

Case Retrieval of Software Designs using WordNet
Paulo Gomes1, Francisco C. Pereira1, Paulo Paiva1, Nuno Seco1, Paulo Carreiro1, José L. Ferreira1 and

Carlos Bento1
Abstract.1 Software design is one of the most important phases
in system development, due to crucial decisions that are made
during this phase. The need for software being developed in less
time puts a lot of pressure in the design phase. One way to solve
this problem is to reuse previous design solutions. In software
design reuse the retrieval of relevant designs is a key issue.

Case-Based Reasoning reuses past experiences to solve new
problems, providing a reasoning framework for design reuse. But
designing software involves reasoning at a more abstract level
than coding software, thus a software design reuse tool must be
able to work with a broad range of abstract concepts. A possible
solution is the use of a common sense ontology, capable of
providing this kind of knowledge, otherwise the system would
have to demand a lot of knowledge from the designer.

This paper presents an approach to software design retrieval
based on Case-Based Reasoning combined with a common sense
ontology – WordNet. We describe the case retrieval algorithm,
the case similarity metrics and experimental results.

1 THE PROBLEM
As one of the main software development phases, system design
has been gaining more importance as the complexity level of
software increases. This also drives software development teams
to be more efficient. Software designers must find new ways to
design software, trying to optimise development time, processing
time, required memory, and other resources. Like architects,
software designers frequently use their experience from the
development of previous systems to design new ones. Most of the
mature engineering fields make the reuse of components a
development rule, but in software engineering the reuse of
components and/or design ideas is not easy, given the conceptual
complexity of software. Thus, intelligent tools that support the
software design task need to be at the disposal of software
designers. These tools must implement software reuse [1, 2]
techniques, but they also have to go further, providing support for
more complex reasoning abilities.

Most of the software reuse tools [3-5] support only the
retrieval of software components (like classes, functions or
specifications) from repositories. But reusing software involves
also reusing successful past designs. This is not what commonly
happens in software development, since it is a more complex and
demanding task, usually there is only code reuse. Decisions made
at the design level are more important than the coding decisions,
which can only influence the implementation. This is another

1 CISUC – Centro de Informática e Sistemas da Universidade de
Coimbra. Departamento de Engenharia Informática, Polo II –
Universidade de Coimbra. 3030 Coimbra. Portugal.

reason to reinforce the need for an intelligent software design
tool. But several obstacles appear in the construction of such
tools, for example, the design communication language is usually
too abstract and informal to be computationally formalized. Thus
an intelligent tool capable of working at design level must also be
capable of using a language used by human designers.

There are several research works that explore retrieval and
similarity mechanisms, for example González et. al. [6] presented
a CBR approach to software reuse and design at the code level.
The work developed is based on the reuse and design of object-
oriented code. Using the object description they use two retrieval
algorithms, a lexical retrieval using a natural language query, and
a conceptual retrieval using an entity and slot similarity measures.
Déjà vu [7] is a CBR system for code reuse and generation using
hierarchical CBR. Like the case representation of González, Déjà
Vu uses a hierarchical case representation, indexing cases using
functional features. Althoff and Tautz [8] have a different
approach to software reuse and design. Instead of reusing code,
they reuse system requirements and associated software
development knowledge. The RSL [9] is a software design
system that allows the reuse of code and design knowledge.
Component retrieval can be done using a natural-language query,
or using attribute search. Component ranking is an interactive and
iterative process between RSL and the user. Prieto-Díaz [3]
approach to code reuse is based on a faceted classification of
software components. Conceptual graphs are used to organize
facets, and a conceptual closeness measure is used to compute
similarity between facets. Borgo [10] uses WordNet as a
linguistic ontology for retrieval of object oriented components.
His system uses a graph structure to represent both the query and
the components in memory. The retrieval mechanism uses a
graph matching algorithm returning the identifiers of all
components whose description is subsumed by the query.

2 OUR APPROACH
Reusing design knowledge is a form of using experience, which
corresponds to the Case-Based Reasoning (CBR) definition [11-
13]. In CBR, experiences are called cases and are stored in a case
library for later use. These cases are indexed so that they are
retrieved when relevant for a new problem or situation. There is a
clear parallel with CBR and software reuse, which lead us to
choose CBR as the main rationale for the reasoning paradigm in
our approach to software reuse and design.

Being able to explore the huge design space for Object-
Oriented software is not an easy task. A software design system
capable of coping with this exploration task, must be able to

handle a huge amount of different domain knowledge. There are
two main solutions for this problem: the system is capable of
acquiring this knowledge; or the system uses a big enough
common sense knowledge base. The first approach demands that
a lot of knowledge engineering work must be done, parallel with
the normal functioning of the system. Besides this limitation,
there is also the problem of the system needing knowledge that is
not in the knowledge base. The second approach has also
limitations, such as that is very hard to codify all the common
sense knowledge in the world. But it as a positive aspect, it does
not need a knowledge engineering effort to update the knowledge
base. This is a main problem for a software design system,
because it would be necessary at least a knowledge engineer to
make the system work properly, or it would be needed a lot of
strict knowledge base updating rules, that would have to be
followed by the designers. Having into account these arguments,
we selected to use the common sense knowledge base approach.
There are some common sense ontologies built by the science
community, from which we selected WordNet [14].

We are developing a CASE (Computer Aided Software
Engineering) tool, REBUILDER, which uses CBR to reuse and
design object oriented software. Our goal is to develop an
intelligent system based on a repository of past designs and a
general ontology, capable of supporting software design. We
represent software models in Unified Modelling Language
(UML) [15] providing the user with a intuitive and commonly
used design language. UML is a graphical language used to
describe and document object oriented software, and is a standard
for most of the software development companies.

In the next section we present the architecture of
REBUILDER, describing its modules. Then we focus in the case
retrieval module, describing the retrieval algorithm, the object
similarity metrics, and how the WordNet knowledge is used.
Then we present experimental work and results observed with our
system. Finally we present some conclusions.

3 REBUILDER
REBUILDER is more than a CASE tool in the sense that it can
provide intelligent design support for the software developer.
Used as an UML modelling system, REBUILDER can suggest
relevant designs to the user, generate new design solutions, verify
and evaluate designs, and learn new knowledge.

3.1 Architecture
REBUILDER comprises several modules: an UML Editor, the
Knowledge Base Manager, the Knowledge Base (KB), and the
CBR Engine.

The UML Editor is the interface for the software designer, and
from her/his point of view is a normal UML Editor with special
functionalities. The KB administrator has another interface to
interact with the system – the KB Manager module. It allows the
manipulation of the system’s knowledge.

The KB comprises four different types of knowledge: cases,
case indexes, data types relations, and WordNet knowledge.
Cases are stored in the case library and are retrieved using case
indexes. Cases represent software designs. The data type
taxonomy is a hierarchy relating the data types used in
REBUILDER (e.g. int, String, boolean, …), this taxonomy is

used to compute the conceptual distance between two data types.
WordNet is a lexical reference system used in REBUILDER as
an common sense ontology for object categorization [14].

The CBR Engine is responsible for all the system’s reasoning,
and has five modules: retrieval, analogy, adaptation, verification,
and learning. The retrieval module suggests cases similar to the
query design. The retrieval is based on WordNet categorization
and structural similarity. But retrieval does not modify the
selected designs to adapt them to the query design. This is done
by two modules: adaptation and analogy. The adaptation module
uses software engineering methods (design patterns) and design
composition to generate new solutions. Analogy is also used to
generate new designs based on object mapping between the
retrieved design and the query design. The verification module
checks the UML design consistence and coherence, and it also
evaluates designs. REBUILDER can learn new knowledge from
the user interaction, or from generated designs. In the remainder
of this paper we focus in the retrieval module.

3.2 Case Representation
Cases are represented as UML class diagrams [15], which
represent the software design structure. Class diagrams can
comprise three types of objects (packages, classes, and interfaces)
and four kind of relations between them (associations,
generalizations, realizations and dependencies). Class diagrams
are very intuitive, and are a visual way of communication
between software development members. A simple class diagram
example is presented on Figure 1.

Figure 1. An example of an UML class diagram.

4 CASE RETRIEVAL
The case retrieval module retrieves three types of objects:

packages (can be an entire design case or a case component),
classes or interfaces, depending on the object selected when the
retrieval command is selected by the user. In the next subsection
we describe some basic notions about WordNet, which are
needed to understand the retrieval mechanism. Then we explain
our retrieval algorithm and similarity measures.

4.1 WordNet Ontology
WordNet is a common sense ontology that defines lexical
concepts based on the notion of synset. A synset is defined as a

set of synonym words expressing the same concept. This implies
that several words can be used to express the same synset
(synonyms) and a word can have several meanings or synsets
(polysemy).

WordNet comprises several semantic relations, which are
relations between synsets. REBUILDER uses two types of
relations: hyponyms (is-a), and meronyms (part-of, element-of or
substance-of). Each object has a specific meaning corresponding
to a specific synset, which we call context synset. The object’s
name is used to find its context synset, along with the other
objects in the same class diagram. The object’s class diagram is
the context in which the object is referenced, so we use it to
disambiguate the meaning of the object. To illustrate this,
suppose that an object named board is created, this object can
mean either a piece of lumber or a group of people assembled for
some purpose. This name has two possible synsets, one for each
meaning. But suppose that there are other objects in the same
diagram, such as boardMember and company. These objects can
be used to select the right synset for board, which is the one
corresponding to the group of people.

4.2 Retrieval Algorithm
The retrieval algorithm is the same for all three types of objects
(packages, classes and interfaces), and is based on the object
classification using WordNet. Suppose that the N best objects are
to be retrieved, QObj is the query object, and ObjectList is the
universe of objects that can be retrieved (usually ObjectList
comprises all the library cases). The algorithm is:

ObjsFound ← ∅
PSynset ← Get context synset of QObj
PSynsets ← {PSynset}
ObjsExplored ← ∅
WHILE (#ObsFound < N) AND (PSynsets ≠ ∅) DO
 Synset ← Remove first element of PSynsets
 ObjsExplored ← ObjsExplored + Synset
 SubSynsets ← Get Synset hyponyms (subordinates)
 SuperSynsets ← Get Synset hypernyms (super ordinates)
 SubSynsets ← SubSynsets – ObjsExplored – PSynsets
 SuperSynsets ← SuperSynsets – ObjsExplored – PSynsets
 PSynsets ← Add SubSynsets to the end of PSynsets
 PSynsets ← Add SuperSynsets to the end of PSynsets
 Objects ← Get all objects indexed by Synset
 Objects ← Objects ∩ ObjectList
 ObjsFound ← ObjsFound ∪ Objects
ENDWHILE
ObjsFound ← Rank ObjsFound by similarity
RETURN Select the first N elements from ObjsFound

Object retrieval has two distinct phases. First the WordNet is-a
relations are used as an index structure to find relevant objects.
Then a similarity metric is used to select only the best N objects.
This process is a compromise between a first phase, which is
inexpensive from the computational point of view, and a second
phase more demanding of computational resources, but much
more accurate in the object selection and ranking.

In the first phase the object’s context synset works like an
index. Starting by QObj context synset, the algorithm searches
for objects indexed with the same synset. If there are not enough
objects, the algorithm uses the hypernyms and hyponyms of this
synset to look for objects, going in a spreading activation kind of
algorithm. When it has found enough objects, it stops and ranks

them using the similarity metric. In the next subsection we
present the similarity metrics.

4.3 Similarity Metric
There are three similarity metrics: for classes, for interfaces, and
for packages, the next subsections describe them.

4.3.1 Class Similarity

The class similarity metric is based on three components:
categorization similarity, inter-class similarity, and intra-class
similarity. The similarity between class C1 and C2, is:

















⋅
+⋅

+⋅
=

),(
),(

),(
),(

213

212

211

21

IaIaS
IeIeS

SSS
CCS

ω
ω
ω

 (1)

Where S(S1, S2) is the categorization similarity computed as
the distance, in is-a relations, between C1 context synset (S1) and
C2 context synset (S2). S(Ie1, Ie2) is the inter-class similarity
based on the similarity between the diagram relations of C1 and
C2. S(Ia1, Ia2) is the intra-class similarity based on the similarity
between attributes and methods of C1 and C2. w1, w2 and w3 are
constants. We use 0.6, 0.1, and 0.3 as the default values of these
constants, based on experimental work.

4.3.2 Interface Similarity

The interface similarity metric is the same as the class metric
with the difference that the intra-class similarity metric is only
based on the method similarity, since interfaces do not have
attributes.

4.3.3 Package Similarity

The package similarity between packages PK1 and PK2 is:









⋅+⋅+

⋅+⋅
=

),(),(
),(),(

),(
214213

212211
21 DDSTTS

OBsOBsSSPsSPsS
PkPkS

ωω
ωω

 (2)

This metric is based on four items: sub-package list similarity
– S(SPs1, SPs2), UML class diagram similarity – S(OBs1, OBs2),
type similarity – S(T1, T2), and dependency list similarity – S(D1,
D2). These four items are combined in a weighted sum. The
categorization similarity is the same as in the class similarity
metric.

4.3.4 Object Categorization Similarity

The object type similarity is computed using the context synsets
of the objects. The similarity between synset S1 and S2 is:

{ } 1)1),(ln(
1),(

21
21 ++∀
=

SSPathMin
SSS (3)

Where Min is the function returning the smaller element of a
list. Path(S1, S2) is the WordNet path between synset S1 and S2,
which returns the number of relations between the synsets.

4.3.5 Inter-Class Similarity

The inter-class similarity between two objects (classes or
interfaces) is based on the matching of the relations in which both
objects are involved. The similarity between objects O1 and O2 is:

1

32
2#

)2(
3

1#

)1(
2

1)2,1(
1

2)2,1(−

++⋅−

⋅−

∑ =⋅

⋅=













































ωωω

ω

ω

R

RUnmatched

R

RUnmatched

n

n
i iRiRS

OOS (4)

Where Ri is the set of relations in object i, Rij is the j element
of Ri, n is the number of matched relations, S(R1i, R2i) is the
relation similarity, and ω1, ω2 and ω3 are constants, with ∑ωi = 1
(default values are: 0.5; 0.4; 0.1).

4.3.6 Intra-Class Similarity

The intra-class similarity between objects O1 and O2 is:
),(),(),(21221121 MsMsSAsAsSOOS ⋅+⋅= ωω (5)

Where S(As1, As2) is the similarity between attributes, S(Ms1,
Ms2) is the similarity between methods, and ω1 and ω2 are
constants, with ∑ωi = 1 (default values are: 0.6; 0.4).

4.3.7 Sub-Package List Similarity
The similarity between sub package lists SPs1 and SPs2 is:

1

32
2#

)2(
3

1#
)1(

2

1)2,1(
1

2)2,1(−

++⋅−

⋅−

∑ =⋅

⋅=








































ωωω

ω

ω

SPs
SPsUnmatched

SPs
SPsUnmatched

n

n
i iSPsiSPsS

SPsSPsS (6)

Where ωi are constants, and ∑ωi = 1 (default values are: 0.5;
0.4; 0.1), n is the number of sub packages matched, S(Pk1i, Pk2i)
is the similarity between packages, Unmatched(Pki) is the number
of unmatched packages in Pki, SPsij is the j element of SPsi, and
#Pki is the number of packages in Pki.

4.3.8 UML Class Diagram Similarity

The similarity between lists of UML objects OBs1 and OBs2 is:

1

32
2#

)2(
3

1#
)1(

2

1)2,1(
1

2)2,1(−

++⋅−

⋅−

∑ =⋅

⋅=








































ωωω

ω

ω

OBs
OBsUnmatched

OBs
OBsUnmatched

n

n
i iOBiOBS

OBsOBsS (7)

Where ωi are constants, and ∑ωi = 1 (default values are: 0.5;
0.4; 0.1), #OBsi is the number of objects in OBsi,
Unmatched(OBsi) is the number of objects unmapped in OBsi, n

is the number of objects matched, OBij is the j element of OBi,
and S(OB1i,OB2i) is the object categorization similarity.

4.3.9 Dependency List Similarity

Dependencies is a UML relation type, and is commonly used to
describe dependencies between packages. The similarity between
dependency lists D1 and D2 is given by:

{ }

{ }



















−
⋅+

−
⋅

=

2#,1#
2#1#

2

2#,1#
2#1#

1
)2,1(

ODODMax

ODOD

IDIDMax

IDID

DDS

ω

ω

 (8)

Where ω1 and ω2 are constants, and ∑ωi = 1 (default values
are: 0.5; 0.5), ID are the input dependencies, and OD are the
output dependencies.

5 EXPERIMENTS
This section describes the experimental tests developed to study
the retrieval module of REBUILDER.

5.1 Experiments Design
The Knowledge Base used comprises a case library, a set of
query problems, WordNet synsets, hypernyms, meronyms, and
the data type taxonomy. From WordNet we use the noun synsets
(78158) and semantic relations (97887).

The case library comprises 60 cases. Each case comprises a
package, with 5 to 20 objects (the total number of objects is 586).
Each object has up to 20 attributes, and up to 20 methods.

Three sets of package problems were specified, based on the
cases. Incomplete set P20, with 25 problems, each problem is a
case copy with 20% of its objects deleted, attributes and methods
are also reduced by 20%. The other sets are the same problems
but with 50% (P50) and 80% (P80) deleted.

The experimental runs had the goal to define the best weight
configuration for the package retrieval, and also to compare
categorization similarity with structural similarity and both. For
each problem a best case is defined and a set of relevant cases
were also defined before the runs were executed. These sets of
cases are used to evaluate the accuracy of the algorithm. For each
problem set the following weight configurations was used:

 w1 w2 w3 w4
Configuration 1 (C1) 0 1 0 0
Configuration 2 (C2) 0 0.75 0.25 0
Configuration 3 (C3) 0 0.5 0.5 0
Configuration 4 (C4) 0 0.25 0.75 0
Configuration 5 (C5) 0 0 1 0

Because each case has only one package, weights w1 and w4
are not used, leaving only weights w2 and w3 which concern
class diagram similarity and package type similarity. For each
problem run the best 20 retrieved cases were analysed. The data
gathered was: best case is first (yes or no), best case is selected
(yes or no), and percentage of the relevant cases retrieved.

5.2 Experimental Results
Table 1 shows the average values (in percentage) for the data
gathered in the experimental runs of problem sets P20, P50 and

P80. As can be seen configurations C2 , C3 and C4 are identical,
having a better performance then C1 or C5. C1 is more accurate
than C5 in selection of the best case, but it is worst in the
percentage of relevant cases retrieved. While C1 uses only class
diagram similarity, thus being more precise in case similarity
evaluation, C5 uses only type similarity which performs better in
selecting cases within the same category.

 C1 C2 C3 C4 C5

Best Case First 81.33 85.33 88.00 88.00 61.33

Best Case Selected 93.33 93.33 93.33 93.33 93.33

Percentage of Relevant Cases 82.03 84.15 84.75 85.12 83.95

Table 1 - Experimental values gathered on the 75 problem runs.

The data in Figure 2 relates to the percentage of Best Case
First by configuration and problem set. As it can be seen there is
a clear trade-off between configurations and the size of the query.
The increase in the weight of the type similarity improves the
results until it stabilizes in C3 and C4. With an increase of
accuracy when the size of the query also increases, which was
expected. The use of only the type similarity decreases a lot the
retrieval results.

50

60

70

80

90

C1 C2 C3 C4 C5
P20 P50 P80

Figure 2 – Experimental values for the % of Best Case in First place.

Future work on experimentation will evaluate our approach
with respect to its usefulness from the user view point, we intent
to use the Nick et. al. [16] approach.

6 CONCLUSIONS
In this paper we present REBUILDER a CASE tool that uses a
CBR framework with a general ontology to retrieve past UML
models. Using a human-created design language like UML,
allows REBUILDER to be a general software design tool. Also
with the intent of being an easy to use tool, REBUILDER
integrates a general ontology (WordNet), so that the designer can
be understood by the machine, instead of having to explain
himself to it.

Most of the CBR tools for software reuse and design are for
code reuse, which is not the aim of REBUILDER. By working in
software development at the design level, REBUILDER deals
with more abstract and human-like issues. Though code reuse is
also important, it is already a well explored area using the CBR
framework. The only presented tool that uses CBR is also at a
different development cycle, which is the software specification
level. From the tools that do not use CBR, RSL and Borgo are the
most similar tools to REBUILDER. While RSL uses a specific
domain ontology, Borgo and REBUILDER use WordNet. The

advantage of using WordNet is removing the knowledge
engineering work from the user or from a system administrator. It
also provides a much more wider coverage of domains, making
the system domain independent. Using general ontologies has its
limitations also, sometimes there is a lack of more specific or
technical knowledge, but several mechanisms (like using machine
learning) can overcome this limitation. The retrieval approach
presented by Borgo is similar to the one presented here. But,
while Borgo uses only the categorization similarity and structural
similarity between software designs, REBUILDER uses intra-
object similarity and package-structure similarity, allowing a
more accurate retrieval accuracy, as seen by the experimental
results.

ACKNOWLEDGEMENTS
This work was partially supported by POSI - Programa
Operacional Sociedade de Informação of Portuguese Fundação
para a Ciência e Tecnologia and European Union FEDER, under
contract POSI/33399/SRI/2000, by program PRAXIS XXI.

REFERENCES
1. Meyer, B., Reusability: The Case for Object-Oriented Design. IEEE

Software, 1987. 4(2, March 1987): p. 50-64.
2. Coulange, B., Software Reuse. 1997, London: Springer-Verlag.
3. Prieto-Diaz, R., Implementing Faceted Classification for Software

Reuse. Communications of the ACM, 1991(May).
4. Katalagarianos, P. and Y. Vassiliou, On the reuse of software: a case-

based approach employing a repository. Automated Software
Engineering, 1995. 2: p. 55-86.

5. Fernández-Chamizo, C., et al. Supporting Object Reuse through Case-
Based Reasoning. in Third European Workshop on Case-Based
Reasoning (EWCBR'96). 1996. Lausanne, Suisse: Springer-Verlag.

6. González, P.A. and C. Fernández. A Knowledge-Based Approach to
Support Software Reuse in Object-oriented Libraries. in 9th
International Conference on Software Engineering and Knowledge
Engineering, SEKE'97. 1997. Madrid, Spain: Knowledge Systems
Institute, Illinois.

7. Smyth, B. and P. Cunningham. Déjà Vu: A Hierarchical Case-Based
Reasoning System for Software Design. in 10th European Conference
on Artificial Intelligence (ECAI'92). 1992. Vienna, Austria: John Wiley
& Sons.

8. Tautz, C. and K.-D. Althoff. Using Case-Based Reasoning for Reusing
Software Knowledge. in International Conference on Case-Based
Reasoning (ICCBR'97). 1997. Providence, RI, USA: Springer-Verlag.

9. Burton, B.A., et al., The Reusable Software Library. IEEE Software,
1987. 4(July 1987): p. 25-32.

10. Borgo, S., et al. Using a Large Linguistic Ontology for Internet-Based
Retrieval of Object-Oriented Components. in 9th International
Conference on Software Engineering and Knowledge Engineering,
SEKE'97. 1997. Madrid, Spain: Knowledge Systems Institute, Illinois.

11. Aamodt, A. and E. Plaza, Case-Based Reasoning: Foundational
Issues, Methodological Variations, and System Approaches. AI
Communications, 1994. 7(1): p. 39-59.

12. Kolodner, J., Case-Based Reasoning. 1993: Morgan Kaufman.
13. Maher, M.L., M. Balachandran, and D. Zhang, Case-Based Reasoning

in Design. 1995: Lawrence Erlbaum Associates.
14. Miller, G., et al., Introduction to WordNet: an on-line lexical

database. International Journal of Lexicography, 1990. 3(4): p. 235 -
244.

15. Rumbaugh, J., I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual. 1998, Reading, MA: Addison-Wesley.

16. Nick, M., K.-D. Althoff, and C. Tautz. Facilitating the Practical
Evaluation of Organizational Memories Using the Goal-Question-
Metric Technique, KAW'99. in Twelfth Workshop on Knowledge
Acquisition, Modeling and Management. 1999. Banff.

	THE PROBLEM
	OUR APPROACH
	REBUILDER
	Architecture
	Case Representation

	CASE RETRIEVAL
	WordNet Ontology
	Retrieval Algorithm
	Similarity Metric
	Class Similarity
	Interface Similarity
	Package Similarity
	Object Categorization Similarity
	Inter-Class Similarity
	Intra-Class Similarity
	Sub-Package List Similarity
	UML Class Diagram Similarity
	Dependency List Similarity

	EXPERIMENTS
	Experiments Design
	Experimental Results

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

