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Abstract. Due to the proliferation of online auctions, there is an context. The empirical evaluation of this model showed the benefits
increasing need to monitor and bid in multiple auctions in order toof being able to act across multiple auctions, but also highlighted the
procure the best deal for the desired good. Against this backgroundhjgh degree of dependence between the efficacy of an agent’s strat-
this paper reports on the development of a heuristic decision makinggy and the environment it was operating in. Given this observation,
framework that an autonomous agent can exploit to tackle the prolthe aim of this paper is to determine what strategies are effective in
lem of bidding across multiple auctions with varying protocols (in- a range of common environments. To achieve this, we decided to
cluding English, Dutch and Vickrey). The framework is flexible, con- use genetic algorithms (GAs) since they are a well-proven method of
figurable and enables the agent to adopt varying tactics and strategissarching large problem spaces [8]. Thus, we evolve agent strategies
that attempt to ensure the desired item is delivered in a manner cofin an offline fashion and codify the result of this process into a meta-
sistent with the user’s preferences. In this context, however, the bestvel reasoner that can select the strategy according to the agent’s
strategy for an agent to use is very much determined by the nature afssessment of its prevailing context.

the environment and by the user’s preferences. Given this large spaceThe remainder of the paper is structured as follows. Section 2
of possibilities, we employ a genetic algorithm to search (offline) forpresents an overview of the decision-making framework. Section 3
effective strategies in common classes of environment. The strategigescribes how GAs were used to evolve bidding strategies accord-
that emerge from this evolution are then codified into the agent’s reaing to the target environment. Section 4 reports on the outcomes of
soning behaviour so that it can select the most appropriate stratedkis evolution process. Section 5 discusses related work and Section
to employ in its prevailing circumstances. 6 presents our conclusions and further work.

1 INTRODUCTION 2 BIDDING STRATEGY FRAMEWORK

Online auctions are a popular and effective medium for procuringB - . . .
. . ) ~Before describing the decision-making framework, it is necessary to
goods and services. However, as the number of auction sites in;

detail our assumptions about the environment. Firstly, we consider
creases (there are currently more than 2000 [1]), consumers are fac : . . i
. L . i . . ree auction protocols: English, Dutch and Vickrey (three of the
with the problem of monitoring many sites, picking which auction to . -
most common types). Secondly, all auctions have a known start time

participate in, and making the right bid to ensure that they get the deénd English and Vickrey auctions have a known end time. Thirdly,

sired item under conditions that are consistent with their preferences.ur bidding agent is given a deadline,(..) by when it must obtain

These processes of monitoring, selecting and making bids are bonihe desired item and it is told the consumer's private valuatig (

complex and t|me_ consuming. The task k_)ecomes even more com_pl%r this item. Fourthly, the agent must not buy more than one instance
when there are different start and end times and when the auctlonosf the desired item

employ different protocols (e.g. English, Dutch, Vickrey). To assist The agent’s decision-making model works in the following man-

consumers in this task, simple bidding robots and auction search en- L . .
) ) ner (see [2] for a complete description). The bidder agent builds an
gines have been developed. However, they typically have the problem .. Lo : .
. . active auction list (auctions that have started but not reached their

of only automating part of the process, or only being able to operaté . . !
at a single auction site, or only operating with a single auction rotoend times, denoted as(t)) and gathers relevant information (e.g.
col g ' yop 9 9 Prolo%tart and end times, current bid values) about them. It then calculates

the current maximum bidt is willing to make at thecurrent time

To address these shortcomings, it is necessary to develop an his current maximum bid, by definition, will always be less than

tonomous agent that can participate in multiple heterogeneous augs equal to the private valuation. To determine the current maximum

urchases autonomously. In more detail, the agent should monitc;%rid’ the agent considers sevebidding constraintsncluding the re-

P y. ! 9 egwaining time left, the remaining auctions left, the user’s desire for a

L L ; . . argain and the user’s level of desperateness. For each such bidding

\:]V;:]tispnr]'c:n'(; ?ms.lgozlgul;r?:ghnzgucriogf tGh:\s/e:nz/Tori?nrzglte)t(lel r?%) %onstraint, there is a corresponding function that suggests the value
. . . S . - 193% bid based on that constraint at that time. These (polynomial) func-

practical b_a5|s for the agent’s decision-making model is a heu.”.smfions (based on [6]) are parameterized by two key valkegange

one. To this end, [2] reports on the development of such a deCISIOFE)..l]) is a constant that determines the value of the starting biggand

making f_ramework_. In this model,_the agent's behaviour ',S expresse range [0.005 - 1000]) defines the shape of the curve (and so the rate
as a series of tactics and strategies that vary the agent’s bidding be; .
) ) ) o o . _of concession t@,.). As an example, wheh > 0.5 andg > 1, the
haviour according to the user’s objectives and the prevailing auction
agent demonstrates a reasonable degree of desperateness and starts

1 Department of Electronics and Computer Science, University of Southampbidding close top, and quickly reachegp.. At the other extreme,
ton, Highfield, Southampton, SO17 1BJ, UK. the agent can demonstrate hard bargaining behaviour (0.5 and




B < 1), where it makes a low initial bid and only concedes upto 3.1 Encoding the Strategies
in a very slow fashion. All behaviours in between are also possible

by setting the parameters appropriately. At any given time, the agenthe individuals in the populations are the bidding agents and their
may consider any of the bidding constraints individually or it may genes consist of the parameters of the four different tactics and the

combine them depending on the situation (what the agent sees as lgtative weight for each tactic. The individuals are represented as an
ing important at that point in time). If the agent combines multiple array of floating points values of:

bidding constraints, it allocates a weight to each of them to denote
their relative importance. The set of functions is referred to as the.

tact d th binati f th tacti ferred t th k andg for the remaining time left tactic-¢)
actics and the combination of these tactics are referred to as thg | and3 for the remaining auctions left tactied)

strategy Based on the value of the current maximum bid, the agent, % and;3 for the desire for a bargain tactia)
selects the potential auctions in which it can bid and calculates Whag % andj3 for the desperateness tactitz)

it should bid at this time in each such auction. The auction and COry the relative weights for the four tactica, wra, wea, wa.)

responding bid with the highest expected utility is then selected from
the potential auctions as the target auction. Finally, the agent bids in

the target auction. . 3.2 Computing the Fitness Function
A series of experiments were conducted in a controlled environ-

ment to test the efficiency (in terms of success rate and average pa¥

off) of the agent’s strategy (details can be found in [2]). The results he_ fitness function measures hO.W well the _|nd|_\/|dual performs
) . Bl against the others. Designing the fitness function is one of the key
of these experiments led to several conclusions. Firstlys one of

the most important factors that needs to be considered when det facets of GAs and so here we consider three plausible alternatives.

. .. These are the individual's success rate in obtaining the item (Fitness
mining the strategy that should be employed by the agent. This IEquation I) and two variations based on the average utility. In the

important, for example, since an agent with a very jowcannot first case (Fitness Equation Il), the agent gets a utility of O if it fails

practically look for a bargain and the agent should therefore considel, /i e item. If it is successful, the utiligf/) of winning in

this when accepting the user’s preferences. The second observation LT

is that the remaining time and auction tactics are the key determic" auctioni with bid v is computed a8/i(v) = ((pr —v)/pr) + ¢,
wherec is an arbitrary constant ranging from 0.001 to 0.005 (these

nants of successful behaviour. Thirdly, the strategies to be used b : L .
S ; ; alues were picked by empirical evaluation) to ensure that the agent
the agent need to be dynamic, since not all strategies work well in al ” o L .
L . N does not get a utility of 0 when the winning bid is equivalent to the
situations. Thus, a successful strategy in one situation may perform

badly in another. Nevertheless, it is possible to determine that certaiP1rIVate valuation. The second utility function (Fitness Equation ll) is

o . - similar to Fitness Equation Il but the individual is penalised if it fails
classes of strategy are effective in environments that have particular . ) .
o . . S 0 get the item. In this case, the penalty incurred ranges from 0.001
characteristics. In this case, the key defining characteristics of an en- -
. . .“10 0.005. These values were chosen to analyse how the population
vironment were found to be the number of auctions that are aCtIw’évolves with varying degrees of penalty. Intuitively, Fitness Equation
beforet..... and the time the agent has to purchase the item. Given ying deg P Y- Y. q

S . ; L | should be used if delivery of the item is of utmost important, Fitness
this, it was decided to evolve strategies that are effective in thes . . ) . .
. quation Il should be used if the agent is looking for a bargain and
classes of environment.

Fitness Equation Il should be used when delivery of the item and
looking for bargain are equally important. The fitness score is then
computed by taking the average utility from a total of 2000 runs. It is

3 EVOLVING STRATEGIES necessary to run these 2000 times to decrease the estimated standard
error of the mean to a statistically significant level (when the number
of runs is 500, the standard error of the mean is 5.0458, but this figure

The performance of the bidding agent is heavily influenced by thgs reduced to 1.1559 when the number of runs is increased to 2000).
strategy employed, which, in turn, relates to the valuels afid3 in

the given tactics and the weights for each tactic when these are com-

bined. The number of strategies that can be employed is infinite, so, | Randomly createinitial bidder populations,
therefore, is the search space. Thus, handcrafting strategies as in [2], | While not (Stopping Criterion) do

is not realistic in the long term. Thus, a means of automating the pro- Calculate fitness of each individual by running the
cess of finding successful strategies is necessary. Here, we decided marketplace 2000 times,

to use GAs to search offline for the most successful strategies in the Create new population

predefined environments. Taking account of the above experimen- Select thefittest individuals (HP);

tal observations, we defined four such environments. The first one Create mating pool for the remaining
(STLA) is where there is a short bidding time)(< 4. < 20) and population;

a small number of active auctions in the marketpldég#)| < 10). Perform crossover and mutation in the

The second environment (STMA) is where there is a short bidding mating pool to create new generation(SF);
time but the number of active auctions is large € |L(t)| < 45). New generationisHP + SF;

The third environment (LTLA) is where the allocated bidding time is End while

long 20 < tmaz < 100) and where the number of active auctions is
small. Finally, the last environment (LTMA) is where there is a long
bidding time with many active auctions. Naturally, finer subdivisions Figure 1. The Search for Strategy Algorithm
are possible but the focus here is in demonstrating that strategies can

be successfully evolved for broad classes of environment. Evolving

for these subcategories is left as future work at this point.



3.3 Searching for Successful Strategies selected to mutate with a probability pf, = 0.02. The gene from
) ) o ) the chosen individual is picked randomly and a small value (0.05)
The algorithm for searching for acceptable strategies in a given envig 5qded or subtracted, depending on the range limitation for that

ronment is shown in Figure 1 and is elaborated upon in the remaindgsyticular gene. The mutation process is only applied to the values of

of this subsection. k andg for each tactic. The weights are not considered here because
adding a small value to the weight requires a renormalisation and
3.3.1 Create Initial Bidder Population will have very little effect on the agent’s overall behaviour.

The initial bidder populations represent the starting point of the . .
search and consist @ = 50 individuals that are generated ran- 3-3-2 The Stopping Criterion

domly from the range of specified values. These values are based ghe process terminates when the population converges. This is the
the polynomial functions defined in [2]. For the remaining time and congition where the population evolves over successive generations
the remaining auctions left tactics, the values@re k < 1and  g,ch that the fitness of the best and the average individual in each
0.005 < < 1000. In the desire for a bargain tactic, the values are generation increase toward a global optimum [8] (here defined as the
0.1 <k <0.3and0.005 < § <0.5. The values fok andj inthe  pighest peak in the search space [8]). In this case, the population
desperateness tactic ¢ < k < 0.9 and1.67 < 3 < 1000. always converges before 50 iterations (typically between 24 and 40).

3.3.2 The Selection Process 4 EXPERIMENTAL EVALUATION

The purpose of the selection process is to ensure that the fitter indire aim of these experiments is to determine which strategies are
viduals are chosen to populate the next generation in the hope thgftective in particular environments. The GAs are run in the four dif-
their offspring will in turn have higher fitness. “Elitism” is used here ¢arent environments (in which the agengis is set to 75). For each
to force the GAs to retain some number of the best individuals agnyironment, we use the three different fitness functions described in
each generation [8], since such individuals can be lost if they ar@ection 3.2. Apart from determining the strategies that work well in
not chosen to reproduce or if they are destroyed by crossover andyiven context, these experiments also aim to evaluate the strategies
mutation. Ten percent of the best individuals are copied to the new, terms of their success rate (the number of times, as a percentage,
population to ensure that a significant proportion of the fitter individ- ¢ agent is successful in obtaining the item) and average payoff (in
uals make it to the next generation. The remaining ninety percent ofyyms of utility) in a similar manner to [2]. However, the key differ-
the individuals in the population are then selected using Tournamenince js that, here, the performance of the agents is evaluated based
Selection [4]. The selection is performed by choosing some numbeg, an environment that has a particular set of characteristics. The
¢ (here 2) from the population and the best individual in this groupperformance of the evolved strategies is then compared with that of
is copied into the intermediate population (which is referred to as, ¢ontrol modet”. (s strategy is to bid in the auction that has the
the mating pool). This process is repeated for 90%/dimes. This  ¢|gsest end time where the current bid is less thap,itd his model
selection technique is known to work well since it allows a diverse,y a5 chosen because it performed well in the experiments reported in
range of fit agents to populate the mating pool [4]. Once the mating] \we also ran another set of experiments in the sub-environment of
pool is created, the individual with the highest fitness is selected andhort time less auctions in which the valuepofis varied between a
moved to the new generation. The remaining individuals go through,, value of 68, a medium of 76 and a high value of 82. The purpose
the process of crossover and mutation before making it to the news iis is to determine how the strategies evolve when varying
population. The new population includes a group of the fittest indi- Turning to the first set of experiments (summarized in Table 1).
vidual and the offspring generated from the reproduction process. Thege results show the best strategies that have evolved for the

different classes of environment. Each column contains the result-
3.3.3 The Crossover Process ing strategies for each environment using Fitness Equations I, Il

and Ill. The values for the tactics are expressed as a pait of
This process exchanges the genes between the individual agenitd 3 and the weights for the bidding constraints are expressed as
Two individuals are randomly selected from the mating pool With (w,.,, wyq, wsa, wae). When a particular tactic is not present in the
crossover probability gf. = 0.6, and the crossover point)(is equal  evolved strategy, the column corresponding to it is blank. The utili-
to 2. Crossover probability is the rate at which the population ex-sation of the different fitness functions reflects the varying behaviour
changes genetic materials [8]. More specifically, two individuals arethat the agent can employ in a given situation. It can be observed
picked from the population. Two crossover points are then randomlyhat the agents that utilise Fitness Function | (where delivery is of
picked. These points are where the two individuals will exchangeutmost important) did indeed score a higher percentage in terms of
their genetic material. The exchanging of genetic material process isuccess rate than the agents that used the other two fitness functions
performed using aextension combination operatf#], whichworks  and the control mode’, for all the environments. Agents that used
by taking the difference between two values of the crossover pointritness Equation Il achieved the highest utility in all the environ-
adding this difference to the higher (giving the maximum range) andnents, whereas agents that used Fitness Equation Ill strike a balance
subtracting it from the lower (giving a minimum range). The new val- between a high success rate and a high payoff. These results are all
ues are then generated between the minimum and maximum rangess expected (see Section 3.2).

In the STLA environment based on Fitness Equation I, the domi-

3.3.4 The Mutation Proces nant strategy that emerged is the combination of remaining time and

the desperateness tacties,{ = 0.76,wq. = 0.24). In this par-
Mutation allows the population to explore the search space but dicular situation, the agent’s initial bids in both tactics are high and
a slower rate. In this work, the individuals from the population arethe agent quickly reaches its (k, = 0.73, 8+ = 99.59, kqe =



Tablel. Summary of Best Strategies with Private Valuation = 75

Short Time Short Time Long Time Long Time
L ess Auctions Many Auctions L ess Auctions Many Auctions
(STLA) (STMA) (LTLA) (LTMA)
Fitness Equation |

Remaining Time Tactic (0.73, 99.59) (0.63, 515.67) - (0.23, 683.97)
Remaining Auctions L eft Tactic - - (1.00, 0.36) -
Desirefor Bargain Tactic - (0.28,0.31) - -
Desper ateness Tactic (0.84, 56.04) (0.73, 385.75) (0.83, 67.38) (0.78, 2.70)

Weights (Wit , Wea , Wha » We)

(0.76, 0.00, 0.00, 0.24)

(0.45, 0.00, 0.01, 0.54)

(0.00, 0.46, 0.00, 0.54)

(0.83, 0.00, 0.00, 0.17)

Success Rate, Payoff

(77.90, 0.03818)

(96.55, 0.04893)

(81.95, 0.02621)

(99.70, 0.03688)

Fitness Equation |1
Remaining Time Tactic (0.89, 1.44) (10.59, 507.92 (0.70, 8.28) (0.81,9.74)
Remaining Auctions L eft Tactic (0.94, 233.50) (0.81, 6.31) (0.40, 5.21) (1.00, 0.83)
Desirefor Bargain Tactic (0.15, 0.40) (0.23,0.06 (0.25, 0.32) (0.23, 0.04)
Desper ateness Tactic (0.71, 55.44) (0.80, 68.07) (0.83, 648.90) (0.82, 575.00)

Weights (Wi, Wra, Wea, Wae)

(0.35, 0.16, 0.15, 0.34)

(0.17, 0.03, 0.25, 0.55

(0.65, 0.21, 0.02, 0.12)

(0.14, 0.49, 0.22, 0.15)

Success Rate, Payoff

(62.30, 0.03930)

(86.20, 0.06842

(67.65, 0.03818)

(90.4, 0.07249)

itness Equation 111

Remaining Time Tactic - (0.83, 52.00) (0.41, 720.61) (0.59, 0.33)
Remaining Auctions L eft Tactic (0.72, 25.56) - (0.27, 7.95) (0.21, 654.55)
Desirefor Bargain Tactic - (0.10,0.29 - (0.12, 0.03)
Desper ateness Tactic (0.87, 55.75) - (0.71,9.12) (0.89, 19.17)

Weights (Wi, Wra, Woa, Wae)

(0.00, 0.42, 0.00, 0.58)

(0.80, 0.00, 0.20, 0.00)

(0.57,0.19, 0.00, 0.24)

(0.16, 0.05, 0.01, 0.78)

Success Rate, Payoff

(74.05, 0.03730)

(88.95, 0.06666)

(76.55, 0.03519)

(92.30, 0.7097)

Performance of Control Model

(66.40, 0.026291)

(83.80, 0.03342)

(74.40, 0.02460)

(99.10,0.02865)

0.84, B4 = 56.04). This behaviour is rational since an agent that is bargain tactics. In this case, the strategy is aware of the large number
interested in delivering the item successfully in this context shouldof active auctions so it tries to get a higher payoff, but at the same
bid aggressively from the beginning to maximise its chances of actime it takes into account the length of time it has left to bid.
quiring the item. When Fitness Equation Il is used, the dominant The strategy that evolved for the LTLA environment based on de-
strategy that emerged is one that utilises all the tactics, but that placdigery is one that considers the remaining auctions and the desper-
more importance on the remaining time and desperateness tacticeness tactics. This is because the strategy has to deliver the item
This is because an agent that is looking for a high payoff shouldsuccessfully in an environment where there is a limited number of
consider the bargain tactic as one of the tactics to ensure a highective auctions that the agent can participate in. As expected, when
payoff. The strategy that emerged based on Fitness Equation Il ipayoff is the main consideration, the strategy that evolved considers
one that considers the remaining auctions left and the deperateneal tactics. The strategy that emerged based on Fitness Equation |11
tactics where the agent’s initial bids are high and quickly reach  considers the remaining time, remaining auctions and desperateness
This strategy is similar to the one that emerged from Fitness Equatiotactics. Bargain is not considered here, since the number of active
I, but the rate at which it reaches is slower. The reason for this is auctions in the marketplace is small (as per STLA).
that an agent that is looking to maximise the payoff, whilst ensuring All the strategies that evolved in the LTMA environment, for all
delivery of the item, needs to maintain a balance between a low biditness functions, achieved more than 90% success rate, but they dif-
price and the rate at which it reachegs fer in terms of payoff. The reason for this high success is due to the
In the STMA environment, an effective strategy should considedong bidding time, as well as the large number of active auctions that
the remaining time and desperateness tactic highly since the alldhe agents can participate in. Hence, the agent has many chances of
cated bidding time is limited (as per STLA). This is true when de-winning. In this particular situation, the main consideration is the
livery of the item is important (as reflected in Fitness Equation I'spayoff. As can be seen, the strategies that utilise Fitness Equations II
result), but also when payoff (refer to the result of Fitness Equatiorand 11l generate higher payoffs when compared to the strategy that
I) is the main consideration (here the agent combines all the tacticevolved based on Fitness Equation | and the control médédrhe
where heavier weights are placed on the desperateness and bargesason for this is that botfi and Fitness Equation | consider delivery
tactics). This situation differs from STLA because here, the agent caas the most important criteria and payoff is not taken into account.
afford to spend some time looking for a bargain since the number of Turning now to the second class of experiments. Table 2 shows
active auctions is large. The dominant strategy that emerged based tite strategies that evolve in the STLA environment based on Fitness
Fitness Equation Il is surprising because it combines the remainingequation Ill. Fitness Equation Il is used here since it offers a rea-
time and the bargain tactics, instead of deploying a more aggressivnably high success rate and payoff. For each agent's private val-
behaviour of combining the remaining time, desperateness and thgation, there are three rows associated with it which correspond to



the weights, tactics and its performance. As can be seen, the successreist proposed an algorithm design for agents that participate in
rate and the payoff increase whgnincreases (as seen before). The multiple simultaneous English auctions [9]. The algorithm proposes
high payoff that the agent receives when using the strategy evolved coordination mechanism to be used in an environment where all the
with p,.=82 indicates that the agent actively tries to look for bargainauctions terminate simultaneously, and a learning method to tackle
when itsp,- is high (even though it does not have much time or manyauctions that terminate at different times. Byde also considers this en-
auctions). In contrast, whem. is low, the agent evolves a strategy vironment [5], but utilises stochastic dynamic programming to derive
that combines the remaining time and desperateness tactic to takermal methods for optimal algorithm specification that can be used
advantage of the limited time, limited number of active auctions andby an agent when participating in simultaneous auctions for a single
limited p,.. The strategy that emerged with = 76 is similar to the  private-value good. Both of these works are designed specifically for
one that evolved with, = 68, but, this time, it considers the remain- purchasing items in multiple English auctions and their algorithm are

ing auctions left instead of the remaining time. With a higher privatenot applicable in a heterogeneous protocol context.

valuation, the agent has better chance of obtaining the item enabling

it to switch to a strategy that focuses on the desperateness tactic a%d CONCLUSIONS AND FUTURE WORK

the remaining auctions left tactic. When is high, the strategy that
emerged considers all tactics as expected.

This paper has shown how GAs can be successfully employed to

evolve effective bidding strategies for particular classes of environ-

Table2. Strategiesfor STLA with Varying Private Vauations

Welights, Tactics and Performance
(Wrt- Wra, Wha, Wde)
(km ﬁm krax ﬁra: kbar Bbax kdEl ﬁde)
(successrate, utility)
(0.12, 0.00, 0.00, 0.88)
(0.64, 5.44,0.57, 79.37,0.11, 0.15,0.75,466.24)
(23.55, 0.00886)
(0.00,0.17, 0.00, 0.83)
(0.05,0.99, 0.58,508.59, 0.23,0.08, 0.90,86.53)
(81.45, 0.04188)
(0.36,0.35, 0.18, 0.11)
(0.07,97.11, 0.06,12.37, 0.17,0.46, 0.75,4.74)
(93.45, 0.09267)

Reservation
Price

68

76

82

ment. Its contribution to the state of the art is twofold. Firstly, we
showed that GAs can be used to successfully evolve bidding strate-
gies for different auction contexts. Secondly, we discovered effective
reasoning strategies for the multiple, heterogeneous auctions context.
By embedding these strategies into our agent, we now have an agent
that can perform successfully across a wide range of auctions. For
the future, we aim to finesse the categories of environment for which
strategies need to be evolved so that the agent can better tune its bid-
ding strategy to its prevailing circumstances. Also, we aim to extend
our evaluation to cases where there are multiple such agents in the
environment and to determine the effect of such a situation on the
performance of the individual agents and the overall system.
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