
 

Case Retrieval of Software Designs using WordNet 
Paulo Gomes1, Francisco C. Pereira1, Paulo Paiva1, Nuno Seco1, Paulo Carreiro1, José L. Ferreira1 and 

Carlos Bento1 
Abstract.1  Software design is one of the most important phases 
in system development, due to crucial decisions that are made 
during this phase. The need for software being developed in less 
time puts a lot of pressure in the design phase. One way to solve 
this problem is to reuse previous design solutions. In software 
design reuse the retrieval of relevant designs is a key issue. 

Case-Based Reasoning reuses past experiences to solve new 
problems, providing a reasoning framework for design reuse. But 
designing software involves reasoning at a more abstract level 
than coding software, thus a software design reuse tool must be 
able to work with a broad range of abstract concepts. A possible 
solution is the use of a common sense ontology, capable of 
providing this kind of knowledge, otherwise the system would 
have to demand a lot of knowledge from the designer.  

This paper presents an approach to software design retrieval 
based on Case-Based Reasoning combined with a common sense 
ontology – WordNet. We describe the case retrieval algorithm, 
the case similarity metrics and experimental results. 

1 THE PROBLEM 
As one of the main software development phases, system design 
has been gaining more importance as the complexity level of 
software increases. This also drives software development teams 
to be more efficient.  Software designers must find new ways to 
design software, trying to optimise development time, processing 
time, required memory, and other resources. Like architects, 
software designers frequently use their experience from the 
development of previous systems to design new ones. Most of the 
mature engineering fields make the reuse of components a 
development rule, but in software engineering the reuse of 
components and/or design ideas is not easy, given the conceptual 
complexity of software. Thus, intelligent tools that support the 
software design task need to be at the disposal of software 
designers. These tools must implement software reuse [1, 2] 
techniques, but they also have to go further, providing support for 
more complex reasoning abilities.  

Most of the software reuse tools [3-5] support only the 
retrieval of software components (like classes, functions or 
specifications) from repositories. But reusing software involves 
also reusing successful past designs. This is not what commonly 
happens in software development, since it is a more complex and 
demanding task, usually there is only code reuse. Decisions made 
at the design level are more important than the coding decisions, 
which can only influence the implementation. This is another 
 
1 CISUC – Centro de Informática e Sistemas da Universidade de 
Coimbra. Departamento de Engenharia Informática, Polo II – 
Universidade de Coimbra. 3030 Coimbra. Portugal. 

reason to reinforce the need for an intelligent software design 
tool. But several obstacles appear in the construction of such 
tools, for example, the design communication language is usually 
too abstract and informal to be computationally formalized. Thus 
an intelligent tool capable of working at design level must also be 
capable of using a language used by human designers. 

There are several research works that explore retrieval and 
similarity mechanisms, for example González et. al. [6] presented 
a CBR approach to software reuse and design at the code level. 
The work developed is based on the reuse and design of object-
oriented code. Using the object description they use two retrieval 
algorithms, a lexical retrieval using a natural language query, and 
a conceptual retrieval using an entity and slot similarity measures. 
Déjà vu [7] is a CBR system for code reuse and generation using 
hierarchical CBR. Like the case representation of González, Déjà 
Vu uses a hierarchical case representation, indexing cases using 
functional features. Althoff and Tautz [8] have a different 
approach to software reuse and design. Instead of reusing code, 
they reuse system requirements and associated software 
development knowledge. The RSL [9] is a software design 
system that allows the reuse of code and design knowledge. 
Component retrieval can be done using a natural-language query, 
or using attribute search. Component ranking is an interactive and 
iterative process between RSL and the user. Prieto-Díaz [3] 
approach to code reuse is based on a faceted classification of 
software components. Conceptual graphs are used to organize 
facets, and a conceptual closeness measure is used to compute 
similarity between facets. Borgo [10] uses WordNet as a 
linguistic ontology for retrieval of object oriented components. 
His system uses a graph structure to represent both the query and 
the components in memory. The retrieval mechanism uses a 
graph matching algorithm returning the identifiers of all 
components whose description is subsumed by the query.  

2 OUR APPROACH 
Reusing design knowledge is a form of using experience, which 
corresponds to the Case-Based Reasoning (CBR) definition [11-
13]. In CBR, experiences are called cases and are stored in a case 
library for later use. These cases are indexed so that they are 
retrieved when relevant for a new problem or situation. There is a 
clear parallel with CBR and software reuse, which lead us to 
choose CBR as the main rationale for the reasoning paradigm in 
our approach to software reuse and design. 

Being able to explore the huge design space for Object-
Oriented software is not an easy task. A software design system 
capable of coping with this exploration task, must be able to 

  



 

  

handle a huge amount of different domain knowledge. There are 
two main solutions for this problem: the system is capable of 
acquiring this knowledge; or the system uses a big enough 
common sense knowledge base. The first approach demands that 
a lot of knowledge engineering work must be done, parallel with 
the normal functioning of the system. Besides this limitation, 
there is also the problem of the system needing knowledge that is 
not in the knowledge base. The second approach has also 
limitations, such as that is very hard to codify all the common 
sense knowledge in the world. But it as a positive aspect, it does 
not need a knowledge engineering effort to update the knowledge 
base. This is a main problem for a software design system, 
because it would be necessary at least a knowledge engineer to 
make the system work properly, or it would be needed a lot of 
strict knowledge base updating rules, that would have to be 
followed by the designers. Having into account these arguments, 
we selected to use the common sense knowledge base approach. 
There are some common sense ontologies built by the science 
community, from which we selected WordNet [14].  

We are developing a CASE (Computer Aided Software 
Engineering) tool, REBUILDER, which uses CBR to reuse and 
design object oriented software. Our goal is to develop an 
intelligent system based on a repository of past designs and a 
general ontology, capable of supporting software design. We 
represent software models in Unified Modelling Language 
(UML) [15] providing the user with a intuitive and commonly 
used design language. UML is a graphical language used to 
describe and document object oriented software, and is a standard 
for most of the software development companies.  

In the next section we present the architecture of 
REBUILDER, describing its modules. Then we focus in the case 
retrieval module, describing the retrieval algorithm, the object 
similarity metrics, and how the WordNet knowledge is used. 
Then we present experimental work and results observed with our 
system. Finally we present some conclusions. 

3 REBUILDER 
REBUILDER is more than a CASE tool in the sense that it can 
provide intelligent design support for the software developer. 
Used as an UML modelling system, REBUILDER can suggest 
relevant designs to the user, generate new design solutions, verify 
and evaluate designs, and learn new knowledge.  

3.1 Architecture 
REBUILDER comprises several modules: an UML Editor, the 
Knowledge Base Manager, the Knowledge Base (KB), and the 
CBR Engine. 

The UML Editor is the interface for the software designer, and 
from her/his point of view is a normal UML Editor with special 
functionalities. The KB administrator has another interface to 
interact with the system – the KB Manager module. It allows the 
manipulation of the system’s knowledge. 

The KB comprises four different types of knowledge: cases, 
case indexes, data types relations, and WordNet knowledge. 
Cases are stored in the case library and are retrieved using case 
indexes. Cases represent software designs. The data type 
taxonomy is a hierarchy relating the data types used in 
REBUILDER (e.g. int, String, boolean, …), this taxonomy is 

used to compute the conceptual distance between two data types. 
WordNet is a lexical reference system used in REBUILDER as 
an common sense ontology for object categorization [14]. 

The CBR Engine is responsible for all the system’s reasoning, 
and has five modules: retrieval, analogy, adaptation, verification, 
and learning. The retrieval module suggests cases similar to the 
query design. The retrieval is based on WordNet categorization 
and structural similarity. But retrieval does not modify the 
selected designs to adapt them to the query design. This is done 
by two modules: adaptation and analogy. The adaptation module 
uses software engineering methods (design patterns) and design 
composition to generate new solutions. Analogy is also used to 
generate new designs based on object mapping between the 
retrieved design and the query design. The verification module 
checks the UML design consistence and coherence, and it also 
evaluates designs. REBUILDER can learn new knowledge from 
the user interaction, or from generated designs. In the remainder 
of this paper we focus in the retrieval module. 

3.2 Case Representation 
Cases are represented as UML class diagrams [15], which 
represent the software design structure. Class diagrams can 
comprise three types of objects (packages, classes, and interfaces) 
and four kind of relations between them (associations, 
generalizations, realizations and dependencies). Class diagrams 
are very intuitive, and are a visual way of communication 
between software development members. A simple class diagram 
example is presented on Figure 1. 

 

Figure 1.  An example of an UML class diagram. 

4 CASE RETRIEVAL 
The case retrieval module retrieves three types of objects: 

packages (can be an entire design case or a case component), 
classes or interfaces, depending on the object selected when the 
retrieval command is selected by the user. In the next subsection 
we describe some basic notions about WordNet, which are 
needed to understand the retrieval mechanism. Then we explain 
our retrieval algorithm and similarity measures. 

4.1 WordNet Ontology 
WordNet is a common sense ontology that defines lexical 
concepts based on the notion of synset. A synset is defined as a 



 

  

set of synonym words expressing the same concept. This implies 
that several words can be used to express the same synset 
(synonyms) and a word can have several meanings or synsets 
(polysemy). 

WordNet comprises several semantic relations, which are 
relations between synsets. REBUILDER uses two types of 
relations: hyponyms (is-a), and meronyms (part-of, element-of or 
substance-of). Each object has a specific meaning corresponding 
to a specific synset, which we call context synset. The object’s 
name is used to find its context synset, along with the other 
objects in the same class diagram. The object’s class diagram is 
the context in which the object is referenced, so we use it to 
disambiguate the meaning of the object. To illustrate this, 
suppose that an object named board is created, this object can 
mean either a piece of lumber or a group of people assembled for 
some purpose. This name has two possible synsets, one for each 
meaning. But suppose that there are other objects in the same 
diagram, such as boardMember and company. These objects can 
be used to select the right synset for board, which is the one 
corresponding to the group of people. 

4.2 Retrieval Algorithm 
The retrieval algorithm is the same for all three types of objects 
(packages, classes and interfaces), and is based on the object 
classification using WordNet. Suppose that the N best objects are 
to be retrieved, QObj is the query object, and ObjectList is the 
universe of objects that can be retrieved (usually ObjectList 
comprises all the library cases). The algorithm is:  

ObjsFound ← ∅ 
PSynset ← Get context synset of QObj 
PSynsets ← {PSynset} 
ObjsExplored ← ∅ 
WHILE (#ObsFound < N) AND (PSynsets ≠ ∅) DO 
   Synset ← Remove first element of PSynsets 
   ObjsExplored ← ObjsExplored + Synset 
   SubSynsets ← Get Synset hyponyms (subordinates) 
   SuperSynsets ← Get Synset hypernyms (super ordinates) 
   SubSynsets ← SubSynsets – ObjsExplored – PSynsets  
   SuperSynsets ← SuperSynsets – ObjsExplored – PSynsets 
   PSynsets ← Add SubSynsets to the end of PSynsets 
   PSynsets ← Add SuperSynsets to the end of PSynsets 
   Objects ← Get all objects indexed by Synset 
   Objects ← Objects ∩ ObjectList  
   ObjsFound ← ObjsFound ∪ Objects 
ENDWHILE 
ObjsFound ← Rank ObjsFound by similarity 
RETURN Select the first N elements from ObjsFound  

Object retrieval has two distinct phases. First the WordNet is-a 
relations are used as an index structure to find relevant objects. 
Then a similarity metric is used to select only the best N objects. 
This process is a compromise between a first phase, which is 
inexpensive from the computational point of view, and a second 
phase more demanding of computational resources, but much 
more accurate in the object selection and ranking. 

In the first phase the object’s context synset works like an 
index. Starting by QObj context synset, the algorithm searches 
for objects indexed with the same synset. If there are not enough 
objects, the algorithm uses the hypernyms and hyponyms of this 
synset to look for objects, going in a spreading activation kind of 
algorithm. When it has found enough objects, it stops and ranks 

them using the similarity metric. In the next subsection we 
present the similarity metrics. 

4.3 Similarity Metric 
There are three similarity metrics: for classes, for interfaces, and 
for packages, the next subsections describe them.  

4.3.1 Class Similarity 

The class similarity metric is based on three components: 
categorization similarity, inter-class similarity, and intra-class 
similarity. The similarity between class C1 and C2, is: 
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Where S(S1, S2) is the categorization similarity computed as 
the distance, in is-a relations, between C1 context synset (S1) and 
C2 context synset (S2). S(Ie1, Ie2) is the inter-class similarity 
based on the similarity between the diagram relations of C1 and 
C2. S(Ia1, Ia2) is the intra-class similarity based on the similarity 
between attributes and methods of C1 and C2. w1, w2 and w3 are 
constants. We use 0.6, 0.1, and 0.3 as the default values of these 
constants, based on experimental work. 

4.3.2 Interface Similarity 

The interface similarity metric is the same as the class metric 
with the difference that the intra-class similarity metric is only 
based on the method similarity, since interfaces do not have 
attributes. 

4.3.3 Package Similarity 

The package similarity between packages PK1 and PK2 is: 
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This metric is based on four items: sub-package list similarity 
– S(SPs1, SPs2), UML class diagram similarity – S(OBs1, OBs2), 
type similarity – S(T1, T2), and dependency list similarity – S(D1, 
D2). These four items are combined in a weighted sum. The 
categorization similarity is the same as in the class similarity 
metric.  

4.3.4 Object Categorization Similarity 

The object type similarity is computed using the context synsets 
of the objects. The similarity between synset S1 and S2 is: 
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Where Min is the function returning the smaller element of a 
list. Path(S1, S2) is the WordNet path between synset S1 and S2, 
which returns the number of relations between the synsets. 



 

  

4.3.5 Inter-Class Similarity 

The inter-class similarity between two objects (classes or 
interfaces) is based on the matching of the relations in which both 
objects are involved. The similarity between objects O1 and O2 is: 
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Where Ri is the set of relations in object i, Rij is the j element 
of Ri, n is the number of matched relations, S(R1i, R2i) is the 
relation similarity, and ω1, ω2 and ω3 are constants, with ∑ωi =  1 
(default values are: 0.5; 0.4; 0.1). 

4.3.6 Intra-Class Similarity 

The intra-class similarity between objects O1 and O2 is: 
),(),(),( 21221121 MsMsSAsAsSOOS ⋅+⋅= ωω  (5) 

Where S(As1, As2) is the similarity between attributes, S(Ms1, 
Ms2) is the similarity between methods, and ω1 and ω2 are 
constants, with ∑ωi =  1 (default values are: 0.6; 0.4). 

4.3.7 Sub-Package List Similarity 
The similarity between sub package lists SPs1 and SPs2 is: 
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Where ωi are constants, and ∑ωi =  1 (default values are: 0.5; 
0.4; 0.1), n is the number of sub packages matched, S(Pk1i, Pk2i) 
is the similarity between packages, Unmatched(Pki) is the number 
of unmatched packages in Pki, SPsij is the j element of SPsi, and 
#Pki is the number of packages in Pki. 

4.3.8 UML Class Diagram Similarity 

The similarity between lists of UML objects OBs1 and OBs2 is: 
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Where ωi are constants, and ∑ωi =  1 (default values are: 0.5; 
0.4; 0.1), #OBsi is the number of objects in OBsi, 
Unmatched(OBsi) is the number of objects unmapped in OBsi, n 

is the number of objects matched, OBij is the j element of OBi, 
and S(OB1i,OB2i) is the object categorization similarity.  

4.3.9 Dependency List Similarity 

Dependencies is a UML relation type, and is commonly used to 
describe dependencies between packages. The similarity between 
dependency lists D1 and D2 is given by: 
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Where ω1 and ω2 are constants, and ∑ωi =  1 (default values 
are: 0.5; 0.5), ID are the input dependencies, and OD are the 
output dependencies. 

5 EXPERIMENTS 
This section describes the experimental tests developed to study 
the retrieval module of REBUILDER.  

5.1 Experiments Design 
The Knowledge Base used comprises a case library, a set of 
query problems, WordNet synsets, hypernyms, meronyms, and 
the data type taxonomy. From WordNet we use the noun synsets 
(78158) and semantic relations (97887).  

The case library comprises 60 cases. Each case comprises a 
package, with 5 to 20 objects (the total number of objects is 586). 
Each object has up to 20 attributes, and up to 20 methods. 

Three sets of package problems were specified, based on the 
cases. Incomplete set P20, with 25 problems, each problem is a 
case copy with 20% of its objects deleted, attributes and methods 
are also reduced by 20%. The other sets are the same problems 
but with 50% (P50) and 80% (P80) deleted. 

The experimental runs had the goal to define the best weight 
configuration for the package retrieval, and also to compare 
categorization similarity with structural similarity and both. For 
each problem a best case is defined and a set of relevant cases 
were also defined before the runs were executed. These sets of 
cases are used to evaluate the accuracy of the algorithm. For each 
problem set the following weight configurations was used: 

 w1 w2 w3 w4 
Configuration 1 (C1) 0 1 0 0 
Configuration 2 (C2) 0 0.75 0.25 0 
Configuration 3 (C3) 0 0.5 0.5 0 
Configuration 4 (C4) 0 0.25 0.75 0 
Configuration 5 (C5) 0 0 1 0 

Because each case has only one package, weights w1 and w4 
are not used, leaving only weights w2 and w3 which concern 
class diagram similarity and package type similarity. For each 
problem run the best 20 retrieved cases were analysed. The data 
gathered was: best case is first (yes or no), best case is selected 
(yes or no), and percentage of the relevant cases retrieved. 

5.2 Experimental Results 
Table 1 shows the average values (in percentage) for the data 
gathered in the experimental runs of problem sets P20, P50 and 



 

  

P80. As can be seen configurations C2 , C3 and C4 are identical, 
having a better performance then C1 or C5. C1 is more accurate 
than C5 in selection of the best case, but it is worst in the 
percentage of relevant cases retrieved. While C1 uses only class 
diagram similarity, thus being more precise in case similarity 
evaluation, C5 uses only type similarity which performs better in 
selecting cases within the same category. 

 
 C1 C2 C3 C4 C5 

Best Case First 81.33 85.33 88.00 88.00 61.33

Best Case Selected 93.33 93.33 93.33 93.33 93.33

Percentage of Relevant Cases 82.03 84.15 84.75 85.12 83.95

Table 1 - Experimental values gathered on the 75 problem runs. 

The data in Figure 2 relates to the percentage of Best Case 
First by configuration and problem set. As it can be seen there is 
a clear trade-off between configurations and the size of the query. 
The increase in the weight of the type similarity improves the 
results until it stabilizes in C3 and C4. With an increase of 
accuracy when the size of the query also increases, which was 
expected. The use of only the type similarity decreases a lot the 
retrieval results. 

50
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Figure 2 – Experimental values for the % of Best Case in First place. 

Future work on experimentation will evaluate our approach 
with respect to its usefulness from the user view point, we intent 
to use the Nick et. al. [16] approach. 

6 CONCLUSIONS 
In this paper we present REBUILDER a CASE tool that uses a 
CBR framework with a general ontology to retrieve past UML 
models. Using a human-created design language like UML, 
allows REBUILDER to be a general software design tool. Also 
with the intent of being an easy to use tool, REBUILDER 
integrates a general ontology (WordNet), so that the designer can 
be understood by the machine, instead of having to explain 
himself to it. 

Most of the CBR tools for software reuse and design are for 
code reuse, which is not the aim of REBUILDER. By working in 
software development at the design level, REBUILDER deals 
with more abstract and human-like issues. Though code reuse is 
also important, it is already a well explored area using the CBR 
framework. The only presented tool that uses CBR is also at a 
different development cycle, which is the software specification 
level. From the tools that do not use CBR, RSL and Borgo are the 
most similar tools to REBUILDER. While RSL uses a specific 
domain ontology, Borgo and REBUILDER use WordNet. The 

advantage of using WordNet is removing the knowledge 
engineering work from the user or from a system administrator. It 
also provides a much more wider coverage of domains, making 
the system domain independent. Using general ontologies has its 
limitations also, sometimes there is a lack of more specific or 
technical knowledge, but several mechanisms (like using machine 
learning) can overcome this limitation. The retrieval approach 
presented by Borgo is similar to the one presented here. But, 
while Borgo uses only the categorization similarity and structural 
similarity between software designs, REBUILDER uses intra-
object similarity and package-structure similarity, allowing a 
more accurate retrieval accuracy, as seen by the experimental 
results.  
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