
Extending and Unifying Chronicle Representation
with Event Counters

Christophe Dousson
France Telecom R&D – 2, avenue Pierre Marzin – F-22307 Lannion Cedex, France

christophe.dousson@rd.francetelecom.com

Abstract.
This paper is dedicated to the chronicle recognition approach used

to design an evolution monitoring system for supervising dynamic
systems for which time information is relevant.

We propose to extend and also to unify the chronicle represen-
tation through event counters. The main motivation of such an ex-
tension of the chronicle representation arises from alarm process-
ing: counting the occurrences of alarms can be useful to evaluate the
severity of a problem and also to discriminate some kind of faults.

The paper describes the representation and the corresponding al-
gorithms for processing this extension according to the purpose of
supervision in terms of performance.

1 Introduction

In this paper, we understand an evolution monitoring system as one
that has to maintain through its observations a consistent interpreta-
tion of what is going on and the chronicle model representation is
used for the recognition of relevant pieces of evolution of the moni-
tored system.

While expert systems base their reasoning on rules, relegating time
information to the background, recognition of chronicles is based on
diagrams of evolution in which time is fundamental.

Chroniclesare temporal patterns that representpossibleevolutions
of the observed system. A chronicle is a set ofevents, linked together
by time constraints. In the monitoring framework, these events could
be alarms referring to the supervised system. The available time in-
formation would allow their ordering and the specification of time
spans between two occurrences.

The approach used here is a chronicle recognition approach very
similar to [1]: the chronicle recognition system receives as input a
stream of time-stamped events. It performs recognition of chronicles
as they develop, and generates as output the recognized chronicles
(i.e. sets of matched input events). It is mainly a temporal reason-
ing system based on the complete prediction of the possible arrival
dates for each expected event; the set of all these values (calledtime
window) is reduced by propagation of the dates of observed events
through the graph of the time constraints of the chronicle model. The
recognition process is incremental – each event is integrated as soon
as it occurs – and it is performed over a single reading of the input
stream. This method has a high-performance algorithm, partly due
to a stage of chronicle compilation which propagates the time con-
straints and checks the consistency of the resulting time graph [2].

But, as we will see, this chronicle formalism is not well-suited
to take into account transient phenomena that become relevant only

when they occur frequently and, moreover, when some faults could
only be discriminated by counting alarms. So, we propose to intro-
duce counters of events as an extension of the chronicle formalism.

The next section gives an overview of the chronicle representation
and a snapshot of the recognition process. The third section defines
the representation of counters of events and the new predicate used in
chronicle models. The fourth section details the corresponding algo-
rithms for processing this extension according to the purpose of su-
pervision. Then, just before conclusion, we will propose first results
about comparison between the old and the new chronicle recognition
system.

2 Recognition of Chronicles

2.1 Representation

This framework relies on a propositional reified logic formalism,
where a set of attributes is temporally qualified by predicates [3]. The
time representation relies on the time points algebra and we consider
time as a linearly ordereddiscrete setof instants whose resolution is
sufficient for the environment dynamics.

We suppose that events which are observed by the chronicle rec-
ognizer are instantaneous1 and a chronicle is a description of a time
relation between these events.

For instance, let us be the following phenomena: an eventa pre-
cedes an eventc within 2 to 5 units of time, and then, ab and another
a occur less than 10 time units after the beginning and we also have
an additional constraint[1, 6] betweenc andb (see fig. 1). To repre-
sent this, the chronicle model will be:

event(a, t1) ∧ event(c, t2) ∧ (t2−t1 ∈ [2, 5])

∧ event(b, t3) ∧ (t3−t1 ∈ [0, 10]) ∧ (t3−t2 ∈ [1, 6])

∧ event(a, t4) ∧ (t4−t1 ∈ [0, 10]) ∧ (t2≤ t4)

A predicatenoevent(a, (t1, t2)) is also defined. It means that
there is no occurrence of the event patterna within [t1, t2[.

2.2 Recognition Process
The chronicle recognition algorithms process the stream of input
events in one shot and on-line. Let be a chronicle and an event in-
put stream, the recognition algorithm identifiesall the observed event
sets(calledchronicle instances) that match the chronicle event pat-
terns in respect with the time constraints. For instance, let’s suppose
that the supervisor receives the following time-stamped events:

1 If one must supervise a system where alarms have a duration, we use two
instantaneous events which are the beginning and the end of the alarm.

a c

b

a

[0,10]

[2,5]
[1,6]

[0,10]

a c

b

a

[3,10]

[2,5]
[1,6]

[0,8]
[2,10]

a c

b

a

Figure 1. Example of a chronicle.On the left: the user-defined chronicle.
In the center: the chronicle after the constraint propagation. On the right:

the (induced) partial order between the events of the chronicle.

e1 : a, t = 4 e2 : d, t = 5 e3 : a, t = 6 e4 : c, t = 8
e5 : b, t = 10 e6 : e, t = 11 e7 : a, t = 12 e8 : b, t = 14

The chronicle given as an example in the figure 1 is rec-
ognized three times: the matched instances are{e1, e4, e5, e7},
{e3, e4, e5, e7}, and {e3, e4, e7, e8}. In general, events may be
shared by many chronicles and the system is able to manage all the
concurrent instances. It should be emphasized that the recognition is
exhaustive, i.e. all the possible instances of the defined chronicles are
identified by the system.

To achieve these recognitions, the process manages a set of partial
instances of chronicle as a set of time windows (one for each forth-
coming event) that is gradually constrained by each new matched
event: this system is predictive in the sense that it predicts forthcom-
ing events that are relevant to instances of chronicles currently under
development; it focuses on them and it maintains their time windows
(more details can be found in [2]).

6 8 11 16 6 10 11 16

b

a

a

c
b

a

a

c
⇒

9

(c,10)

Figure 2. Partial instance evolution.The time windows of a partial
instance{(a, 6)} (left hand) and the effect of the time constraint

propagation due to the integration of(c, 10) (right hand).

2.3 Applications

Chronicle representation has been recently used in the AUSTRAL
project in order to analyze a sequence of alarms emitted by substa-
tions in a French medium voltage distribution network [4] . It is also
used in the GASPAR project in order to analyze alarms issued by
equipment in a telecommunication network[5]. It is also used in some
subtasks of the WITAS project [6, 7] to represent car behaviors in the
supervised road traffic. New applications areas for temporal recogni-
tion systems have been proposed in medical domain such as hepatitis
symptoms tracking [8], intelligent patient monitoring [9] or cardiac
arrhythmia detection [10]. A more complete overview of chronicle
recognition applications can be found in [11].

3 Counting Alarms in Chronicles

3.1 Motivation

The main motivation of extending the chronicle representation arises
from alarm processing: many occurrences of an alarm can be gener-
ated by a persistent problem and counting these occurrences can be

useful to evaluate the severity of the problem. Moreover, some faults
could only be discriminated by counting alarms.

For instance, in the greatest french packet switching telecommu-
nications network, we know the two following faults:

• F1: when a technical center (which groups many substations) shut-
downs and reboots, it sends to the supervision center one “reboot”
event and each of its substations sends a “OK status” event,

• F2: when a substation comes down and restarts, it sends also a
“OK status” event.

But, in case of many faults occurrences, the “reboot” and some “OK
status” events of F1 can be lost and, as a consequence, we can’t dis-
tinguish a technical center breakdown (F1) from many (independent)
substation problems (F2). In a practical way, experts exhibit empir-
ical characteristics to deal with these losses: when we receive less
thann “OK status” events during 3 minutes (3 ≤ n ≤ 5 depending
of the considered technical center), we probably observe multiple F2
and, over this threshold, we consider F1.

As these losses are due to delays in buffer reinitialization in
telecommunications equipment, this ambiguous situation is not rare
and we use a counting threshold as often as we encounter a such dis-
crimation problem that involves many pieces of equipment (and so
many alarms of the same type are generated).

Now, let us suppose that we would write a chronicle that receiving
more than 3 occurrences of event patterna but less than5 occur-
rences within 30 seconds. With the current representation, we must
explicit three chronicles, respectively with 3, 4 and 5 alarms, and you
also must ensure that there is no more occurrences ofa by using the
noevent predicate2. Here follows one of the needed chronicles (re-
membering that time is considered as an ordered discrete set and that
noevent is defined on[t1, t2[):

event(a, t1) ∧ event(a, t2) ∧ event(a, t3)

∧ noevent(a, (t0, t1)) ∧ noevent(a, (t1+1, t2))

∧ noevent(a, (t2+1, t3)) ∧ noevent(a, (t3+1, t4))

∧ (t0 <t1 <t2 <t3 <t4) ∧ (t4−t0 = 30)

So, we propose a new predicate that allows to express event coun-
ters in order to write easily and also to alleviate the computational
part of the recognition of chronicles with counters.

3.2 The Counting Predicate

We introduce a new predicateoccurs as follows:

occurs((n1, n2), a, (t1, t2)), with 0 ≤ n1 ≤ n2

This predicate means that, between the two timepointst1 and t2,
there are exactlyN occurrences of event that match the patterna
andn1 ≤ N ≤ n2. In other words, if we denoteei = (a, di) the
occurrences of patterna at datedi, we have:

n1 ≤ Card
{
ei|t1 ≤ di < t2

}
≤ n2

As a natural extension, we allow+∞ instead ofn2 (i.e. that there
are more thann1 occurrences in the associated time interval). Notice
that, for consistency with the oldnoevent predicate definition, we
count occurrences on the interval[t1, t2[.

2 Instead of growing the number of chronicle models, we can useoptional
events in chronicle models as proposed in [4] but we can’t avoid the in-
crease of the number of predicates which is directly connected with the
complexity of the recognition algorithms.

This new predicate can actually be proposed as a unification of
the chronicle language since the old predicates can be replaced with
particular uses ofoccurs. Thenoevent predicate is obviously:

noevent(a, (t1, t2)) ≡ occurs((0, 0), a, (t1, t2))

The predicateevent is an existantial predicate that means that
there isat leastone event, so it is logically equivalent to3:

event(a, t) ≡ occurs((1, +∞), a, (t, t + 1))

Moreover, it is easy to define optional events as proposed in [4]
through this predicate by writing:

occurs((0, 1), a, (t, t + 1))

The figure 3 shows an example of an input stream and the associ-
ated output of the recognition process according to different uses of
theoccurs predicate.

occurs((1, 1), A, (t, t+1))∧occurs((1, 1), B, (t′, t′+1))∧(t ≤ t′):

A A AB BB

occurs((1, 1), A, (t, t + 1)) ∧ occurs((1, 1), B, (t, t′)):
A A AB BB

occurs((1, 1), A, (t, t′)) ∧ occurs((1, 1), B, (t, t′)):

A A AB BB

Figure 3. Different uses of predicateoccurs and the corresponding
recognized chronicles.

4 Algorithms

The chronicle recognition system must detect on the fly any sub-
set{ei} of the event stream that matches the set of event patterns
in respect with the time constraints of the chronicle model. When a
complete match is found, the instance is recognized. As we use the
time propagation algorithm as detailed in [2], we don’t focus on that
point in this paper.

For each instanceC, we use the following notations:

• Γ(C) as the set of the predicates that must be asserted (when this
set is empty, the instanceC is recognized).

• W (C, ti) as the time window relevant to the instantti of the in-
stanceC, this interval is always updated during the recognition
process in order to containall the possible valuesfor the temporal
variableti. We use respectivelyW (C, ti)

− andW (C, ti)
+ as the

lower and the upper bounds.
• Ω(C) as the set of the matched events of the instanceC.

3 Notice that, in many applications, the input stream is not supposed
to have more than one event of each type at the same date and so,
occurs((1, +∞), a, (t, t + 1)) ≡ occurs((1, 1), a, (t, t + 1)).

There are two phenomena that the system must take into account:
the new occurrence of an event and the increase of the current time
(when time passes with nothing occurs). The two following subsec-
tions will describe the corresponding algorithms.

4.1 Event Integration

The event integration in a counter predicate is similar to the integra-
tion of an event in a protected assertion (noevent) as detailed in [2].

We suppose that the system receives an event(a, d) and tries to
integrate it in the predicateoccurs(n1, n2, a, (t1, t2)) of a chronicle
C. We must consider the three following hypotheses:

1. t2 ≤ d: the event is too late.
2. t1 ≤ d < t2: the event must be integrated (and included inΩ(C)).
3. d < t1: the event is too early.

As we want to integrate an event as soon as it is received by the sys-
tem, we duplicate the current instanceC into one to three exclusive
hypothesis depending on the relative position of the event occurrence
date and the instants of the predicate (which are no necessary already
valued but only bounded by their time windows).

We have many cases to consider, depending to the relative position
of t1, t2 andd (we havet1 < t2, so thatW (C, t1)

− < W (C, t2)
−

andW (C, t1)
+ < W (C, t2)

+). The three following cases are triv-
ial:

• d < W (C, t1)
−: we are sure that the event is too early, all the pos-

sible values fort1 are strictly afterd, this event can’t be integrated
in C, there is nothing to do.

• W (C, t2)
+ ≤ d: we are sure that the event is too late for this

predicate, as in the previous case, there is nothing to do.
• W (C, t1)

+ ≤ d < W (C, t2)
−: we are sure that the event oc-

curs betweent1 andt2 and so it must be integrated inC (and the
counter of the predicate is increased).

W(C,t1)
W(C,t2)

W(C,t1)
W(C,t2)

W(C,t1)
W(C,t2)

d

d
Å

É

Ç

Ç

Ç

Å

É

d<t1

t ≤d<t1 2

t ≤d2

t ≤d<t1 2

d

t ≤d<t1 2

t ≤d2

d<t1

Figure 4. The three cases of duplication of instances when integrating an
event (depending on the relative position of the event occurrence dated and
the time window oft1 andt2. All the hypotheses #2 accept the new event

occurrence in the chronicle and increase their associated counters.

And the three other cases which are displayed on figure 4 lead to
duplication of the instanceC in order to consider all the hypotheses
of orderingt1, t2 andd: the topmost case can evolve in two hypothe-
ses (#2 and #3); the second case gives hypotheses #1 and #2 and the
last one produces all the three hypotheses.

For all the instances, as the time windows oft1 and/ort2 are re-
duced by[d, +∞[or]−∞, d], we also need to propagate these new
time windows through the time constraints graph of the chronicle.

Moreover, when an event is integrated (hypothesis #2), we in-
crease the predicate counter of the chronicle. If all the predicates
of the chronicle become greater than theirn1, the chronicle is called
ready to recognizedbut is not recognized at this moment since it is
already possible that the maximum bound will be reached by next
events. Indeed, if the counter becomes greater thatn2, the instance
is killed since one predicate of the chronicle is violated. The recog-
nition could only occurs when time passes and takes all theW (t2)

+

over (see next section).

4.2 Clock Propagation

We must consider two different cases, depending on the kind of the
partial instances:

• Missing eventsinstance (common case): we compute a timeline
that indicates the deadline which has an effect on time windows
and so, must be propagated. A predicate can be affected if time
windows are reduced in order to respectW (C, t2)

+ ≤ now. If
it is the case, it can be asserted (if the counter reachedn1) and
removed fromΓ(C) or it can be violated (if it is has not enough
events) and the instance is killed.

MissLine(C) = min
Γ(C)

{W (C, ti)
+}

• Ready to recognizedinstance (the lower boundsn1 of all the coun-
ters are reached): we compute a timeline that gives us the right to
recognize the instance when the current clock reaches thisReco-
Line (no counter can be violated after this deadline).

RecoLine(C) = max
Γ(C)

{W (C, ti)
−}

4.3 Instances Tree Management

In order to manage efficiently all the partial instances, the chronicle
recognition system stores all these hypotheses in trees, one for each
chronicle model. Each occurrence of event and each clock tick tra-
verses these trees in order to kill some instances (nodes) or to develop
some hypotheses or to process recognitions as shown in previous sec-
tion.

We integrate a new occurrence of event as follows (see figure 5):

1. the hypothesisd ≥ t2 (event too late) is stored as a sister of the
current instance.

2. the hypothesist1 ≤ d < t2 (event integration) is stored as a child
of the current instance.

3. the hypothesisd < t1 (event too early) is stored in place of the
current instance

We can prove that the trees verify the following property:

Theorem 1 if an event does not concern an instanceC (i.e. it does
not match any predicate inΓ(C)), then it does not concern any chil-
dren ofC.

t1 ≤ d < t2
(evt is integrated)

d < t1d ≥ t2
(a,d)

#3#1

#2

Figure 5. Storing the new hypotheses in the instances tree.

So, we can use this property to jump some branches and traversing
the tree can be optimized as it was done in the previous system (see
[2]): the process of a chronicle with counters does not affect this
point.

5 Performances

The counter representation proposed here is more efficient only be-
cause it could express chronicles is a more concise way: the use of
counters in the old representation increases the number of chronicles
models used by the recognition system.

Let us suppose that we have a chronicle that contains
occurs((n1, n2), a, (t1, t2). With the old representation, we must
haven2 − n1 + 1 different chronicle models (one withn1 events,
one with sizen1 + 1, . . . , and one with sizen2). Refer to the end of
section 3.1 for an example.

As the performance of the recognition system is directly connected
with the number of the developed chronicles instances (the number
of hypotheses), all our tests and results are comparisons between the
number of hypotheses developed by the old and the new system.4

5.1 Theoretical Case

This theoretical case is built to exhibit the behavior of counters: let’s
suppose that the input event stream is a sequence of eventsa which
are regularly time-spaced, with a frequencyf (i.e. there is a delay
∆ = 1/f between two consecutive events) and that we want to
match the following pattern:occurs((n1, n2), a, (t, t + k.∆)). In
other words, we count events duringT = k.∆.

t
a aaaaaa a …

k.∆

∆

Figure 6. Recognized chronicles with the pattern
occurs((n1, n2), a, (t, t + k.∆)) in a regularly time-spaced stream.

With the old representation, we haven2−n1+1 chronicle models
(one withn1 events, one with sizen1 +1, . . . , and one with sizen2).
The number of created instances of one of these models depends on
the comparison between the sizen of the chronicle model andk:

• k < n: these chronicles live until their first events are too old
and, finally, chronicles die because there are not enough events
for them; there are alwaysk − 1 chronicles like this (one begin at
now−∆, another atnow−2∆,. . . , and one atnow− (k−1)∆).

4 As the old system, the process ofone instance has a complexity ofO(n)
wheren is the size of the time graph of the chronicle.

When an eventa occurs, all of them are duplicated and a new one
is created, sok new instances are created.

• k = n: as above, except chronicles are not killed but recognized,
• k > n: these chronicles are killed because there are too many

events in them; there are alwaysn − 1 chronicles to duplicate
and one to create. When an eventa occurs,n new instances are
created.

So, when an eventa occurs, the system createsmin(k, n) new
instances foreachmodel. To get the number of created instances for
each new event occurrence, we sum all the created instances for all
the models (figure 7 shows the curve for a counter defined byn1 = 3
andn2 = 7):

n2∑
n=n1

min(k, n) =

(n2 − n1 + 1).k (k ≤ n1)

− 1
2
k2 + 2n2+1

2
.k − n2

1−n1
2

(n1 ≤ k ≤ n2)
n2(n2+1)

2
− n1(n1−1)

2
(k ≥ n2)

0

5

10

15

20

25

30

0 2 4 6 8 10

k < n1
n1 < k < n2

k > n2

k

Figure 7. Number of created instances ofoccurs((3, 7), a, (t, t + k.∆))
by the old system foreachnew eventa (the new system creates only one).

On the other hand, the algorithms detailed in section 4 creates only
one new instance for each new event occurrence: this is the best case
for the new system, there is no useless creation since each partial
instance leads to a recognition.

Notice that when we only use the oldevent predicate, and as we
have only one eventa at a time in this theoretical case, we could
considern1 = n2 = 1 and so one instance is created at a time for
both systems.

5.2 Empirical Results

We also made empirical measurements of the number of generated
hypotheses (partial instances). We randomly generated ten chronicles
with event counters with a maximum bound less than six events.

We wrote these chronicles with counting predicates for the
new system and the corresponding ones only by usingevent and
noevent predicates, as detailed at the end of section 3.1 for the old
one (this corresponds to about forty chronicles). We fed these chron-
icles with the logs of about 1000 events and count the hypotheses
generated by both systems (of course, therecognizedchronicles are
the same since the translation follows a logical equivalence).

The following table shows the number of generated hypotheses by
the system with the old system (withoutoccurs) and the new one

(with occurs). Obviously, the number of recognitions are the same.
The parameter∆ gives the average delay between two consecutive
events in the input stream.

∆ Reco old CRS new CRS ratio

4.418 165 35033 4712 7.43
7.025 105 32456 4722 6.87
9.64 71 26139 4411 5.93

12.1 58 23056 4348 5.3

Of course, this was a specific (and private) evaluation. Neverthe-
less, these results show that it could be a significant benefit to explic-
itly represent counters in chronicles.

6 Conclusion

We present in this paper a useful extension of chronicle representa-
tion which are the counters of events. The new predicate does not
increase the complexity of the representation but leads to a unifica-
tion of all the predicates.

We saw that the expressiveness is significantly increased by the in-
troduction of alarm counters without increasing the algorithms com-
plexity. First comparisons between the old and the new formalism
show that, when events counters are useful, there is a significant re-
duction of the number of developed hypothesis during the recogni-
tion process. The additional complexity of the extension can be ne-
glected regards to this alleviation and the more condensed representa-
tion of the chronicle model makes the system globally more efficient.

REFERENCES
[1] M. Ghallab, “On chronicles : Representation, on-line recognition and

learning,” Proc. of the5th International Conference on Principles of
Knowledge Representation and Reasoning (KR-96), pp. 597–606, Nov.
1996. Morgan-Kauffman.

[2] C. Dousson, P. Gaborit, and M. Ghallab, “Situation Recognition: Rep-
resentation and Algorithms.,” inProc. of the 13th IJCAI, vol. 1,
(Chamb́ery, France), pp. 166–172, Aug. 1993.

[3] Y. Shoham, “Temporal logics in AI: semantical and ontological consid-
erations,”Journal of artificial intelligence, pp. 89–104, 1987.

[4] J.-P. Krivine and O. Jehl, “The AUSTRAL system for diagnosis and
power restauration: an overview,” inInternational Conference on Intel-
ligent System Application (ISAP’96), (Orlando, USA), Aug. 1996.

[5] S. Bibas, M. O. Cordier, P. Dague, F. Lévy, and L. Roźe, “Scenario
generation for telecommunication network supervision,”Workshop on
AI in Distributed Information Networks, Aug. 1995. Montŕeal, Qúebec,
Canada.

[6] P. Doherty, G. Granlund, K. Kuchcinski, E. Sandewall, K. Nordberg,
E. Skarman, and J. Wiklund, “The WITAS unmanned aerial vehicle
project,” in Proc. of the14th ECAI, (Berlin, Germany), pp. 747–755,
Werner Horn, Aug. 2000.

[7] F. Heintz, “Chronicle recognition in the WITAS UAV project – a pre-
liminary report,”Swedish AI Society Workshop (SAIS2001), 2001.

[8] J. Gamper and W. Nejdl, “Proposing measurements in dynamic
sytems,”Proc. of the14th IJCAI, pp. 784–790, Aug. 1995.

[9] M. Dojat, N. Ramaux, and D. Fontaine, “Scenario recognition for
temporal reasoning in medical domains.,”Artificial Intelligence in
Medecine, pp. 139–155, 1998.

[10] G. Carrault, M. Cordier, R. Quiniou, M. Garreau, J. Bellanger, and
A. Bardou, “A model-based approach for learning to identify cardiac
arrhythmias,”Artificial Intelligence in Medecine and Medical Decision
Making, vol. 1620, pp. 165–174, 1999. W. Horn et al. editors.

[11] M. O. Cordier and C. Dousson, “Alarm Driven Monitoring Based on
Chronicles,” inProc. of the4th Symposium on Fault Detection Supervi-
sion and Safety for Technical Processes (SAFEPROCESS), (Budapest,
Hungary), pp. 286–291, IFAC, A.M. Eldemayer., June 2000.

