
The Complexity of Checking Redundancy of CNF
Propositional Formulae

Paolo Liberatore1

Abstract. A knowledge base is redundant if it contains
parts that can be inferred from the rest of it. We study the
problem of checking whether a CNF formula (a set of clauses)
is redundant, that is, it contains clauses that can be derived
from the other ones. Any CNF formula can be made irre-
dundant by deleting some of its clauses: what results is an
irredundant equivalent subset (I.E.S.) We study the complex-
ity of some related problems: verification, checking existence
of a I.E.S. with a given size, checking necessary and possible
presence of clauses in I.E.S.’s, and uniqueness.

1 INTRODUCTION

The problem of redundancy of knowledge bases is relevant
to applications in which efficiency of entailment is important.
Indeed, the size of a knowledge base is one of the factors that
determine the speed of the inference process. While some the-
orem provers introduce a limited number of redundant formu-
lae for speeding up solving, excessive redundancy can cause
problems of storage, which in turns slows down reasoning. In
particular, updates can increase the size of knowledge bases
exponentially [3], and redundancy makes the problem of stor-
ing the knowledge base worst. Algorithms for checking redun-
dancy of knowledge bases have been developed for the case of
production rules [5, 14]. In this paper, we instead study re-
dundancy of propositional knowledge base in CNF form, that
is, checking whether a clause in a set is implied by the others.

A more general question that has been already investigated
in the propositional case is whether a knowledge base is equiv-
alent to a shorter one. This problem is called minimization of
propositional formulae, and it has been one of the first to be
analyzed from the point of view of computational complexity:
its study begun in the paper that introduced the polynomial
hierarchy [12]. A complexity characterization of this problem
has been first given for Horn knowledge bases [11, 1, 9]; af-
terwards, the problem has been tackled again in the general
case [10, 16]. While the Horn case is now quite understood
(the problem is NP-complete, using several different notions
of minimality), some problems regarding non-Horn formulae
are still open.

Among the open problems is redundancy elimination, which
is a weak form of formula minimization: if a set of clauses is
redundant, it is not minimal, as some clauses can be removed
from it while preserving equivalence. On the other hand, re-
dundancy elimination only allows for removal of clauses, so it

1 Dipartimento di Informatica e Sistemistica, Università di Roma
“La Sapienza”, via Salaria 113, 00198, Rome, Italy.

is not guaranteed to produce a minimal knowledge base. For
example, {x ∨ y, x ∨ ¬y} is irredundant, but is equivalent to
a shorter set: {x}. A related problem, not analyzed in this
paper, is that of removing redundancy from a single clause,
that is, removing literals from clauses rather than removing
clauses from sets. The computational analysis of this problem,
and of related ones, has been done by Gottlob and Fermüller
[8].

The problem of redundancy elimination is relevant for at
least two reasons. First, it seems somehow easier to remove
redundant clauses, rather than reshaping the whole knowl-
edge base. Indeed, removing redundant clauses can be done
by checking whether each clause can be inferred by the other
ones, while finding a minimal equivalent formula involves a
process of guessing and checking a whole knowledge base for
equivalence. Even for short knowledge bases, the number of
candidate equivalent knowledge bases is very high.

A second reason for preferring redundancy elimination to
minimization is that the syntactic form in which a knowl-
edge base is expressed can be important. For example, some
semantics for knowledge base revision depend on the syntax
of knowledge bases. If a knowledge base is replaced with an
equivalent one, even a single update can lead to a completely
different result [6, 13].

Problem Complexity
Checking irredundancy NP complete
A set is an I.E.S. Dp complete
Existence of an I.E.S. of size ≤ k Σp

2 complete
A clause is in all I.E.S.’s NP complete
A clause is in an I.E.S. Σp

2 complete
Uniqueness of I.E.S.’s ∆p

2[log n] complete

Table 1. The complexity results proved in this paper

Several problems are related to that of redundancy. The
aim of checking redundancy is to end up with a subset of
clauses that is both equivalent to the original one and irre-
dundant. We call it an irredundant equivalent subset of the
original set, or I.E.S. Note that an I.E.S. is a subset of the
original set, and can therefore only contain clauses of the orig-
inal set. This makes it different to a minimal equivalent set,
which can instead be composed of arbitrary clauses.

The problems that are analyzed in this paper are: checking
whether a set is an I.E.S.; checking the existence of an I.E.S.
of size bounded by an integer k; deciding whether a clause is
in some, or all, the I.E.S.’s; and checking uniqueness. Table 1
summarizes the results proved in this paper.

2 DEFINITIONS

In this paper, we study irredundancy and equivalence of sets
of propositional clauses. Namely, a set of clauses is irredun-
dant if no clause can be removed from it without changing its
sets of models.

Definition 1 A set of clauses Π is irredundant if and only if
Π\{γi} 6|= γi holds for any γi ∈ Π.

A related definition is that of irredundant equivalent sub-
set: given a set of clauses, we are interested in removing some
redundant clauses from it, in such a way equivalence is pre-
served.

Definition 2 A set of clauses Π′ is said to be an irredundant
equivalent subset (I.E.S.) of another set of clauses Π if and
only if:

1. Π′ ⊆ Π
2. Π′ |= Π
3. Π′ is irredundant

An alternative definition is that an I.E.S. is an equivalent
subset of the original set such that none of its subsets has the
same properties. Any set of clauses has at least one I.E.S.,
but it may also have more than one of them, as shown by the
following example.

Example 1 Let Π = {a∨¬b,¬a∨ b, a∨ c, b∨ c}. This set has
two I.E.S.’s:

Π1 = Π\{a ∨ c}
Π2 = Π\{b ∨ c}

It is indeed easy to see that the first two clauses of Π are
equivalent to a ≡ b, which implies that a ∨ c and b ∨ c are
equivalent. It is also easy to see that neither a∨¬b nor ¬a∨ b
can be removed from Π while preserving equivalence with it.

The set of clauses of this example can be used to show
that a set of clauses may have exponentially many I.E.S.’s.
Consider the set:

Πn =
⋃

i=1,...,n

Π[{a/ai, b/bi, c/ci}]

In words, Πn is made of n copies of Π, each built on its
own set of three variables. While removing clauses from Πn,
we have n independent choices, one for each copy: for each i
we can remove either ai ∨ ci or bi ∨ ci. This proves that 2n

outcomes are possible, each leading to a different I.E.S.
In this paper, we assume that knowledge bases are sets

of clauses. We sometimes use formulae like a1 ∧ · · · ∧ am →
b, which can be easily translated into the equivalent clauses
¬a1 ∨ · · · ∨ ¬am ∨ b. We also assume that clauses are not
tautological. Clearly, tautologies can be easily checked and
removed, and do not change the complexity of the problems
considered here.

3 COMPLEXITY OF CHECKING
IRREDUNDANCY

We prove that checking whether a set of clauses is irredundant
is NP-complete.

Theorem 1 Checking irredundancy of a set of clauses is NP-
complete.

Proof. Membership: we have to check whether, for any γ ∈ Π,
it holds Π\{γ} 6|= γ. This can be done by guessing a model
for each set Π\{γ} ∪ {¬γ}, which shows the problem to be in
NP.

Hardness is proved by showing that, given a set of non-
tautological clauses Γ = {γ1, . . . , γm}, the following set of
clauses Π is irredundant if and only if Γ is satisfiable (we
remind that ci → γi is actually the clause ¬ci ∨ γi.)

Π = {ci → γi | γi ∈ Γ} ∪ {¬c1 ∨ · · · ∨ ¬cm ∨ ¬a}

{c1, . . . , cm, a} are new variables not appearing in Γ. First, we
prove that no clause of the form ci → γi is implied by the rest
of Π, regardless of the satisfiability of Γ.

Consider the following model.

M = {ci} ∪ {xi | ¬xi ∈ γi}

M is not a model of ci → γi, as we assumed that no clause
in Γ is tautological. On the converse, it is a model of Π\{ci →
γi}. This is an easy consequence of the fact that, for any j 6= i,
we have that cj 6∈ M , thus M |= cj → γj , and that a 6∈ M ,
thus M |= ¬c1 ∨ · · · ∨ ¬cm ∨ ¬a.

We now show that the unsatisfiability of Γ implies the re-
dundancy of Π, and then we prove that the satisfiability of Γ
implies the irredundancy of Π. Let us define:

ΠC = {ci → γi | γi ∈ Γ}

Γ is unsatisfiable. We prove that Π is redundant. Since Γ
has no models, no model of ΠC contains all ci’s. As a result,
ΠC |= ¬c1∨· · ·∨¬cm, which implies that ΠC |= ¬c1∨· · ·∨
¬cm ∨ ¬a, which in turns implies that Π is redundant.

Γ is satisfiable. We already proved that no clause ci → γi

can be derived from the other ones. What remains to prove
is that ΠC 6|= ¬c1 ∨ · · · ∨ ¬cm ∨¬a. Since Γ is satisfiable, it
has a model M . It is easy to see that M∪{c1, . . . , cm, a} is a
model of ΠC . Since this is not a model of ¬c1∨· · ·∨¬cm∨¬a,
the claim follows.

4 COMPLEXITY OF I.E.S.’S

In this section, we study some problems related to I.E.S.’s.
Namely, we prove the complexity results shown from the sec-
ond to the last row of Table 1.

Theorem 2 Given two sets of clauses Π and Π′, checking
whether Π′ is an I.E.S. of Π is Dp-complete.

Proof. Membership amounts to showing that Π′ ⊆ Π (a poly-
nomial task), that Π′ |= Π (which is in coNP) and that Π′

is irredundant (which we proved to be in NP). Therefore, the
problem is in Dp.

Hardness is proved by reduction from the sat-unsat prob-
lem: given a pair of sets of clauses 〈Γ, Σ〉, check whether the
first one is satisfiable while the second one is not. This prob-
lem is Dp-complete even if Γ and Σ do not share variables [2],
which we assume. Reduction is as follows:

Π = {ci → γi | γi ∈ Γ} ∪ {¬c1 ∨ · · · ∨ ¬cm ∨ ¬a} ∪
{di → γi | γi ∈ Σ} ∪ {¬d1 ∨ · · · ∨ ¬dr ∨ ¬e}

Π′ = {ci → γi | γi ∈ Γ} ∪ {¬c1 ∨ · · · ∨ ¬cm ∨ ¬a} ∪
{di → γi | γi ∈ Σ}

First, we show that Π′ is irredundant if and only if Γ is
satisfiable. From the proof of Theorem 1, {ci → γi | γi ∈
Γ} ∪ {¬c1 ∨ · · · ∨ ¬cm ∨ ¬a} is irredundant if and only if Γ
is satisfiable, and {di → γi | γi ∈ Σ} is always irredundant.
Since these two subsets of Π′ do not share variables, Π′ is
irredundant if and only if both parts are.

What remains to prove is only that Π′ |= Π if and only if Σ
is unsatisfiable. This is an easy consequence of the fact that
{di → γi | γi ∈ Σ} implies ¬d1 ∨ · · · ∨ ¬dr ∨ ¬e if and only if
Σ is unsatisfiable.

The above theorem shows how hard it is to decide whether
a specific subset is an I.E.S. However, it does not tell how
hard it is to find an I.E.S. We now consider a problem related
to finding the size of minimal I.E.S.’s, namely, the problem
of deciding whether a set has an I.E.S. of size bounded by an
integer k.

Theorem 3 Given a set of clauses Π and an integer k, decid-
ing whether Π has an I.E.S. of size at most k is Σp

2-complete.

Proof. Membership: the problem amounts to deciding
whether there exists a subset of Π that is equivalent to it
and of size at most k. Since the problem can be expressed as
a ∃∀QBF, it is in Σp

2.
Hardness is proved via a quite complicated reduction from

∃∀QBF. Let ∃X∀Y.¬Γ be a formula, where Γ = {γ1, . . . , γm}
is a set of clauses. This problem is Σp

2-hard, as it is the comple-
ment of the problem of deciding whether a ∀∃QBF, in which
the matrix is a CNF formula, is valid [15]. We build a set Π
as the union of the following sets of clauses:

Π1 =

j=1,...,r⋃
i=1,...,n

{xj
i , z

j
i }

Π2 =
⋃

i=1,...,n

{x1
i ∧ · · · ∧ xr

i → xi, z
1
i ∧ . . . ∧ zr

i → zi}

Π3 =
⋃

i=1,...,n

{xi → wi, zi → wi}

Π4 =
⋃

j=1,...,m

{w1 ∧ · · · ∧ wn → γN
j }

Π5 = {v1, . . . , vt,¬v1 ∨ · · · ∨ ¬vt}

Here, γN
j is obtained from γj by replacing every positive

occurrence of xi with ¬zi. The values of the constant k, r, and
t are chosen as follows: if n is the number of variables and m
the number of clauses of Γ, we set r = m+1, k = (r+2)·n+m,
and t = k + 1.

We prove that ∃X∀Y.¬Γ is valid if and only if Π = Π1 ∪
Π2 ∪Π3 ∪Π4 ∪Π5 has an equivalent subset of size at most k.

The set Π is unsatisfiable, and this is an easy consequence
of the fact that Π5 is itself unsatisfiable. Therefore, we are
looking for a subset of Π of size (at most) k that is unsatis-
fiable. Note that, removing even a single clause from Π5, it
becomes satisfiable. Since it does not share any variable with
the other subsets, it follows that no proper subset of Π5 can
contribute to the generation of unsatisfiability. Since t > k, we
are sure that an unsatisfiable set of clauses of size bounded
by k either does not contain clauses from Π5, or they can
be removed from it while maintaining inconsistency. In short:
while looking for an unsatisfiable subset of Π, clauses of Π5

can be disregarded (these clauses are used to guarantee that
Π is unsatisfiable).

We have therefore proved that Π has an I.E.S. of size
bounded by k if and only if Π1 ∪Π2 ∪Π3 ∪Π4 has an incon-
sistent subset of size bounded by k. Let us therefore consider
Π′ ⊆ Π1 ∪Π2 ∪Π3 and Π′′ ⊆ Π4, and see what happens when
Π′ ∪Π′′ is an unsatisfiable set of at most k clauses.

First, neither Π′ nor Π′′ is unsatisfiable alone, as both Π1∪
Π2 ∪ Π3 and Π4 are satisfiable (the first is satisfied by the
model that evaluates to true all variables, the second by the
model that evaluates to false all variables.) Second, if Π′ does
not imply all wi’s, then Π′ ∪ Π′′ is satisfiable. There exists
exactly two minimal subsets of Π1 ∪Π2 ∪Π3 that imply wi:

Σi =
⋃

j=1,...,r

{xj
i} ∪ {x1

1 ∧ · · · ∧ xr
i → xi, xi → wi}

Σ′i =
⋃

j=1,...,r

{zj
i } ∪ {z1

1 ∧ · · · ∧ zr
i → zi, zi → wi}

These two sets have the same size. The number k has been
chosen so that k = n · (r + 2) + m = n · |Σi| + m. Since
all wi’s have to be implied, Σi ⊂ Π′ or Σ′i ⊂ Π′ for each i.
Since m < |Σi|, we have that k < n · (|Σi| + 1), that is, Π′

cannot contain more than n sets Σi or Σ′i. More precisely,
r +1 = m+2 other clauses are necessary to imply another xi

or zi, which are shared with Π′′. Therefore, Π′ must contain
exactly one group among Σi and Σ′i for any i, which amounts
to n · (r + 2) clauses. The remaining m clauses can be taken
from Π′′. Since Π4 has size m, we can simply take Π′′ = Π4.

We have proved that Π′ implies either xi or zi, for any
i, but not both. Candidate unsatisfiable subset are therefore
in correspondence with truth assignments on the variables xi.
Moreover, all variables wi are true, which makes Π4 equivalent
to

⋃
j=1,...,m

{γN
j }. If Π′ contains xi, then ¬xi can be removed

from any clause γN
j containing it, while ¬zi remains. The

opposite happens if zi is in Π′.
Either way, if a variable of {xi, zi} is in Π′, the other one

is not mentioned in Π′, so we can assign it to false in or-
der to satisfy as many clauses as possible (we are trying to
prove unsatisfiability, so we have to test the most unfavorable
possibility). What remains of Π4 is the set Γ in which all vari-
ables xi has been removed, by assigning them either to true
(if Σi ⊂ Π′) or to false (if Σ′i ⊂ Π′). Therefore, the choice of
including Σi or Σ′i makes Π4 equivalent to Γ after setting xi

to some truth value. Therefore, Π has an unsatisfiable subset
of size k if and only if ∃X∀Y.¬Γ is true.

Note that the choice of an unsatisfiable set Π is not neces-
sary. Indeed, by adding a new variable u to all clauses, Π and
all its subsets are made satisfiable. Since Π is now equivalent
to u, one of its subsets can be equivalent to it only if, assign-
ing false to u, leads to unsatisfiability, which has been proved
to be equivalent to the QBF problem.

We now turn the problem of deciding whether a clause is
in an I.E.S. A clauses that is in an I.E.S. can be considered
“weakly irredundant”, in the sense that there is a way of turn-
ing the set into an irredundant one that still contains the
clause. A stronger version of this concept is that of clauses
that are contained in all I.E.S.’s. Quite surprisingly, the com-
plexity of the latter problem is lower than that of the former.

Theorem 4 Given a clause γ and a set of clauses Π, deciding
whether γ belongs to all I.E.S.’s of Π is NP-complete.

Proof. At a first glance, this problem looks like the typical
problem in Πp

2: it amounts of checking whether γ belongs to all
subsets of Π that are equivalent to it. Expressing it as a QBF,
it would be something like: for all subsets Π′ ⊆ Π, γ ∈ Π′ or
Π′ is not equivalent to Π. The latter can be expressed as:
there is a model of Π′ that is not a model of Π.

Nevertheless, the problem can be expressed in a simpler
way: γ is in all I.E.S.’s of Π if and only if Π\{γ} 6|= γ. This is
a simple inference test, and is therefore in NP. We prove that
this is also the same as the problem we are studying.

If Π\{γ} 6|= γ, then γ belongs to all I.E.S.’s: this is an easy
consequence of the fact that no subset of Π\{γ} can imply γ.
What remains to prove is that Π\{γ} |= γ implies that there
is an I.E.S. of Π that does not contain γ. We can build this
I.E.S. as follows: we start from Π\{γ} and iteratively remove
clauses that can be derived from it, until we obtain a set from
which no clause can be removed. This is clearly an I.E.S., and
it does not contain γ.

Having proved the problem to be in NP, what remains to be
proved is its hardness. We can use the reduction of Theorem 1:
the set Π is irredundant if and only if the original set of clauses
Γ is satisfiable. Moreover, if Γ is unsatisfiable, Π has the single
I.E.S. Π\{¬c1∨· · ·∨¬cm∨¬a}. Therefore, the clause ¬c1∨· · ·∨
¬cm∨¬a is in all I.E.S.’s of Π if and only if Γ is satisfiable.

While deciding whether a clause is in all I.E.S.’s is in NP,
the similar problem of deciding whether a clause is in at least
one I.E.S. is complete for the class Σp

2, and is therefore harder.
This result is somehow surprising, as these two problems have
very similar definitions, and checking the existence of an I.E.S.
containing a clause may look even simpler than checking all
of them.

Theorem 5 Deciding whether a clause γ is in at least one
I.E.S. of a set of clauses Π is Σp

2-complete.

Proof. Membership is trivial: the problem can be expressed
as the existence of a set Π′ ⊆ Π containing γ that is equivalent
to Π.

Hardness is proved by reduction from ∃∀QBF. We assume
that the matrix of the QBF formula is the negation of a CNF:
this problem is Σp

2-hard, as it is the complement of deciding
whether a ∀∃QBF formula, in which the matrix is in CNF,
is valid [15]. We prove that ∃X∀Y.¬Γ is valid (where Γ =

{γ1, . . . , γm}) if and only if w is in at least one I.E.S. of the
following set Π:

Π =
⋃

i=1,...,n

{xi,¬xi} ∪ {w} ∪
⋃

i=1,...,m

{w → γi}

This set is clearly unsatisfiable. Its I.E.S.’s are its unsatis-
fiable minimal subsets. Let us now show how a subset Π′ of
this kind is composed. If both xi and ¬xi are in Π′, they are
enough to generate contradiction, so no other clause can be in
Π′, otherwise the other clauses would be redundant. We have
therefore found a first group of minimal unsatisfiable subsets
of Π: those composed exactly by a pair {xi,¬xi}.

Let us now try to build an unsatisfiable Π′ ⊆ Π that con-
tains w. Besides w, such set Π′ can include

⋃
i=1,...,m

{w →
γi}, as well as a literal between xi and ¬xi for any i (but not
both, otherwise the other clauses would be redundant). It is
now evident that such set can be unsatisfiable only if, for the
given choice of the xi’s, the set Γ is unsatisfiable. Thus, there
exists an unsatisfiable subset of Π containing w if and only if
Γ is unsatisfiable. What remains to prove is that any I.E.S.
obtained by removing redundant clauses from Π′ contains w.
This is an easy consequence of the fact that Π′\{w} is always
satisfiable.

Any set of clauses has at least one I.E.S. Checking the ex-
istence of an I.E.S. is thus trivial. On the other hand, a set
may have more than one I.E.S. Deciding whether this holds
for a specific set of clauses is important, as it shows that there
is a choice among the possible minimal representations of the
same piece of information. For example, a trivial algorithm
for producing an I.E.S. is that of iteratively removing the first
clause that is implied by the other ones. This algorithm clearly
outputs an I.E.S. However, other ones may exist, and be bet-
ter either because are shorter (have less clauses), or because
their structure make them more effective to use (for example,
they are Horn or in a similar special form that makes reason-
ing with them easier.) The problem of uniqueness is ∆p

2[log n]
complete.

Theorem 6 Deciding whether a set of clauses Π has a single
I.E.S. is ∆p

2[log n] complete.

Proof. Expressing this problem as a QBF, it looks like a prob-
lem in Σp

2. However, we can show that a logarithmic number
of satisfiability checks suffice to solve the problem. This is
proved by showing that a set Π has a unique I.E.S. if and
only if ΠR |= Π, where:

ΠR = {γ ∈ Π | Π\{γ} 6|= γ}

Let us first assume that ΠR |= Π, and prove that ΠR is the
unique I.E.S. of Π. Since no clause of ΠR is implied by the rest
of Π, it is not implied by the rest of ΠR either, which proves
that ΠR is a I.E.S. We only have to prove that Π does not
have any other I.E.S. Assume, by contradiction, that Π′ 6= ΠR

is a I.E.S.: if ΠR ⊂ Π′, then Π′ is not irredundant; otherwise,
there exists γ ∈ ΠR\Π′. This condition can be decomposed
into γ ∈ ΠR and γ 6∈ Π′. The first formula implies Π\{γ} 6|= γ
by construction of ΠR. The second formula, together with
Π′ |= Π, implies that Π′\{γ} |= γ. This is a contradiction, as
Π′ ⊆ Π.

The problem can therefore be solved by determining ΠR

and then checking whether ΠR |= Π. This can be done with
a polynomial number of parallel calls to an oracle in NP,
followed by a single other call. By a well-known result by
Gottlob [7], the problem is in ∆p

2[log n].

We prove that the problem of uniqueness is ∆p
2[log n]-hard

by reduction from the problem of odd satisfiability: given a
sequence of sets of clauses (Π1, . . . , Πr), each built on its own
alphabet, such that the unsatisfiability of Πj implies that of
Πj+1, decide whether the first Πk that is unsatisfiable is of
odd index, that is, k is odd.

Let Πj be a set of clauses, and let Πj
C = {cj

i → γj
i | γj

i ∈ Πj}
and γj

g = ¬cj
1∨· · ·∨¬cj

m. As proved in Theorem 1, Πj
C implies

the clause γj
g if and only if Πj is unsatisfiable.

Let j be an odd index between 1 and r. Define:

Πj
D = Πj

C ∪ {aj ∨ cj ∨ γj
g , bj ∨ cj ∨ γj

g}
Πj+1

D = Πj+1
C ∪ {cj+1

i ∨ aj ∨ ¬bj ∨ γj
g | γj+1

i ∈ Πj+1} ∪
{cj+1

i ∨ ¬aj ∨ bj ∨ γj
g | γj+1

i ∈ Πj+1}

We give a sketch of the proof that the first unsatisfiable set
of the sequence is of odd index if and only if Π = Π1

D∪· · ·∪Πr
D

has multiple I.E.S.’s.
Variables are only shared between Πj

D and Πj+1
D , and only

if j is odd. We therefore only have to check whether Πj
D∪Πj+1

D

has a unique I.E.S., where j is odd.
Intuitively, if Πj is unsatisfiable, then γj

g is implied, thus
making all clauses but those in Πj

D ∪Πj+1
D redundant, which

leads to a single I.E.S. If both sets are satisfiable, all clauses
are irredundant (this is the longest part of the proof.) Finally,
if Πj

D is satisfiable while Πj+1
D is not, then at least a variable

cj+1
i is implied, thus making (aj ≡ bj) ∨ γj

g implied as well,
and the two last clauses of Πj

D are made equivalent; therefore,
one of them can be removed, but not the other one.

The complete proof is omitted due to the lack of space.

5 CONCLUSIONS

We have presented a computational analysis of some problems
related to redundancy and redundancy elimination. Namely,
checking whether a set of clauses is irredundant has been
proved to be coNP-complete. We have then defined an I.E.S.
as an irredundant equivalent subset of a given set, and studied
some problems related to I.E.S.’s: checking, size, uniqueness,
and membership of clauses to some or all I.E.S.’s. All problems
have been given an exact characterization within the polyno-
mial hierarchy, that is, we have found classes these problems
are complete for.

There are still open problems, however, and are about the
problem of minimality of formulae in general. Indeed, irre-
dundancy is only one way of defining minimal representation
of a formula, but other ones exist. In the Horn case, several
different definitions of minimality have been used, both by
Meier [11] and by Ausiello et al. [1], including irredundancy
and number of occurrences of literals. In the general (non-
Horn) case, only the number of occurrences of literals (and,
in this paper, irredundancy) have been considered. An open
problem is whether the other notions of minimality used in
the Horn case make sense in the general case as well.

A further open question is whether the results changes when
alternative forms of equivalence, like model equivalence or
query equivalence [4], are considered. Both these forms of
equivalence are based on adding new variables to form a cir-
cuit or a formula which is equivalent to the original one only
on the original variables. Since both forms of equivalence can
be used for reducing the size of a propositional formula, it
makes sense to investigate whether a formula is (query or
model) equivalent to another one of smaller size.

6 ACKNOWLEDGMENTS

Many thanks to Marco Schaerf for his comments on a previous
version of this paper, and to the anonymous reviewers for their
very detailed comments.

REFERENCES
[1] G. Ausiello, A. D’Atri, and D. Saccà, ‘Minimal representation

of directed hypergraphs’, SIAM J. on Computing, 15(2), 418–
431, (1986).

[2] A. Blass and Y. Gurevich, ‘On the unique satisfiability prob-
lem’, Information and Control, 55(1–3), 80–88, (1982).

[3] M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf,
‘The size of a revised knowledge base’, Artificial Intelligence,
115(1), 25–64, (1999).

[4] M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf,
‘Space efficiency of propositional knowledge representation
formalisms’, Journal of Artificial Intelligence Research, 13,
1–31, (2000).

[5] A. Ginsberg, ‘Knowledge base reduction: A new approach to
checking knowledge bases for inconsistency & redundancy’, in
Proc. of AAAI’88, pp. 585–589, (1988).

[6] M. L. Ginsberg, ‘Conterfactuals’, Artificial Intelligence, 30,
35–79, (1986).

[7] G. Gottlob, ‘NP trees and Carnap’s modal logic’, J. of the
ACM, 42(2), 421–457, (1995).

[8] G. Gottlob and C. G. Fermüller, ‘Removing redundancy from
a clause’, Artificial Intelligence, 61, 263–289, (1993).

[9] P. Hammer and A. Kogan, ‘Optimal compression of propo-
sitional Horn knowledge bases: Complexity and approxima-
tion’, Artificial Intelligence, 64(1), 131–145, (1993).

[10] E. Hemaspaandra and G. Wechsung, ‘The minimization prob-
lem for Boolean formulas’, in Proc. of FOCS’97, pp. 575–584,
(1997).

[11] D. Maier, ‘Minimum covers in relational database model’, J.
of the ACM, 27(4), 664–674, (1980).

[12] A. Meyer and L. Stockmeyer, ‘The equivalence problem for
regular expressions with squaring requires exponential space’,
in Proc. of FOCS’72, pp. 125–129, (1972).

[13] B. Nebel, ‘Belief revision and default reasoning: Syntax-based
approaches’, in Proc. of KR’91, pp. 417–428, (1991).

[14] J. Schmolze and W. Snyder, ‘Detecting redundant production
rules’, in Proc. of AAAI’97, pp. 417–423, (1997).

[15] L. J. Stockmeyer and A. R. Meyer, ‘Word problems requiring
exponential time’, in Proc. of STOC’73, pp. 1–9, (1973).

[16] C. Umans, ‘The minimum equivalent DNF problem and short-
est implicants’, in Proc. of FOCS’98, pp. 556–563, (1998).

