ments, whereas agents that used Fitness Equation III strike a balance
between a high success rate and a high payoff. These results are all
as expected (see Section 3.2).

In the STLA environment based on Fitness Equation I, the domi-
nant strategy that emerged is the combination of remaining time and
the desperateness tactics (wrt = 0.76, wde = 0.24). In this par-
ticular situation, the agent’s initial bids in both tactics are high and
the agent quickly reaches itspr (krt = 0.73, βrt = 99.59, kde =



Table 1.  Summary of Best Strategies with Private Valuation = 75 

  

Short Time  
Less Auctions  

(STLA) 

Short Time 
Many Auctions 

 (STMA) 

Long Time 
Less Auctions 

(LTLA) 

Long Time 
Many Auctions  

(LTMA) 

Fitness Equation I 

Remaining Time Tactic (0.73, 99.59) (0.63, 515.67) – (0.23, 683.97) 

Remaining Auctions Left Tactic – – (1.00, 0.36) – 

Desire for Bargain Tactic – (0.28, 0.31) – – 

Desperateness Tactic (0.84, 56.04) (0.73, 385.75) (0.83, 67.38) (0.78, 2.70) 

Weights (wrt , wra , wba , wde) (0.76, 0.00, 0.00, 0.24) (0.45, 0.00, 0.01, 0.54) (0.00, 0.46, 0.00, 0.54) (0.83, 0.00, 0.00, 0.17) 

Success Rate, Payoff (77.90, 0.03818) (96.55, 0.04893) (81.95, 0.02621) (99.70, 0.03688) 

Fitness Equation II 

Remaining Time Tactic (0.89, 1.44) (10.59, 507.92 (0.70, 8.28) (0.81, 9.74) 

Remaining Auctions Left Tactic (0.94, 233.50) (0.81, 6.31) (0.40, 5.21) (1.00, 0.83) 

Desire for Bargain Tactic (0.15, 0.40) (0.23, 0.06 (0.25, 0.32) (0.23, 0.04) 

Desperateness Tactic (0.71, 55.44) (0.80, 68.07) (0.83, 648.90) (0.82, 575.00) 

Weights (wrt , wra ,  wba ,  wde) 
(0.35, 0.16, 0.15, 0.34) (0.17, 0.03, 0.25, 0.55 (0.65, 0.21, 0.02, 0.12) (0.14, 0.49, 0.22, 0.15) 

Success Rate, Payoff (62.30, 0.03930) (86.20, 0.06842 (67.65, 0.03818) (90.4, 0.07249) 

Fitness Equation III 

Remaining Time Tactic – (0.83, 52.00) (0.41, 720.61) (0.59, 0.33) 

Remaining Auctions Left Tactic (0.72, 25.56) – (0.27, 7.95) (0.21, 654.55) 

Desire for Bargain Tactic – (0.10, 0.29 – (0.12, 0.03) 

Desperateness Tactic (0.87, 55.75) – (0.71, 9.12) (0.89, 19.17) 

Weights (wrt , wra ,  wba ,  wde) (0.00, 0.42, 0.00, 0.58) (0.80, 0.00, 0.20, 0.00) (0.57, 0.19, 0.00, 0.24) (0.16, 0.05, 0.01, 0.78) 

Success Rate, Payoff (74.05, 0.03730) (88.95, 0.06666) (76.55, 0.03519) (92.30, 0.7097) 

Performance of Control Model (66.40, 0.026291) (83.80, 0.03342) (74.40, 0.02460) (99.10,0.02865)  
 

0.84, βde = 56.04). This behaviour is rational since an agent that is
interested in delivering the item successfully in this context should
bid aggressively from the beginning to maximise its chances of ac-
quiring the item. When Fitness Equation II is used, the dominant
strategy that emerged is one that utilises all the tactics, but that places
more importance on the remaining time and desperateness tactics.
This is because an agent that is looking for a high payoff should
consider the bargain tactic as one of the tactics to ensure a higher
payoff. The strategy that emerged based on Fitness Equation III is
one that considers the remaining auctions left and the deperateness
tactics where the agent’s initial bids are high and quickly reachpr.
This strategy is similar to the one that emerged from Fitness Equation
I, but the rate at which it reachespr is slower. The reason for this is
that an agent that is looking to maximise the payoff, whilst ensuring
delivery of the item, needs to maintain a balance between a low bid
price and the rate at which it reachespr.

In the STMA environment, an effective strategy should consider
the remaining time and desperateness tactic highly since the allo-
cated bidding time is limited (as per STLA). This is true when de-
livery of the item is important (as reflected in Fitness Equation I’s
result), but also when payoff (refer to the result of Fitness Equation
II) is the main consideration (here the agent combines all the tactics
where heavier weights are placed on the desperateness and bargain
tactics). This situation differs from STLA because here, the agent can
afford to spend some time looking for a bargain since the number of
active auctions is large. The dominant strategy that emerged based on
Fitness Equation III is surprising because it combines the remaining
time and the bargain tactics, instead of deploying a more aggressive
behaviour of combining the remaining time, desperateness and the

bargain tactics. In this case, the strategy is aware of the large number
of active auctions so it tries to get a higher payoff, but at the same
time it takes into account the length of time it has left to bid.

The strategy that evolved for the LTLA environment based on de-
livery is one that considers the remaining auctions and the desper-
ateness tactics. This is because the strategy has to deliver the item
successfully in an environment where there is a limited number of
active auctions that the agent can participate in. As expected, when
payoff is the main consideration, the strategy that evolved considers
all tactics. The strategy that emerged based on Fitness Equation III
considers the remaining time, remaining auctions and desperateness
tactics. Bargain is not considered here, since the number of active
auctions in the marketplace is small (as per STLA).

All the strategies that evolved in the LTMA environment, for all
fitness functions, achieved more than 90% success rate, but they dif-
fer in terms of payoff. The reason for this high success is due to the
long bidding time, as well as the large number of active auctions that
the agents can participate in. Hence, the agent has many chances of
winning. In this particular situation, the main consideration is the
payoff. As can be seen, the strategies that utilise Fitness Equations II
and III generate higher payoffs when compared to the strategy that
evolved based on Fitness Equation I and the control modelC. The
reason for this is that bothC and Fitness Equation I consider delivery
as the most important criteria and payoff is not taken into account.

Turning now to the second class of experiments. Table 2 shows
the strategies that evolve in the STLA environment based on Fitness
Equation III. Fitness Equation III is used here since it offers a rea-
sonably high success rate and payoff. For each agent’s private val-
uation, there are three rows associated with it which correspond to



the weights, tactics and its performance. As can be seen, the success
rate and the payoff increase whenpr increases (as seen before). The
high payoff that the agent receives when using the strategy evolved
with pr=82 indicates that the agent actively tries to look for bargain
when itspr is high (even though it does not have much time or many
auctions). In contrast, whenpr is low, the agent evolves a strategy
that combines the remaining time and desperateness tactic to take
advantage of the limited time, limited number of active auctions and
limited pr. The strategy that emerged withpr = 76 is similar to the
one that evolved withpr = 68, but, this time, it considers the remain-
ing auctions left instead of the remaining time. With a higher private
valuation, the agent has better chance of obtaining the item enabling
it to switch to a strategy that focuses on the desperateness tactic and
the remaining auctions left tactic. Whenpr is high, the strategy that
emerged considers all tactics as expected.

Table 2.  Strategies for STLA with Varying Private Valuations 

Weights, Tactics and Performance 
(wrt, wra, wba, wde) 

(krt, 
�

rt, kra, 
�

ra, kba, 
�

ba, kde, 
�

de)  

Reservation 
Price 

( success rate, utility)  
(0.12, 0.00, 0.00, 0.88) 

(0.64, 5.44,0.57, 79.37,0.11, 0.15,0.75,466.24)  68 

(23.55, 0.00886)  
(0.00, 0.17, 0.00, 0.83) 

(0.05,0.99, 0.58,508.59, 0.23,0.08, 0.90,86.53) 76 

(81.45, 0.04188)  
(0.36, 0.35, 0.18, 0.11) 

(0.07,97.11, 0.06,12.37, 0.17,0.46, 0.75,4.74) 82 

(93.45, 0.09267)  
 

Several conclusions can be drawn from these results. When select-
ing a strategy to bid in the multiple auctions environment, the agent
needs to determine the current environment’s type, as well as the
user’s preferences. Depending on these two, it can then decide which
strategy to deploy. The results presented in Table 2 show that as the
private valuation increases, the success rate increases, therefore al-
lowing the strategy to deploy a bargaining behaviour to generate a
higher payoff.

5 RELATED WORK

There have been several attempts to design sophisticated and effi-
cient bidding strategies for agents participating in online auctions.
The Recursive Modeling Method (RMM) uses a decision theoretic
paradigm of rationality, where an agent makes decisions based on
what it thinks the other agents are likely to do, what the other agents
think about it and so on [10]. The downside of this approach is the
computational complexity and the fact that not all the information in
the recursive model is relevant in this context. Faratin et al’s model
is broadly similar to the one defined in this paper [6]. However, there
are also several important differences between one-to-one negotia-
tion and multiple auctions. Chief amongst these are the types of the
tactics that are considered relevant and what aspects of the domain
need to be reflected in these tactics. An extension to Faratin’s model
is [7] which analyses the evolution of negotiation strategies using
GAs, and determines which of them are appropriate in which situa-
tions. The aim of this work was to perform an evaluation of the range
of negotiation strategies by analysing their relative success, and how
these strategies evolve over time to become a fitter population. This
approach is somewhat similar to our work, but the main difference is
in the domain that we are dealing with.

Preist proposed an algorithm design for agents that participate in
multiple simultaneous English auctions [9]. The algorithm proposes
a coordination mechanism to be used in an environment where all the
auctions terminate simultaneously, and a learning method to tackle
auctions that terminate at different times. Byde also considers this en-
vironment [5], but utilises stochastic dynamic programming to derive
formal methods for optimal algorithm specification that can be used
by an agent when participating in simultaneous auctions for a single
private-value good. Both of these works are designed specifically for
purchasing items in multiple English auctions and their algorithm are
not applicable in a heterogeneous protocol context.

6 CONCLUSIONS AND FUTURE WORK

This paper has shown how GAs can be successfully employed to
evolve effective bidding strategies for particular classes of environ-
ment. Its contribution to the state of the art is twofold. Firstly, we
showed that GAs can be used to successfully evolve bidding strate-
gies for different auction contexts. Secondly, we discovered effective
reasoning strategies for the multiple, heterogeneous auctions context.
By embedding these strategies into our agent, we now have an agent
that can perform successfully across a wide range of auctions. For
the future, we aim to finesse the categories of environment for which
strategies need to be evolved so that the agent can better tune its bid-
ding strategy to its prevailing circumstances. Also, we aim to extend
our evaluation to cases where there are multiple such agents in the
environment and to determine the effect of such a situation on the
performance of the individual agents and the overall system.
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