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Abstract.  Neurules are a kind of hybrid rules that combine a 
symbolic (production rules) and a connectionist (adaline unit) 
representation. One way that neurules (target knowledge) can 
be produced is by converting symbolic rules (source 
knowledge). However, source knowledge may change, so that 
updating corresponding target knowledge is necessary. Changes 
concern insertion of new and removal of old symbolic rules. In 
this paper, methods for updating target knowledge to follow 
changes made in corresponding source knowledge are 
presented. The methods are efficient in the sense that they do 
not require retraining of the whole affected part of the target 
knowledge, but of as small portion of it as possible.  

1 INTRODUCTION 
There has  been extensive  research activity at combining (or 
integrating) the symbolic and the connectionist approaches for 
knowledge representation in expert systems [7, 8, 10]. 
Especially, there are a number of efforts combining symbolic 
rules and neural networks [2, 3, 6, 9]. They give pre-eminence 
to connectionism and use a neural network as a knowledge 
base. The main objective is to reduce knowledge elicitation 
from experts to a minimum. In such approaches, connectionism 
is mainly used as a means for refining an initial background 
rule-base. Integration with symbolic representation is rather 
loose. A weak point of them is that their knowledge base lacks 
the naturalness and modularity of symbolic rules; it is 
incomprehensible. Therefore, explanations are often provided 
in the form of if-then rules by rule extraction methods [1]. 

Neurules [4] integrate symbolic rules and connectionism, but 
in a different way. They give pre-eminence to the symbolic 
component. Neurocomputing is used within the symbolic 
framework to improve the performance of symbolic rules. A 
symbolic rule-base, called the source knowledge, is converted 
into a hybrid one, a neurule-base, called the target knowledge. 
The target knowledge base is quite smaller, since in average 
each neurule is a merger of more than one symbolic rule, 
retains the modularity of production rules, since it consists of 
autonomous units (neurules), and also retains their naturalness 
in a great degree, since neurules look much like symbolic rules. 
Also, the inference mechanism is a tightly integrated process, 
which results in more efficient inferences than those of 
                                                           
 1 University of Patras, Dept of Computer Engineering & Informatics, 

26500 Patras, Hellas (Greece), email: {prentzas, ihatz}@ceid.upatras.gr. 
 2 Computer Technology Institute, P.O. Box 1122, 26110 Patras, Hellas 

(Greece). 

symbolic rules. Finally, explanations, in the form of if-then 
rules, can be produced [5].  

Given that the source knowledge may change, due to 
updates, the problem of maintaining the target knowledge to 
reflect the changes, without performing extended re-
conversion, arises. As far as we know, this problem has not 
been addressed by other hybrid approaches.  

In this paper, we present methods for efficient maintenance 
of the knowledge base (target knowledge) of a neurule-based 
expert system, due to changes to its source knowledge. Section 
2 presents neurules. Section 3 introduces the methods, presents 
some examples and discusses the correctness of the methods. 
Finally, Section 4 concludes. 

2 NEURULES 

2.1  Syntax and semantics 
Neurules are a kind of hybrid rules. The form of a neurule is 
depicted in Fig.1a. Each condition Ci is assigned a number sfi, 
called its significance factor. Moreover, each rule itself is 
assigned a number sf0, called its bias factor. Internally, each 
neurule is considered as an adaline unit (Fig.1b). The inputs Ci 
(i=1,...,n) of the unit are the (values of the) conditions of the 
rule. The weights of the unit are the significance factors of the 
neurule and its bias is the bias factor of the neurule. Each input 
takes a value from the following set of discrete values: [1 
(true), -1 (false), 0 (unknown)]. The output D, which represents 
the conclusion (decision) of the rule, is calculated via the 
standard formulas: 

 

 
where a is the activation value and f(x) the activation function, 
a threshold function. Hence, the output can take one of two 
values (‘-1’, ‘1’) representing failure and success of the rule 
respectively. The general syntax of a condition Ci and the 
conclusion D is: 
  <condition>::= <variable> <l-predicate> <value>  
  <conclusion>::= <variable> <r-predicate> <value> 
where <variable> denotes a variable, that is a symbol 
representing a concept in the domain, e.g. ‘sex’, ‘pain’ etc, in a 



medical domain. <l-predicate> and <r-predicate> are one of {is, 
isnot}. <value> denotes a value. It can be a symbol or a 
number. 

Corresponding symbolic rules have the same syntax as that 
in Fig.1a, without the significant factors and where ‘,’ denotes 
conjunction.  

 
Figure 1.   (a) Form of a neurule (b) a neurule as an adaline unit 

2.2  Construction of a neurule-base 
Construction of a neurule-base (NRB) from a symbolic rule-
base (SRB) is made by the basic conversion algorithm 
(introduced in [4]), which is outlined here: (a) A symbolic rule 
with a unique conclusion is individually converted into a 
neurule using as training set the valid patterns of the truth table 
of its logical function (an AND function of their conditions). 
(b) Symbolic rules with the same conclusion constitute a 
merger set. From each merger set, a merger is produced, which 
is a neurule mould having as conditions all the conditions of 
the symbolic rules in the merger set (without duplications) and 
zero significant factors. Then, the training set for each merger is 
extracted from the truth table of the combined logical function 
of the rules in its merger set (an OR function of their AND 
functions), after a filtering process, during which some patterns 
of the truth table are eliminated (for a detailed treatment see 
[4]). 
 

Table 1.   An example merger set of symbolic rules 

R1:if arterial-conc is slight-incr, 
         blood-conc is normal, 
        scan-conc is normal, 
        capill-conc is mod-incr, 
        venous-conc is highly-incr 
     then disease is early-inflam 

R2:if arterial-conc is mod-incr,   
         blood-conc is highly-incr, 
         scan-conc is normal, 
         capill-conc is slight-incr, 
         venous-conc is slight-incr, 
      then disease is early-inflam 

R3:if arterial-conc is mod-incr, 
         blood-conc is normal, 
         scan-conc is normal, 
         capill-conc is slight-incr, 
         venous-conc is normal 
      then disease is early-inflam 

R4:if arterial-conc is mod-incr, 
          blood-conc is mod-incr, 
          scan-conc is normal, 
          capill-conc is mod-incr, 
          venous-conc is slight-incr 
      then disease is early-inflam 

R5:if arterial-conc is mod-incr, 
         blood-conc is normal, 
         scan-conc is normal, 
         capill-conc is mod-incr, 
         venous-conc is slight-incr 
    then disease is early-inflam 

R6:if arterial-conc is mod-incr, 
         blood-conc is slight-incr, 
         scan-conc is normal, 
         capill-conc is mod-incr, 
         venous-conc is mod-incr 
     then disease isearly-inflam 

 

Training is performed using the standard LMS algorithm. 
When the algorithm succeeds, that is values for the significant 
factors are calculated that successfully classify all training 
examples, a neurule is produced. When it fails (case of 
inseparable training examples) a splitting process is followed, 
which produces more than one neurule having the same 
conclusions, called sibling neurules. To this end, the closeness 
between two rules is defined as the number of their common 
conditions. A least closeness pair (LCP) of rules in a merger 
set is a pair of rules with the least closeness (LC) in the set.  

The process is the following: 
1. Train the merger using the specified training set. 
2. If training fails, find a LCP and produce two subsets of the 

merger set, each having as initial element (a different) one of 
the LCP rules, called its pivot. In each merger subset put the 
symbolic rules (of the initial merger set), which are closer to 
its pivot. 

3. For each merger subset, apply step 1 recursively until either 
training succeeds or the merger subset contains only one rule 
(remaining rule) 

4. Convert any remaining rule to a neurule. 
 

Table 2.   Neurules produced from the merger set of Table 1 

NR1: (-11.4) 
if venous-conc is high-incr (3.3), 
   arterial-conc is slight-incr (3.0), 
   blood-conc is normal (2.8), 
   scan-conc is normal (2.7), 
   capill-conc is mod-incr (2.7) 
then disease is early-inflam 

NR2: (-11.4) 
if venous-conc is slight-incr (3.3) 
   arterial-conc is mod-incr (3.0),   
   blood-conc is high-incr (2.8),    
   scan-conc is normal (2.7), 
   capill-conc is slight-incr (2.7) 
then disease is early-inflam 

NR3: (-11.4) 
if venous-conc is normal (3.3), 
   arterial-conc is mod-incr (3.0), 
   blood-conc is normal (2.8), 
   scan-conc is normal (2.7), 
   capill-conc is slight-incr (2.7) 
then disease is early-inflam 

NR4-5: (-7.8) 
if venous-conc is slight-incr (3.3) 
   arterial-conc is mod-incr (3.0), 
   blood-conc is mod-incr (2.8), 
   scan-conc is normal (2.7), 
   capill-conc is mod-incr (2.7), 
   blood-conc is normal (2.6), 
then disease is early-inflam 

NR6: (-11.4) 
if venous-conc is mod-incr (3.3), 
   arterial-conc is mod-incr (3.0), 
   blood-conc is slight-incr (2.8), 
   scan-conc is normal (2.7), 
   capill-conc is mod-incr (2.7) 
then disease is early-inflam 

 

 
Figure 2.   The splitting tree for the merger set of Table 1 



 
For reasons that will become clear in the next section, for 

each initial merger set the splitting process is stored as a tree, 
which is called the splitting tree. The root of the tree 
corresponds to the initial merger set. The intermediate nodes 
and leaves correspond to the subsequent subsets into which the 
initial merger set was split. An intermediate node denotes a 
subset that was split, due to training failure, whereas a leave 
denotes a subset that was successfully trained and produced a 
neurule. The pivot of each (sub)set is attached to the 
corresponding edge of the tree. It can be easily seen that the 
merger (sub)set of the root or an intermediate node is a superset 
of the merger subsets related to its descendant nodes. 
Furthermore, the nearer one gets to the leaves, the greater the 
mean closeness between the rules of the corresponding merger 
subsets. Tree information is stored in the neurule-base 
alongside the produced neurules.  

To illustrate how splitting is performed, we use the merger 
set of rules R1-R6 presented in Table 1, from which five 
neurules are produced, shown in Table 2. Figure 2 depicts the 
corresponding splitting tree. Due to inseparability, the initial 
merger set {R1, R2, R3, R4, R5, R6} is split in two subsets: 
{R1} and {R2, R3, R4, R5, R6}, with LCP: (R1, R2) (LC=1). 
{R1} produces neurule NR1. {R2, R3, R4, R5, R6} is split in 
{R2, R3} and {R4, R5, R6}, with LCP: (R3, R4) (LC=2). 
Then, {R2, R3} is split in {R2} and {R3} and NR2, NR3 are 
produced and so on. 

3 UPDATE METHODS 
The source knowledge (SRB), however, may change. This 
implies that the target knowledge (NRB) should be updated. 
The possible changes are due to (a) insertion of a new rule and 
(b) removal of an existing rule. Modification of a rule is 
equivalent to removal of the old rule and insertion of a new 
rule. 

3.1  Rule insertion 
Given the insertion of a new symbolic rule R in SRB, three 
cases can be distinguished: 
(a) There is no sibling neurule of R in NRB.  
(b) There is only one sibling neurule of R in NRB.  
(c) There are more than one sibling neurule of R in NRB.  

Case (a) is the simplest. The new symbolic rule is converted 
into a neurule and inserted into NRB.  

If (b) is the case, it means that the corresponding merger set 
was not split. To handle this, the existing neurule is removed 
from NRB and a new merger set is formed containing the new 
symbolic rule and the symbolic rules of the initial merger set. 
The new merger is formed and trained. If training is successful, 
one neurule is produced. If training fails, two neurules are 
produced.  

Case (c) is the most difficult. The existence of more than one 
neurule with the same conclusion means that, due to 
inseparability, the initial merger set was split into a number of 
merger subsets. There can be three approaches:  

(i) Merely convert the new symbolic rule into a neurule and 
insert it into NRB. This method is computationally efficient but 
increases the number of neurules in NRB, which is not 
desirable.  

(ii) The existing neurules are removed from NRB, the new 
symbolic rule is merged with the initial merger set and training 
of the new merger is performed to produce the new neurules. 
This approach is inefficient, especially when more than two 
neurules are produced from the initial merger set. The reason is 
that it discards the information contained in the splitting tree, 
thus performing extra training and splitting. 

(iii) The third approach is as follows: 
Starting from the root, traverse the splitting tree: 

1. If the current node is not a leaf, check whether the merger 
(sub)set corresponding to the node contains a rule R' whose 
closeness to R is less than the LC of the (sub)set. If there is 
no such rule, insert R into the merger (sub)set of the node 
and execute this step recursively for the child of the node 
denoted by the LCP member closer to R. If there is such a 
rule R', do: 

 1.1 Stop traversing the splitting tree.  
 1.2 Remove from NRB all neurules corresponding to the 

leaves descending from this node.   
 1.3 Insert R into the corresponding merger (sub)set and split 

it in two subsets with LCP: (R, R').  
 1.4 Train each one of the mergers formed from the two 

subsets, produce corresponding neurules (reusing parts 
of the initial splitting tree to avoid unnecessary training 
or splitting), insert the produced neurules into NRB and 
update the splitting tree.  

2. If the current node is a leaf, remove the corresponding 
neurule, insert R into its merger set and train the merger. If 
training fails, split the merger set, produce the two neurules, 
insert them into NRB and update the splitting tree. If training 
is successful, do the following: 

 2.1 If the sibling node of the leaf is also a leaf and 
introduction of R into their parent’s merger subset 
increases the mean closeness between its rules, and the 
parent node's new merger can be successfully trained, do 
the following: 

  2.1.1 Remove the neurule corresponding to the sibling 
leaf from NRB.  

  2.1.2 Insert the neurule produced from the parent node's 
new merger into NRB. 

  2.1.3 Update the splitting tree. 
 2.2 Else do the following: 
  2.2.1 Insert the neurule produced from the leaf's new 

merger into NRB. 
  2.2.2 Update the splitting tree. 
 

Table 3. Inserted rule R7 and resulted neurule NR2-3-7 

R7: if arterial-conc is mod-incr, 
          blood-conc is normal, 
          scan-conc is normal, 
          capill-conc is slight-incr, 
          venous-conc is slight-incr  
       then disease is early-inflam 

NR2-3-7: (-20.4)  
if venous-conc is slight-incr (8.7), 
    arterial-conc is mod-incr (8.4), 
    scan-conc is normal (8.1), 
    capill-conc is slight-incr (8.1), 
    blood-conc is normal (8.0), 
    blood-conc is highly-incr (4.6) 
    venous-conc is normal (1.5), 
then disease is early-inflam 

 
As an example, consider the rules in Table 1 as SRB and those 
in Table 2 as NRB. Suppose that rule R7 (Table 3) is to be 
inserted. Given that more than one neurule have the same 



conclusion with R7, it is a (c) case. Following approach (iii), 
traversing ends at the leaf related to subset {R2} (Fig. 3). 
Training of the new merger (sub)set {R2, R7} is successful. 
Thus NR2 is removed from NRB. The sibling node of the {R2} 
leaf is also a leaf and insertion of R7 into the subset {R2, R3}, 
related to their 'parent' node, increases its mean closeness from 
3 ({R2, R3}) to 11/3 ({R2, R3, R7}). Therefore, training of the 
merger of {R2, R3, R7} is tried. It is successful and NR2-3-7 is 
produced and inserted into NRB. Meanwhile, NR3 is removed 
from NRB. The splitting tree takes the form in Fig. 4. So, 
insertion of R7 finally decreases the total number of neurules in 
NRB from five to four (NR1, NR2-3-7, NR4-5, NR6). 

Notice that approach (iii) focuses on subset {R2, R3}, which 
includes the closest rules to R7. Thus, only the necessary part 
of NRB was (re)trained. The part of NRB produced from R1, 
R4, R5 and R6 remains intact. Approach (ii) would have 
produced the same neurules, requiring though unnecessary 
training and splitting. Approach (i) would have inserted the 
neurule produced from R7 into NRB. At the end, NRB would 
contain six neurules instead of the four resulted by approach 
(iii). 

 

 
Figure 3.   Traversal of the splitting tree to insert R7 

 

 
Figure 4.   The splitting tree after insertion of R7 

 

3.2  Rule removal 
Given the removal of a symbolic rule R from SRB, two cases 
can be distinguished: 
(a) There is only one sibling neurule of R in NRB.  
(b) There are more than one sibling neurule of R in NRB.  

If (a) is the case, it means that corresponding merger set was 
not split. So, the corresponding neurule is removed from NRB. 
If the merger set includes only the removed rule, nothing else is 
done. Otherwise, a new merger set is formed, including the 

rules of the initial merger set, but excluding the removed rule. 
The new merger is trained. If training is successful, one neurule 
will be produced. If it fails, the merger set is split and, after 
training, two neurules are produced.  

There can be three approaches to handle case (b): 
(i) In this approach, only the neurule whose merger set 

included the removed rule is affected. The neurule is removed 
from NRB. If the merger set included only the rule that is 
removed, nothing else is done. Otherwise, the new merger 
(formed as in (a)) is trained and corresponding neurule(s) 
is(are) produced. This method is computationally efficient, but 
may increase the number of sibling neurules.  

(ii) All the neurules derived from the initial merger set are 
removed from NRB and the merger of the initial merger set, 
after excluding the removed rule, is trained. After possible 
splitting, the corresponding neurule(s) is(are) produced. This 
approach is inefficient, since it discards the information 
contained in the splitting tree and performs training and 
splitting that could have been avoided. 

(iii) The third approach is as follows: 
Starting from the root, traverse the splitting tree: 

1. If the current node is not a leaf, check whether R is a 
member of the LCP of its merger (sub)set. If it isn't, remove 
R from the merger (sub)set and execute this step recursively 
for the child of the node on the edge denoted by the LCP’s 
member closer to R. If it is, do: 

 1.1 Stop traversing the splitting tree. 
 1.2 Remove the neurules produced from this merger 

(sub)set. 
 1.3 Remove R from the node's merger (sub)set and train the 

resulted merger (possibly reusing parts of initial splitting 
tree). 

 1.4 Insert the produced neurules into NRB and update the 
splitting tree. 

2. If the current node is a leaf, do: 
 2.1 Remove the neurule whose merger set included R from 

NRB. 
 2.2 Remove R from the leaf’s merger set. 
 2.3 If R was the only member of the merger set, do: 

2.3.1. If the sibling node of the leaf node is also a leaf 
and the sibling node of their parent node is a leaf, 
check the parent node F of the leaves' parent node.  

2.3.2. If removal of R from the merger set of F increases 
its mean closeness and F's new merger can be 
successfully trained, do: 
2.3.2.1. Remove the neurules corresponding to the 

leaves descending from F. 
2.3.2.2. Insert the neurule corresponding to the 

new merger set of F into NRB. 
2.3.2.3. Update the splitting tree. 

2.3.3. Else update the splitting tree. 
 2.4 If not, form the new merger and train it. 
 2.5 If training fails, produce the neurules (after splitting), 

insert them into NRB and update the splitting tree. 
 2.6 If training succeeds, do: 

2.6.1 If the sibling of the leaf node is also a leaf and 
removal of R from the merger set of their parent 
increases its mean closeness and the parent's new 
merger can be successfully trained, do: 
2.6.1.1. Remove the neurule corresponding to the 

sibling leaf from NRB.  



2.6.1.2. Insert the neurule produced from the 
parent's new merger into NRB.  

2.6.1.3. Update the splitting tree. 
2.6.2 Else do: 

2.6.2.1. Insert the neurule produced from the leaf's 
new merger into NRB. 

2.6.2.2. Update the splitting tree.  
As a first example, suppose that R5 is to be removed (after 

R7 insertion, Fig.4). It’s a (b) case and following approach (iii), 
since R5 is not a member of any LCP, NR4-5 is removed from 
NRB, the merger of {R4} is trained and NR4 is produced. The 
sibling node of leaf {R4} is also a leaf ({R6}). Removal of R5 
decreases the mean closeness of their parent node’s subset from 
10/3 ({R4, R5, R6}) to 3 ({R4, R6}). Therefore, no training of 
the merger of {R4, R6} is tried. NR4 is inserted into NRB and 
the splitting tree is updated (Fig. 5). Once again a large portion 
of NRB remains intact. The new NRB consists of NR1, NR2-3-
7, NR4, NR6. 

 

 
Figure 5.   Splitting tree after removing R5 

 

 
Figure 6.   The splitting tree after R6 removal 

 
As a second example, suppose that R6 is to be removed 

(after R7 insertion). R6 is not member of any LCP as far as 
node {R4, R5, R6}, so R6 is removed from the subsets of its 
ancestor nodes. NR4-5 and NR6 are removed from NRB and 
R6 also from {R4, R5, R6}. NR4-5 is inserted in NRB and the 
splitting tree is updated (Fig. 6). Notice that NR4-5 needs no 
reproduction, is reused.  

3.3  Discussing correctness 
Given that the above algorithms concern indirect changes to 
target knowledge, the question about their correctness is 
reasonably set. The basis of the algorithms is the basic 
conversion algorithm (introduced in [4] and outlined in Section 
2.2). The criterion for the correctness of that algorithm is to 
preserve inference equivalence between SRB and NRB, which 
means that all inferences performed in SRB should also be 

performed in NRB (with identical results). This is implicitly 
proved, and also experimentally confirmed, in [4]. The proof is 
based on the fact that the training set of each merger includes 
the (valid) rows of the truth table of the combined logical 
function of the rules in the corresponding merger set. Given 
that training is complete, that is all training patterns are 
successfully classified, inference equivalence is assured. 

Inserting a new rule in SRB means that a new inference is 
introduced. So, the rule insertion update algorithms of Section 
3.1, to be correct, should assure that the new inference can also 
be performed in the updated NRB. This is rather obvious, since 
in any case the truth table of the new inserted rule is taken into 
account in creating the new training set for the partial 
reconversion. A similar thing happens when a rule is removed 
from SRB. The patterns related to its truth table are removed 
from the training set of the corresponding merger. So, 
correctness of the rule removal update algorithms of Section 
3.2 is also assured.  

4 CONCLUSIONS 
In this paper, we present methods for efficiently updating target 
knowledge (a hybrid rule base) to reflect changes in its source 
knowledge (a symbolic rule base). Target knowledge consists 
of neurules, a type of hybrid rules. Neurules are produced from 
symbolic rules via a conversion mechanism. Methods for 
updating target knowledge in the cases of a rule insertion in and 
a rule removal from source knowledge are introduced. 
Efficiency refers to updating target knowledge (a) with as little 
reconversion as possible and (b) preserving the number of 
neurules as small as possible. We achieve that by storing 
information related to the conversion process in a tree, called 
splitting tree. The methods are also argued to be correct. 
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