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Abstract. Answering queries on remote and heterogeneoussources
is a complex task. Mediators provide techniques that exploit a do-
main ontology. To propose a cooperative approach to repair queries
without answers, we introduce the notion of solution which is a query
close to the user’s query. We describe how ontologies can be used to
evaluate the similarity of two predicates and then of two queries. The
work presented has been developed in the PICSEL2 project. Exam-
ples come from the domain of tourism, the experimentation domain
chosen for this project.

1 Introduction

In recent years, several information integration systems (Information
Manifold [10], PICSEL [5], SIMS [2]) have been developed, based on
a mediator architecture which provides a uniform query interface to
multiple and possibly heterogeneous data sources. Users put queries
in terms of a set of relations designed to capture the semantics of a
given application domain. Those relations are virtual in the sense that
their instances are not directly available. Thus, answering a query
means translating a user query into queries that refer directly to the
relevant sources, which needs a set of source descriptions.

The most important advantage of a mediator is that it enables users
to focus on specifying their demand, by freeing them from having to
find the relevant sources and possibly to combine data from multiple
sources to obtain answers.

The need for a cooperative query answering process is especially
crucial because users do not know the contents of the data sources
that are available. In particular, it may happen that the user’s query,
while being meaningful w.r.t the domain model, has no answer be-
cause its translation leads to specialized query plans (constructed by
the mediator) that violate the constraints specifying the actual con-
tents of the sources. It is important to explain him why his query fails
(e.g., the user asked for hotels located in UK and hotels provided by
the sources connected to the mediator are located in Spain). In ad-
dition, it is very useful to offer him a new query, called a solution,
which is semantically close to the initial one and which can be an-
swered (e.g., Bed&Breakfasts in UK).

In this paper, we consider the problem of repairing queries without
any answer, due to a lack of sources, taking a logical framework to
represent the domain and the sources.

Our contribution is twofold. First, we show in section 3 how to
generate predefined queries, starting from the sources’ description.
Second, we present in section 4 a method to calculate similarity be-
tween two predicates and then between two queries. We begin with
the specification of our logical framework, called the domain theory.
�
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2 Representation of Domain, Sources and Queries

2.1 Domain Knowledge

The knowledge domain is expressed by means of a declarative
representation of object classes (Country, Flight, Stay, Travel...) and
of relations among these classes. It is described using atoms of the
form ���	�
�� , where � is a relation name and �
 a tuple of variables
or constants. We distinguish some unary relations, called concepts.
They represent object classes relevant to the application domain. ��� � is called an atom-concept if


is a concept.

The Semantics used are standard 1st order logic semantics (see [3]).

The domain knowledge ( ����� ) contains two components:� A set � of rules of the form: � � � �
 � ����������� ����� �
 � ��� � � �!"� ,
where �$#%�&�
 # � � � �'�!"� are atoms, with �!)(+* #-,'. ��/ / �10 �
 # .
The rules in �32 ( � describe a hierarchy between the domain con-
cepts and are of the form:

 � ��� �4�5 � ��� � � where
 � and

 � are
concepts. Concepts and relations not appearing in rules as conclu-
sions are called base relations. Relations that are not concepts are
called nc-predicates.� A set � of constraints, 687:9 � �&�
 � �;�<�����=� 9>�?�&�
 � �	�A@ where
9 � � �
 � � � ����� ��9>�?� �
 � � are literals, with at most 1 negative.
�CB ( � describes, for every nc-predicate, which concept types each
of its arguments. 6 B 7D�E�&�
F�E�HGI ��� # �I�J@ , with � #	K �
 .

2.2 Description of the Sources

The contents of a source LE# are represented by means of a vocabularyM
containing as many local relations N # O � called views, as we know

the source L # gives instances of domain relations. The description of
sources in terms of views contains two components:
A logical set of implications �"P ( � , linking each view to a domain
relation, N # � �
��4� ��� �
F� � and a set of constraints �QP ( � charac-
terizing the view instances: 9 � �	�
 � ���R���S�C� 9 � �	�
 � �T�U@ � where
9 � ���S� 9 � are base relations and/or view names or their negation.

2.3 Queries and Rewritings

We perform conjunctive queries of the form: V<�W�
F� 7D� � �	�
 � �X���Y�S���
� � � �
 � � , where �$# is a predicate of � * � that is not a view, and
where �
[Z �
 � *\�����1* �
 � represents data expected by the user.
In a mediator approach we do not access the data source contents but
only an abstract description of them. Answering a query consists in
searching the different rewritings of it in terms of views of

M
. A

rewriting of a query V<�I�
F� is a query that logically implies V<�I�
F� ,
using the domain theory ] Z � * � . In the following, ] always
denotes the domain theory.

Definition 2.1: Let V<� �
F� and V8^ be two conjunctive queries and
] be the domain theory.



� V ^ � �
F� is a rewriting of V<� �
F� iff
V8^"�	�
���* ] is satisfiable and V ^"�	�
F� �D] � Z V<�	�
��� V8^<� �
F� is a terminal rewriting of V<� �
F� iff
V ^ � �
F� is a rewriting of V<� �
F� and a conjunction of atom-views.

The set of the terminal rewritings constitutes the set of the specialized
query plans that permits to obtain the answers of the initial query.

2.4 Position of the Problem

In our context of the mediator PICSEL [5], we use an algorithm im-
plemented in java to get the terminal rewritings. It consists in ex-
panding the initial query. An expansion step is a backward chaining
step on the rules of ] .
These rewritings are the nodes of a tree rooted by Q. While develop-
ing the tree, the satisfiability of each node V4^ with ] is tested.

Definition 2.2: A Success-Query is a query with at least one termi-
nal rewriting. A Query is a Failing Query iff it is not a Success-
Query for ] .

When all the leaves are unsatisfiable with ]<� i.e., when there is no
terminal rewriting of the user’s query, we have to propose him other
satisfiable queries.
Unsatisfiable queries have already been studied in [3]. In this paper,
we restrict our study to Failing Queries, satisfiable with ] . These
queries cannot be rewritten in terms of views for lack of satisfactory
sources.
In the rest of the paper, we will define, for the user’s query V , the
notion of Solution for V . Godfrey [6] shows that looking for all the
Failing Subqueries and finding all their satisfiable generalisations are
NP-hard problems, which can become polynomial when exhaustive-
ness is not required. Instead of having a complete but expensive pro-
cess, we prefer an approximate method, based on a set of Predefined
Success-Queries. Thus, the solutions proposed to the user will be
queries of this set, evaluated as being close enough to V .
Now, we show how to build a base of queries starting from the de-
scription of the sources; then we explain how to evaluate a similarity
between two predicates and between two queries.

3 Initialization of the Base

Solutions are issued from a base of predefined success-queries �����
initialized from the descriptions of the sources. A Success-Query is
built from one same source which provides instances of its atoms:
thus, we make sure that at least this source can entirely rewrite the
query. Thanks to the mediator approach, we can realize such an ini-
tialization by widely exploiting the description of the sources.
We briefly present here the initialization of � ��� . In this paper, we do
not tackle the problem of its updating (e.g., by taking into account
the number of instances of queries after an effective consultation of
the sources, or their relevance for the user -validation step-).
Furthermore, we propose a static approach that disregards the fact
that the sources contents quickly evolve. To overcome the potential
and punctual lack of answers for one source we aim to define queries
that can be rewritten in different sources.

Potential Number of Rewritings of a Predicate
To favor rewriting of the queries in many different sources, we build
queries from the predicates that can be rewritten in a maximal num-
ber of views, called most common-used (c-u) predicates.

Definition 3.1: Let � � and � � be the numbers of views that can be
used to rewrite two predicates � � and � � . � � is more common-used
than � � iff � �	� � � .

ex: Consider the descriptions ( 
 P��� P ) of the sources � � that provide
hotels in luxurious places or in Sahara and � � providing gı̂tes in Corsica:��������� ����������� �"!$#&%$'������ ��(������ ���)��� �+* �,� -.!0/213#+%54)�6� �7* ���89����� �7:)������� � 1);<1�=�1��6��� �0>9����� �7?)��� �+* �,� -.!0/213#+%54)�6� �7* �@)�A���B� ������� �+* �+C,D �B� �����6�����FE @�(A����� �����6� �7* �2C.D ��� �7:)� * ���GE@38H���B� �7?���� �+* �IC9D �B� �����6�����FE@3>H���B� �7?���� �+* �IC9D�-,J<�<J<=�K7!$J�LNM	'O1)/2%�� * �P�FE
��Q���� � ��� �������SR.TUO#+%��6��� �0V9��� � ��� ��� �+* �,� -.!0/213#+%54)�6� �7* �@)QA���B� ������� �+* �IC9D �B� �����6�����FE@3VH��� � ��� ������C9-.!�/21�#+%54)��� �7* ��CHD,WX!5=�LNK7/21<� * �,�FE

Assume that 
 2 contains the two rules �"!5#+%$'Y�6����� Z	%5L2K74�%2[�/2%2M	'O1)/2%������ ,R\TU]#+%������^�_Z	%5L2K74�%2[�/2%2M	'O1)/2%������ and that there are only � � and � � . Lo-
cated ( ` �\acb ) is more c-u than hotel or gı̂te ( ` �^a � ), but ResidencePlace
( ` :^aed ) would be more c-u than Sahara ( ` ?	a � ).
Queries Quota for a Source
Once the most c-u predicates have been defined, we have to specify
the number of queries to generate for some fixed source. As avail-
able sources on the domain (ex: eurostar, thalys, dégriftour) are of
unequal sizes in their contents and description, the quota for a sourcef

depends on the number of views proposed by
f

.
Let �Hg be the number of queries of the predefined base we expect; a
global quota per view

� g is defined as a ratio
� g Z � gPh �"P3i , with�<P�i the number of views among all the sources.

ex: Now, suppose that we have 3,200 sources having 5 views per source.
If ` g is equal to j<�7k3k�k , l g = j<�7k�k�k)m � b � d k3konqp � a k<r d p)r

The quota
� � for each source

f
is equal to s P i9t � g , with s P i the

number of views of S.

3.1 Construction of Predefined Queries

The
� � predefined queries of a source

f
are built starting from a setu � that contains the predicates for which a source

f
gives instances.

As the number of queries to generate is limited, first, we generateu ��v , a subset of
u � , that contains the most c-u predicates of the

source, and second, we specialize these subqueries, according to the
constraints of the source. To define how many predicates have to be
selected, for

f
, a function f(

�xw
) is introduced and returns the average

number of views needed in order to generate
� w

queries.
It may be noted that a predicate can be rewritten by different views
from a same source S. This number is called weight of the predicate
for S. The number of predicates in

u ��v is increased iteratively, pick-
ing the next most c-u predicate of

u � , until the number of views f(
� w

)
is outnumbered by the sum of their weights.

Definition 3.2: Let
f

be a source,
� � its quota and

u � be the set
of predicates for which it gives instances. Let

u ��v (yu � . u ��v is a
set of quite common-used predicates of

f
, if �{z is one of the least

common-used predicates of
u ��v and:

- for all � O of
u �A| u ��v , ��z is more c-u than � O ;

- } ��~ ,������<�,� ���x�B�����]�<��� � � # ����� � � � ��� } ��~ ,������ �����]�<�B� � � # �
ex: Suppose that we have � � l � � � a�b and an order over predicates,

calculated among all the sources, such that Located is more c-u than Hotel

which is more c-u than Sahara.
We have: M �)��v = � Located, Hotel � . Indeed, weight(Located) = 2,
weight(Hotel) = weight(Sahara) = 1. If we add Sahara to M ���2v , sum of the
weights = 4 and if we remove Hotel, the sum would go down to 2.



Due to a lack of place, we only present the main steps of the
algorithm to generate the predefined queries for a source

f
:

1. Determinate the set of predicates
u ��v for

f
.

ex: Rules = � � = � and = ? process predicates of M �)��v and correspond to
the set of views

� P a � � � ��� � � � ��� � � � �7? � .
2. Generate subqueries that only contains predicate from

u ��v ,
studying constraints of

f
to determine the substitutions.

ex: As / � only takes into account views from
� P , � � = Located(x, y) C

Hotel(x) is generated.
Furthermore, the view �B� �7? is not used in a constraint with other views
from

� P ; the unique atom conjunction � � = Located(x, y) is generated.

3. Saturate the constraints of
f

to specialize the subqueries ob-
tained in 2, and still allowing them to be rewritten by

f
.

ex: Constraints that contain all their atoms in � � , except for a predicate,
are processed. The constraint / � adds the predicate Sahara in � � .
��� � = Located(x, y) C Hotel(x) C Sahara(y)
From � � we get � �� = Located(x, y) C Hotel(x) C LuxuriousPlace(y).

4. There are 2 possible situations:
- the number of queries outnumbers the quota of

f
: we suppress

some of these queries;
-
� � is not reached: we add the next more c-u predicate of

u �
to
u ��v and go back to step 2.

Initialization of the base is performed by a prototype implemented
in java. It permits to generate from a set of sources an appropriate
number of queries.

3.2 Organisation of the Queries

Face with a failing-query V v , we need to find quickly, among the
predefined queries, solutions for V v . We present here the indexing
method concisely. It is used to cluster the queries in order to avoid
searching all over the base � ��� .
In general, cluster analysis deals with a set is defined given a set � of
�Hg samples in a sample space � containing � .
We use the k-medoids method [8] to cluster the queries relative to
a special thematic, which is an adaptation for the 1st order logic of
the k-means algorithm [4] introduced in the propositional case. The�

clusters minimize the overall sum of squared distances between
instances and clusters’ centers. Indeed, this method optimizes an ex-
isting clustering and approximates actual cluster centers by taking
existing samples, i.e., in our approach, predefined queries from ����� .
This method fits to an easy updating process of the base. In our case,
methods described in section 5 are used to estimate the distances.
Thus, we select clusters of �,��� that maximize the similarity between
V v and their center, to compare their queries with V v .
4 Similarity Between Predicates

This section shows how to order predicates w.r.t. a central predicate,
thanks to a similarity measure between concepts of a hierarchy.

4.1 Intuition

The calculation of similarity is based on the position of the concept
in the hierarchy and is done to help the user to find a solution.
Thus, our calculation must verify the following assumptions:
- as each concept contains characteristics (cics), the more charac-
teristics two concepts share, the closer they are considered.
- as specialisations of a concept give instances of this concept and are
taken into account in the expansion step, they have to be considered
closer to the concept than its subsumers are.

In order to respect these assumptions, we suppose that any edge of
the hierarchy displays a characteristic, that are divided up in defined
characteristics and not-defined characteristics for a concept.

Definition 4.1: The set of defined characteristics of a concept


is the set of the occurrences of edges that constitutes the differents
paths
 � �� , ....,

 � �z from the root �
	Y� ( � ) of the hierarchy to


.

PlaceWith
NoBeach

Part of Dh

UnderTheSun Island PlaceWithBeach

Madeira ReunionSaharaCorsica

SunnyOnlySummer AlwaysSunny

Caribbean

Europe

IslandWithBeach

b1 a2 b4

b32b12b11
b41

a21 b22
b121

a22 b122 a23 b123
b413b323b412b322

a12
b321 b411

b112b111a11
b21 b31

a1

b2

b3

GeoPlace PhysicalPlace
a b

Top

OutOfEurope

Let
u 2 be the depth of the hierarchy. The number of cics of a concept

is
� t u 2 , where

�
is the number of paths

 � �# .
It amounts to considering that each path

 � �# has been extended by
a virtual path

 � �# from


to
@

, such that the length of any path
issued from the concatenation of

 � �# and
 � �# is equal to

u 2 .
The set of these virtual paths represents the set of not-defined char-
acteristics of


and is used in the computation of the similarity.

ex: IslandWithBeach (Iwb) has 2 paths from  , the one with Island (Isl),WX; �� w�� the other one with PlaceWithBeach (Pwb), WX; ������ . Both are 3 edges
long, thus Iwb has � defined cics. Each path is extended by a virtual path
such that the full path is 4 cics long ( M 2 a j ); thus, Iwb has d not-defined
cics (length( W ; �� w�� ) + length( WX; ������ a ���\� ), and � cics ( � � dXaed nAj ).
In practical terms, paths from � to each concept


are represented

by an intrinsic numeration of all the concepts of the hierarchy.

4.2 Numbers and Identifier of a Concept

Definition 4.2: Let � 2 be a hierarchy, a number s�� for a concept
is a unique string for � 2 , defined on an alphabet of n symbols. The
number of its characters

� s�� � is called length.

The chosen alphabet has to be wide enough to take into account the
maximal number of sons that a concept can have in � 2 . In our ex-
amples, n = 36 ���C���;� � � �! Q�!" �#��� � � ��$ � seems to be satisfactory.
A concept can have many numbers if it has many fathers, or if at least
one of its fathers has many numbers.

Definition 4.3: The identifier of a concept


, �&% � 4� is the set of its
numbers.

All the sons of a concept


inherit the identifier of this concept and
for each son, each number of id(C) inherited is extended on the right
by a distinct character. The method used to numerate the hierarchy
is inspired by topological sorting (the hierarchy is a DAG rooted in
�'	Y� ). We only impose the unicity of each number.

ex: The three concepts Corsica, Reunion and Caribbean inherite of Island-
WithBeach [b32, b41]. Here, numbers are extended by characters ‘1’ for Cor-
sica, ‘2’ for Reunion and ‘3’ for Caribbean.



Numbers of the id of


are assigned to a unique path from � to


. A
number 6 � � � � 6 � is assigned to a path being s edges long such that the

�7� � edge links the concept that has in its id the number 6 � � � � 6 #�� � to
the concept with 6 � � � � 6 #�� � 6 # . The sum of the lengths of the numbers
of a concept identifier is equal to the number of its defined cics.

4.3 Note of Similarity

We define the note of similarity of a concept
 � centered on a

concept


, noted � ������� , to order concepts
 � from the closest

to the furthest of


. The similarity between a pair of identical
objects is 1, and when there is no commonality between these
two objects, their similarity is 0. Notes take into account: (i)
the common characteristics of the common subsumers of


and
 � , which requires to compare all the numbers of the iden-

tifiers of


and
 � , (ii) the characteristics of

 � that


does not have.

We use the following notations: the identifier of the central concept
is noted �&% � 4� = [ s � , ..., s�z ] and � % �  � � = [ � � , ..., � �

].
�

represents the string concatenation symbol. For 2 numbers, s	�
and ��
 , with � K� � � � ���

and � K� � � � 9 � , we note 6�	�����
 their
longest common prefix. We have the following concatenations:
s � Z 6�	�� ��
 � � s % ��� and � 
 Z 6 	�� ��
 � � s %���� .

The calculation of the note consists in three stages:
1) We define the similarity ratio of � 
 centered on s � , with nega-
tive values forced to � :� � � � � � = ��� � 6�	�����
 � � u 2 | � s�� � � h u 2 � | � � � ��� t � � s % � �

�
.

2) Then, for each number s�� , we define a similarity ratio of
 � cen-

tered on s � ,
� � "X� ��� � ��� , that measures the maximal similarity of

the different numbers of
 � centered on s � :� � "X� ��� � � � Z MAX ! � � � � � � , � K" � � � 9 �$# .

3) The note of similarity of
 � centered on


is forced to 0 when

there are no common defined cics, e.g., for Top centered on any con-
cept, and otherwise is equal to:

� ���$��� Z AVG ! � � "X� ���$� � � , � K% � � � ���$#
.

4.4 Examples and Justifications

ex: Here is the calculation of the note ` �'& 2 &)(*& �,+�- v � #�. � between the
concept W � a Sahara and the central concept W a Reunion, with M 2 a j .
id(Sahara) = [a21, b22, b121] id(Reunion) = [a22, b122, b322, b412]Z & ��� � & ��� a �*/ 1 d / � j�0 / 1 d�d / � m�j10"k<r k�k d n / � / a k<r 2�j �Z � ��� � & ��� a � k � j30 b � m�j40Hk<r k�k d n b	a k<r d j�j Z � ����� � & ��� a k�r d j dZ�5 13� �'& 2 &6(*& � & ��� a k<r 2�j � Z�5 1�� �'& 2 &6(*& � � ����� a k<r 2�j �Z�5 13� �'& 2 &6(*& � � :���� a k<r d j � Z�5 13� �'& 2 &6(*& � � ?���� a k<r d j �` �'& 2 &6(*& �,+�- v � #7. � = (0.748 + 0.748 + 0.246 + 0.246) / 4 = 0.497

� In the definition of
� � � � � � ,

� 6�	�����
 � represents how many com-
mon defined cics the numbers s8� and ��
 have. Keeping for any
s�� , the maximum of these ratios is equivalent to consider the longest
common prefix of the � 
 s with this s � , that is a least common sub-
sumer (lcs) for

 � and


, according to the cics expressed in s � .
Indeed, for 2 concepts

 � and
 � , numbers corresponding to the lcs

of
 � and

 � are obtained by keeping the set of the longest prefixes
6�	�� ��� to

 � and
 � . Then, we just have to find the concepts identi-

fied by at least one of the 6�	�� ��� s.
ex: The maximal common prefixes to the numbers of Sahara and Reunion

are � 1 d �x�-�:9 � d � , they correspond to the numbers of the concepts OutOfEu-

rope and AlwaysSunny, i.e., their 2 ']/2L .

� The number
� 6�	�� ��
 � is then increased by the number of not-

defined cics of s�� ,
u 2 | � s�� � . Indeed, not-defined cics of s�� are

common to any of its subsumers.� The division by
u 2 corresponds to a normalization stage that con-

tributes to obtain ratios between � and � .� The first step of the calculation captures intuition (i) that similarity
is related to the number of common cics of the lcs.� According to intuition (ii), cics of

 � that


does not have are taken
into account by introducing a surcharge that depends on the length
of the suffix of ��
 ,

� � s % � �
�
.

ex: PlaceWithBeach has 4 specializations: first IslandWithBeach, and then
Corsica, Reunion and Caribbean:` � w�� & �';=< # B 2 g - &6> 2 � � � &6> - < # B 2 g - &6> 2 = (4/4 - 0.002) /1 = 0.998.
` � . ( w / � � < g = ` +�- v � / � � < g = ` � &)( # � / � � < g = 1 - 0.004 = 0.996.

4.5 Similarity Between Nc-Predicates

We are now interested in predicates that are not concepts. The cal-
culation of similarity is based on the number of their arguments and
on the constraints that type them. When there is no constraint for an
argument, the note 0 is assigned to this argument.

Definition 4.4: Let � � ��� � � � � � �=� � � , � � �@? � � � � � �A? � � be nc-predicates.
Let
 #�� � KB � � � s � (resp.

 � O:�DC KE � � � � �
) be the concepts that type

the arguments �?# (resp. ?1O ). The note of similarity of � � centered
on � � is: � �=F � � � = AVG # ,X. ��/ / ��0 ! MAX OS,X. ��/ / � 0 !)� ���HGI��� ~ #J#

.

ex: Consider the 5 following constraints of  B for the predicatesK � a EquipAss that associates an Equipment to a ResidencePlace andK � a DistEquip that expresses the distance of an Equipment to a fixed
GeoPlace: DistEquip(x,y,z) CHD GeoPlace(x) LNM
DistEquip(x,y,z) C D Equip(y) LOM DistEquip(x,y,z) CHD Number(z) LOM
EquipAss(x,y) C D ResPlace(x) LPM EquipAss(x,y) C D Equip(y) LOM
Suppose we have the notes of similarity shown on the table, one W # per row
and one W �O per column. Using this table, where the best notes are in bold
font, we get `�Q # w B R � v # � � R � v # �=S w2w = � � � k<r j � m d = k�r 2 .

EqtAs T DistEq GeoPlace Equip Number
ResPlace 0.4 0.3 0

Equip 0.1 1 0.2

5 Similarity Between Queries

We present in this section how to compare any query V � of � to V v .
Similarity between queries is based on proximity between pred-
icates, but can be reduced to a calculation of similarity between
2 conjunctions of concepts, for concepts that refer to the same
objects (same variables). Thus, it must also take into account: (i) the
difference between the names of the variables from the user’s query
V v and from predefined queries V^� , (ii) links between variables.

ex: Due to a lack of place, see [3] for details and full examples. The user
asks for a stay in an hotel in Sahara and a stay in Corsica, from june to august:� v a � #&1 * �7;)J � �*9 J � %NJ � LNJ � K J � �HC � #+1 * �7;)J d �A9 J � %2J � /&J � K J d � C�"!5#+%5'��7;)J � ��CVU0J<[�%�� 9 J���C 1�J�W)J�L2#2�7%2J���C � 1);<1�=�1��YLNJ���C WX!$=�LNKY/21��7/&J��� � � and � � � have the same predicates, but � � � requires a unique hotel:� � �Pa � #+1 * �$X	Y �AZ,�D[�� 5 � K � �)C � #&1 * �\X�] �@Z,�\[�� 5 � K d ��C ' J<��;<!5#+%5'��\X^Y��)C;<!5#+%5'H_�K6#&;<L*_ K !0!�'Y�$X�]���CVU0J<[�%�� Z ��C`U0J�' * � [ ��C�a 1)4�%2K�=�1��b5 �
� � �	a � #+1 * �$X �AZ Y �D[ Y � 5 � K � �2C � #+1 * �\X �@Z ] �\[ ] � 5 � K d �2C.' J<��;<!5#+%5'��\X��2C;<!5#+%5'H_�K6#&;<L*_ K !0!�'Y�$X���C`U0J<[�%�� Z Yx��C`U0J�' * � Z ]<��C`a 1�43%2K�=�1<�c5 �
Substitutions We do not want to calculate neither all the substi-
tutions on the queries, nor notes of similarity for each substitution
to get the best note. Therefore, we define heuristics to choose a
substitution within the candidates.



Algorithm:
1. Unfold the queries V � and V v to get conjunctions of concepts
V � � and V � v , by replacing the nc-predicates with their types.
2. Compare the concepts of the predefined query V � � with V � v ’s
ones; this comparison is directed in order to evaluate which atoms
from V � v have to be associated to atoms of V � � .
3. Obtain V � �� by applying the substitutions that match the two
closest predicates in V � � and V � v , starting by the first predicate
with the best note of similarity, stopping when all the atoms from
V � � are processed.

The note of V � centered on V v is the average among the notes
obtained for the atoms of V � �� , centered to the atoms of V � v . This
time, notes are calculated in the other direction as we want to find
which queries V � from the base � ��� are the closest ones to V v �
A first note is calculated comparing the atoms that refer to the same
objects. To remedy the fact that only 1 substitution is chosen, a sec-
ond note is worked out for every atom of V � v . This note only takes
into account the name of the concepts, disregarding the arguments,
but performs a surcharge [3].

ex: `���� � � � � = 0.778 `���� F � � � = 0.740. The notes are different
because � J �� � contains an atom, Z	%5L2M	'O1)/2%��7; d � , that � J �� � does not. This
atom arises in the unfolding step as the first argument of Stay differs in the
two occurrences in � � � .
Not to consider the variables would lead to consider V � � and V � � as
a unique query, whereas they express 2 different objectives.
Different thresholds can be defined explicitly (by the user) or not (by
default); they may be, for example, the minimal note that determines
whether a predefined query is close to the user’s query, i.e., is a solu-
tion for V v , or the number of solutions to present to the user.

6 Comparison with Other Similarity Measures

In many proposals, similarity measures between two concepts
 �

and
 � in a taxonomy are distance based (e.g., using the length of

the shortest path from
 � to
 � , through one of their least common

subsumers). But these measures (i) are symmetrical and (ii) respect
the triangle inequality, properties that do not fit our intuitions in the
context of semantic similarity. Concerning (i) we proved in [3] that,
to have specializations closer than subsumers, the similarity measure
cannot be symmetrical. For example, with a rule of �"2 : Reunion

�
OutOfEurope, � +�- v � #7. � ��� v B ��� R v:( . � -	� � � v B �
� R v:( . � - �,+�- v � #7. �
because OutOfEurope must be further than any specialization of Re-
union. Note that all the other measures presented here are symmet-
rical. Concerning (ii) specifying that the distance between two con-
cepts (e.g., old dog and young cat) must be shorter than the sum of
the two distances with a third concept (e.g., young dog): d(o.d., y.d.)
+ d(y.d., y.c.) � d(o.d, y.c.) may be counter-intuitive.
In some other proposals [9, 11] the measure is based on the notion of
shared information and uses a function of probability of encountering
an instance of a concept in a corpus, data that we do not have.
We now study properties introduced by Lin in [9] on similarity
measures: (iii) their maximal value is equal to 1, (iv) they increase
with commonality, (v) they decrease with difference and (vi) if two
concepts can be viewed from two independent perspectives and if
their similarity can be computed separately from each perspective,
their overall similarity is a weighted average of the similarities com-
puted from every perspective. Resnik’s measure [11] does not verify
(iii)(v)(vi). The work done by Wu & Palmer [12] is very closed to
ours; it takes into account the deepest lcs in the hierarchy and bases
its calculation on the depth of this lcs and its distance to the concepts:

%<� � � � ��9>6�i � t3� h � %�� i � � > w �  � � � %�� i � � > w �  � � � %<� � � � ��9 6�i � t3� � . How-
ever, their measure, as all the processes based on a hierarchy, requires
to scan the whole hierarchy for any calculation while our concepts
identification system avoids such an expensive process. Another im-
portant problem with their measure is that, for example, the concept
OutOfEurope would be closer to Reunion than Caribbean is, which is
counter-intuitive. Their measure, Lin’s approach and our notes sat-
isfy properties (iii) to (vi). In addition, our measure and Lin’s pro-
cess can be applied for ordinal values and in order to find common
radicals in the context of word similarity. In this context, we could
generate the identifiers of the words using only their letters, without
requiring any taxonomy.
Our computation of similarity between two queries can be compared
with Andreasen’s work [1] in the context of document retrieval, but
restricted to conjunctions of concepts (instead of predicates). The
metric on clauses of Hutchinson [7] is based on the often used Haus-
dorff metric, computed from a table of s t � values, if the 2 clauses
(or concepts) have s and � characteristics. Only one of these values
is chosen, i.e., 1 path for predicates, 1 atom for clauses. Furthermore,
all the substitutions of the initial clause are processed in order to se-
lect one of them, whereas we avoid this calculation and we take into
account all the lcs of the concepts.

7 Conclusion and Perspectives

Our objective is to help a user of a mediator system to reformulate
his query when it fails. For it we have introduced the notion of so-
lution. This paper has presented in a formal framework an algorithm
that generates a base of predefined queries specified from a descrip-
tion of the sources. Moreover, we have introduced the notion of char-
acteristics for a concept in order to define similarities between two
predicates and therefore between two queries. An algorithm to cal-
culate these solutions has been proposed. It is implemented in Java.
Several experimentations still have to be done to determine the size
of the base of predefined queries and the number of clusters. We also
have to precise in an interactive way the minimal similarity note that
allows us to conclude that two queries are closed enough.
Concerning the update of the base, proposals issued from Case Base
Reasoning community will be investigated.
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