Automatic Learning in Proof Planning

Mateja Jamnik»2 and Manfred Kerber 2 and Martin Pollet 2

Abstract. In this paper we present a framework for automatedhence, presents a difficulty in applying a proof strategy to many do-
learning within mathematical reasoning systems. In particular, thisnains.

framework enables proof planning systems to automatically learn In this work, we show how a system can learn new methods auto-
new proof methods from well chosen examples of proofs which use anatically given a typically small number of well chosen examples of
similar reasoning pattern to prove related theorems. Our frameworkelated proofs of theorems. This is a significant improvement, since
consists of a representation formalism for methods and a machinexamples (e.g., in the form of classroom example proofs) exist typ-
learning technique which can learn methods using this representatiagoally in abundance, while the extraction of methods from these ex-
formalism. We present the implementation of this framework withinamples can be considered as a major bottleneck of the proof planning
the QMEGA proof planning system, and some experiments we ran onimethodology.

this implementation to evaluate the validity of our approach. The idea is that the system starts with learning simple proof meth-
ods. As the database of available proof methods grows, the sys-
1 Introduction tem can learn more complex proof methods. Inference rules can be

treated as methods by assigning to them pre- and postconditions.

Proof planning [3] is an approach to theorem proving which usesrhys, from the learning perspective we can have a unified view of
proof methods rather than low level logical inference rules to find ginference rules and methods as given sequences of primitives from
proof of a theorem at hand. A proof method specifies a general reayhich the system is learning a pattern. We will refer to all the existing
soning pattern that can be used in a proof, and typically representsiiethods available for the construction of proofs as primitive meth-
number of individual inference rules. For example, mathematical ingds. As new methods are learnt from primitive methods, these too
duction can be encoded as a proof method. Proof planners search figécome primitive methods from which yet more new methods can be
a proof plan of a theorem which consists of applications of severajearnt. Clearly, there is a trade-off between the increased search space
methods. An object level logical proof may be generated from a sucgue to a larger number of methods, and increasingly better directed
cessful proof plan. Proof planning is a powerful technique because Kearch possibilities for subproofs covered by the learnt methods.
often dramatically reduces the search space, since the search is daggmely, on the one hand, if there are more methods, then the search
on the level of abstract methods rather than on the level of SeVer@pace is potentia”y |a|’ger. On the other hand, the Organisation of a
inference rules that make up a method. Therefore, typically, thergjanning search space can be arranged so that the newly learnt, more
are fewer methods than inference rules explored in the search spag®mplex methods are searched for first. If a learnt method is found to
Proof planning also allows reuse of proof methods, and moreovepe applicable, then instead of a number of planning steps (that corre-
generates proofs where the reasoning strategies of proofs are tranrgsond to the lower level methods encapsulated by the learnt method),
parent, so they may have an intuitive appeal to a human mathematir proof planner needs to make one step only. Generally, proof plans
cian. Indeed, the communication of proofs amongst mathematiciangonsisting of higher level methods will be shorter than their corre-
can be viewed to be on the level of proof plans. sponding plans that consist of lower level methods. Hence, the search

One of the ways to extend the power of a proof planning systemor a complete proof plan is shallower, but also bushier. In order to
is to enlarge the set of available proof methods. This is particularlymeasure this trade-off between the increased search space and better
beneficial when a class of theorems can be proved in a similar wayjirected search, an empirical study is carried out in the second part
hence a new proof method can encapsulate the general reasoning patthis paper.
tern of a proof for such theorems. A proof method in proof planning Here, we present a hybrid proof planning systeEARNQMATIC,
basically consists of a triple — preconditions, postconditions and ghich uses the existing proof plann@MEeGA [1], and combines it
tactic. A tactic is a program which given that the preconditions areyith our own machine learning system. This enhancestaecA
satisfied transforms an expression representing a subgoal in a waystem by providing it with the learnt methods téREGA can use
that the postconditions are satisfied by the transformed subgoal. |f proving new theorems.
no method on an appropriate level is available in a given planning Automatic learning by reasoning systems is a difficult and ambi-
state, then a number of lower level methods (with inference rules aggys problem. Our work demonstrates one way of starting to address
the lowest level methods) have to be applied in order to prove a givethjs problem, and by doing so, it presents several contributions to the
theorem. Alternatively, a new method can be added by the developegfeld. First, although machine learning techniques have been around
of a system. However, this is a very knowledge intensive task angor a while, they have been relatively little used in reasoning systems.
Making a reasoning system learn proving strategies from examples,

1 University of Cambridge Computer Laboratory, J.J. Thomson Avenue,

Cambridge, CB3 OFD, UKhttp://www.cl.cam.ac.uk/"mj201 much like children learn to solve problems from examples demon-
2 School of Computer Science, The University of Birmingham, Birmingham Strated to them by the teacher, is hard. Our work makes an important
B15 2TT, England, UKhttp://www.cs.bham.ac.uk/ mmk step in a specialised domain towards a proof planning system that

3 Fachbereich Informatik, Universit des Saarlandes, 66041 Saadken, can reasomndlearn.
Germanyhttp://www.ags.uni-sb.de/"pollet

Second, proof methods have complex structures, and are hentg and “|" are auxiliary symbols used to separate subexpressions,
very hard to learn by the existing machine learning techniques. We,” denotes asequence’|” denotes alisjunction “x” denotes aep-
approach this problem by abstracting as much information from thetition of a subexpression any number of times (includ)gn a
proof method representation as needed, so that the machine learnifiged number of times, and@ is a constructor for a branching point
techniques can tackle it. Later, after the reasoning pattern is learnist is a list of branches), i.e., for proofs which are not sequences
the abstracted information is restored as much as possible. but branch into a treéWe refer to expressions in languafjievhich

Third, unlike in some of the existing related work [5, 14], we are describe compound methodsrasthod outlines

not aiming to improve ways of directing proof search within a fixed . . .)
set of primitives. In theorem proving systems these primitives arel€arning Technique Method outlines are abstract methods which

typically inference steps or tactics, and in proof planning systemé‘_a"e a simple representation_ that is amenable to Iearning_. '_rhe algo-
these primitives are typically proof methods. Rather, we aim to leardithm that learns method outlines can find an adequate minimal and

the primitives themselves, and hence improve the framework anHaast general generalisat.ion .within the g!ven language restrictiolns. It
reduce the search within the proof planning environment. Namely's based on the generalisation of the simultaneous compression of

instead of searching amongst numerous low level proof methods, Y€!l-chosen examples.

proof planner can now search for a newly learnt proof method which OUr learning technique considers some typically small number of
encapsulates several of these low level primitive methods. positive examples which are represented in terms of sequences of
identifiers for primitive methods, and generalises them so that the

Running Example We demonstrate our approach with running learnt pattern is in language. The pattern is obmallest sizevith
examples. There is a large class of residue class theorems in grou@spect to a defined heuristic measuresiaé[6], which essentially
theory that can be proved using the same pattern of reasoning. Theipunts the number of primitives in an expression. The intuition for
use is well documented in [10]. Here are examples of three residui¢ is that a good generalisation is one that reduces the sequences of
class theorems (whet,; is the residue class of integers modulo method identifiers to the smallest number of primitives (daf}, is

and the lambda expression is the operation over this set): better thara, a]). The pattern is alsmost specifior equivalently,
least general) with respect to the definition of specifisiyec spec

1. closed-unde{Zs, (A\x Ay.z+(z+y))) is measured in terms of the number of nestings for each part of the

2. associative-undg?Zs, (Az Ay. (zxy))) generalisation [6]. Again, this is a heuristic measure. The intuition

3. commutative-und¢#Z., (Az Ay- (z+v))) for this measure is that we give nested generalisations a priority since

. . . they are more specific and hence less likely to over-generalise.
The pattern of reasoning to prove them is as follows. First, \ye take both, the size (first) and the specificity (second), in ac-
the definitions are expanded (e.glosed-under, associative-under, ., nt when selecting the appropriate generalisation. If the general-
commutative-undgr Then, all of the statements on residue classe§gations considered have the same rating according to the two mea-
are rewritten into corresponding statements on integers by transfeyre. then we return all of them. For example, consider two possi-

ring the residue class set into a set of corresponding integers. Thepje generalisations constructed by the learning algorithm described
the proofs diverge: if the statements are universally quantified, thegg|q: [[a2]*] and [a*]. According to sizesize([[a]"]) = 1 and

an exhaustive case analysis over all elements of the set is carried Ut e([a*]) = 1. However, according to specificityped[[a?]*]) = 2

If the statements are existentially quantified, then all elements of thﬁndspe(([a*]) = 1. Hence, the algorithm seledfa?]*].

set are examined until one is found for which the statements hold. ar6 is the learning algorithm. Given some number of examples
The aim of our work is to learn and generalise such patterns int?e.g.,el = [a,a,a,a,b,d andes = [a, a, a, b,]):

proof methods that can then be used for proofs of other related the-

orems. We now show how this learning is done automatically withint. For every example;, split it into sublists of all possible lengths

our framework. plus the rest of the list. We get a list of pattern ligts, each of
which containing patterns; . E.g.:

2 Leal’ning for €1: {Ha’}? [a’]7 [a]7 [a]7 [b}v [C”, [[a, a’}? [a’7 a]? [b7 C”' [[QL [a7 a]'
[a,b],[d]]. [[a, a,al, [a,b,c]], [[a], [a, a,al, [b,c]],. .. }

The methods we aim to learn are complex and beyond the complex- for ez: {[[a], [a], [a], [b], [c]].[[a, a], [a, b], [d]], [[a], [a,al, [b,d]],

ity that can typically be tackled in the field of machine learning. [[a,a,al,[b,c]], [[a], [a,q,b], [c]],...}

Thus, we first simplify the problem and aim to learn so-cattexthod 2. If there is any branching in the examples, then recursively repeat
outlines For this purpose we use a simple representation formalism this algorithm on every element of the list of branches.
which abstracts away as much information as possible for the lear@ For every example; and for every pattern ligil; find sequential
ing process, which is described next. Second, we restore the neces-repetitions of the same patterpsin the same example. Using an
sary information as much as possible so that the proof planner can exponent denoting the number of repetitions, compress them into
use the newly learnt method using the mechanism descri§8t'in pi and hencels. E.g.:

Let us define the following languade whereP is a set of known pl§ = {[[a]*, [8], [], [[[a, a]*], [b,]], ... }

identifiers of primitive methods used in a method that is being learnt;- - —
Note the difference between the disjunction and the tree constructors: for

disjunction the proofs covered by the method outline consist of applying

n want to expressa, b, [¢|c], d]. Then an equivalent representation without
for anyl.G Landn €N, Ietl‘ €L,) the empty primﬁﬁ/e is[{al, %b\[%, c]], d]. We avoid using the empty primitive
for anylist such thatall; € list are alsd; € L, letT'(list) € L. as it introduces a large number of unwanted generalisation possibilities.
6 Notice that there are modm ways of splitting an example of lengthinto
4 Some information may be irrecoverably lost. In this case, some extra search different sublists of lengttw. Namely, the sublists of length. can start in

in the application of the newly learnt methods will typically be necessary. positionsl, 2, ... ,n modm.

o foranyp € P, letp € L, either the left or the right disjunct. However, with the tree constructor every
o foranyly,ls € L, let{ly, l2] € L, proof branches at that particular node to all the branches in the list. Note
e foranyli,ls € L, let[l1]l2] € L, also, that there is no need for an empty primitive as it can be encoded with
e foranyl € L, letl* € L, the use of the existing language. E.g.,ddte an empty primitive and we

[)

[)

pls = {[[a)®, [b), [c]], [[a], [@, a], [b, c]], - - - } of the algorithm relative to the length of the examples considered
4. For every compressed pattgrthe pl$ of every example;, com- for learning. The algorithm can deal with relatively small examples,
pare it with p§ in all other exampleg;, and find matching* which we encounter in our application domain, in an optimal way.
(calledm;) with the same constituent pattern, which may occur aThe complexity of the algorithm is exponential in the worst case.
different number of times. E.g.: Hence, we use some heuristics for large and badly behaved exam-
my = (plf', pls') due to[a]* and[a]® ples [6].
ma = (pI§?, pls?), due to[b,] and|b, c], etc.)
5. Ifthere are no matches; in the previous step, then generalise the 3 Using learnt methods
examples by joining them disjunctively using thé ¢onstructor.
6. For every$ in a matching, generalise different exponents te'a “
constructor, and the same exponents a constant. E.g.?
for m1: [a]* and[a]® are generalised tfa]*;
for ma: [b, c] and[b, c] are generalised t, c|
7. Foreveryp, of a match, transform the rest of the pattern list on the
left and on the right op, back to the example list, and recursively
repeat the algorithm on them. E.g.:
for my inei: LHS=[], py = [a]*, repeat on RHSB, (]
for my in e2: LHS=[], py = [a]*, repeat on RHSB, (]

Method outlines that have been learnt so far do not contain all the in-
formation which is needed for the proof planner to use them. For
instance, they do not specify what the pre- and postconditions of
methods are, they also do not specify how the number of loop ap-
plications of methods is instantiated when used to prove a theorem.
Hence, we need to restore the missing information.

For each learnt outline we automatically create a method for which
its precondition is fulfilled if there is a sequence of methods that is an
instantiation of the method outline, and each method of the sequence
. is applicable. The postcondition introduces the new open goals and

formy ine;: repeaton LHS: [a, a, a, a], py = [b,], RHS= [] hypotheses resulting from applying the methods of the sequence to

for my in e»: repeaton LHS: [a, a,al, pg = [b,c], RHS=[]. e cyrrent goal. We will call this kind of methodearnt method

8. Repeat recursively this algorithm on all possible generalisations g;\~e methods ifIMEGA may be very complex, the precondition
inside the method outline (i.e., ™", exponen} “*|” and ") in o o learnt method cannot be extracted from the pre- and postcon-
order to find nested generalisations (sucti[aF]"). Terminate, giiions of theuninstantiatedmethods in the method outline. Hence,
when no success. L . we actually have to apply a method to produce a proof situation for

9. If there is more than one generallsatlon remaining at the _end hich we can test the preconditions of the subsequent method in the
the recursive steps, then pick the ones with the smallest size angeinod outline. That is, we have to perform proof planning guided
among these the ones Wlt.h the largest specificity. Else, the €%y the learnt outline.

amples cannot be generalised. E.g.: for the examples above, r‘c’%/The precondition test performs a depth first search on the learnt

applicable yet; after the aIgonthr_n 1S r_epeaied on the rest of OUkethod outline. Besides the choice points of the learnt method, i.e.,

examples, the learnt method outline will Be]", [b, c]]. disjunctions and number of repetitions for"* we also have to de-

The learning algorithm was implemented in Standard ML v.110.cide to which open goal every single method in the method outline
Its input are the sequences of proofs constructé@NiEGA. Its out- should be applied. Additionally, for methods containing parameters
put are method outlines which are passed bacRMEGA. The al- an instantiation has to be chosen. More details on the application test
gorithm was tested on several examples of proofs and it successfullynd on the learnt method reuse can be found in [6].
produced the required method outlines.

In particular, for our example of the residue class theorems abovel Evaluation — experiments

the sequences of methods identifiers from the proofs of these theo- .
rems are as follows: In order to evaluate the success of our approach, we carried out an

empirical study in different problem domains on a number of theo-

1. {defn-expy;-sortv;-sort, convert-resclass-to-num, defn-exp, or- rems. This test set includes the theorems from which new methods
e-rec, simp-num-exp, simp-num-exp, simp-num-exp, simp-nuniere learnt, but most of them are new and more complex. In partic-
exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exXfar, we tested our framework on examples of residue classes (e.g.,
simp-num-exp like our running examples), set theBrgnd group theory.The aim

2. {defn-exp;-sort¥;-sort, ¥;-sort,convert-resclass-to-num, or-e- of these experiments was to investigate if the proof plaheeca
rec, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exgnhanced with the learnt methods, can perform better than the stan-
simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, singard(MeGA planner'® The learnt methods were added to the search
num-exp, Simp-num-exp, Simp-num-exp, simp-num-exp, SiMp-NURpace in a way that their applicability is checked first, before the ex-
exp, simp-num-exp, simp-num-exp, simp-num-exp, SiMp-NuM-exgting standard methods.
simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, siMp-The measures that we consider amverage- the ability to prove
num-exp, simp-num-exp, simp-num-exp, simp-nurh-exp new theorems with the help of learnt methotisiing — the time it

3. {defn-exp, V;-sort¥;-sort, convert-resclass-to-num, or-e-rec, takes to prove a theoremroof length— the number of steps in the
simp-num-exp, simp-num-exp, simp-num-exp, simp-nui-exp proof plan; andnatchings- the number of all true and false attempts

The algorithm described here learnt the expected method outline: 8 {are are a set theory theorem and a non-theovamy, z. ((z Uy) Nz) =

_ _ * (zNz)U(ynNz)andvz,y,z.(zUy)Nz) =(xUz)N(yUz).
tryanderror = [defn-exp[m-sort} ,convert-resglass-to-num 9 Here are some group theory examples{((a—Lob)o (cod))o f) = (bo
([or-e-red|[defn-exp, or-e-rg¢, Slmp'num'exp] (cod))o f and(co(bo(a~to(aob™1))))o(((doa)oa™1)of) = co(dof).
. . . L0 There are several reasons for comparing the performar@eatA with
Due to Iacl_< of space the _reader 'S_ referred for the dlscussmn_of and without a learning capability, rather than with the performance of other
some properties of our learning algorithm to [6]. There are some dis- |earning reasoning systems. First, there are only few proof planners around.
advantages to our technique, mostly related to the run time speed In the future, we plan to apply our learning approach@am proof plan-
ner in order to assess the benefits of our approach in other systems. Second,
7 Notice that here is a point where our generalisation technique can over- as discussed i§5, little work has been done on applying machine learning
generalise, namely when there is a pattern in the exponents — like prime techniques to automated theorem provers, hence a direct comparison with
number — this is ignored and juskas selected. another approach is infeasible.

to match candidate methods. Checking the candidate methods tha®roup theory domain: We notice an improvement also in the
may be applied in the proof, i.ematchingsis by far the most ex- case of the group theory examples. Our learning mechanism learnt
pensive part of the proof search, and is hence the best measure fiee new methods, but since some are recursive applications of oth-
indicate the validity of our approach. ers, we only tested the planner by using two newly learnt complex

Table 1 compares the values wfatchingsand proof lengthfor recursive methods. The methods simplify group theory expressions
the three problem domair$.It compares the values for these mea- by applying associativity left and right methods, and then reduce the
sures when the planner searches for the proof with the standard setefpressions by applying appropriate inverse and identity methods.
available methods (column marked with S), and when in addition toThe entries in Table 1 refer to two types of examples. First, we give
these, there are also our newly learnt methods available to the platihe average figures for simple theorems that can be proved with stan-
ner (column marked with L). “—" means that the planner ran out ofdardand with learnt methods. Second, we give the average figures
resources (four hours of CPU time) and could not find a proof plan. for complex theorems that camly be proved within the resource
limits when our learnt methodare available to the planner.

Theorem Matchings Length It is evident from Table 1 that the number ofatchingsis im-
- S, L S, L proved, butitis only reduced by about 15%. We noticed that for some
::zgg:;g;:gm: 422 éég 42? 22 very simple theorems, a larger numbenadtchingds required if the
__averageres.class || 13620 2195 1340 PO learnt methods are avgllable in the search space. Howe_ver, for more
r closed-z3z-piusplus I 681 551 49 4 complex examples, this is no longer the case, and an improvement
closed-z6z-plusplus 3465 2048 235 115 is noticed. The reason for this behaviour is that additional methods
average res. class 143818 9183 1010 573 jncrease the search space, so when there are only a few ways to ap-
averzgzgguspefh?fr??s'ie;ple S’i:g %g:g’ ig:g ;g ply methods in the case of simple theorems, this causes some over-
[average group theory (complex) ~ ~ - 1896 ~ - " 98 heads. In the case of complex examples, there are many more pos-

sible ways to apply methods, hence the presence of complex learnt
methods causes small or no overheads, or in fact, a reduced number

Residue class domain: In the domain of residue classes, we gave Of matchings _ .
our learning mechanism examples such that it learnt two new meth- 1h€ success of our approach is also evident from the fact, that
ods: tryanderror (as demonstrated in our running examples) andgwhen our learnt methods are not available to the planner, then it can-
choose The first two theorems in Table 1 (about associativity) andnOt Prove some complex theorems, i.e., dogerageof the system
the average for all theorems of a similar type that we tested, can udBat uses learnt methods is increased. When trying to apply methods
the tryanderror method, if it is available to the planner. It is clear SUCh as associativity left or right, for which the planner has no con-
from Table 1 that the number of candidate methods that the planndfe! knowledge about their application, it runs out of resources. Our
has to check if they can be applied in the proof (ireatchings is learnt m(_etho_ds, however, provide control over the way the methods
reduced by roughly a factor of six in the case where our newly learn'® applied in the proof, and enable a planner to generate a proof
methods are available. As expected, pineof lengthis much shorter ~ Plan. Again, theproof lengthis reduced by using learnt methods, as
when using newly learnt methods, since the learnt methods enca§XPected. o i
sulate a pattern in which a number of other methods are used in the On average, théme it took to prove theoreoms of reside classes
proof. In fact,tryanderrorcan in most cases prove the entire theorem. With the newly learnt methods was up to 50% shorter than without
The next two theorems (about the closed property) and the avesuch methods. For conjectures in set theory the proof search with
age of all theorems of a similar type, can use theosemethod. learnt methods was about 15% shorter. The search in group theory
choosecan only prove a subpart of a theorem, hence a number oiook approximately 100% longer than without the learnt methods.
other methods need to be used in additionttoosen order to prove The time results reflect in principle the behaviour of the proof search
the theorem. Hence, the proofs of this type are longer than the proof§€asured by methomhatchings but also contain the overhead due
of the former type (that usteyanderro, as is evident also from Ta- to the current implementation for the reuse of the learnt methods
ble 1. As expected, the improvement in the numbemattchings (see_§3)._l_:or example, the current proof situation is copied for the
reflects this, and is a factor of two on average. In general, the mor@PPlicability test of the learnt method, and the new open goals and

complicated the theorem, the better is the improvement made by tH/Potheses resulting from a successful application are copied back
availability of the learnt methods. into the original proof. This overhead could be reduced in later versions.

Table 1. Evaluation results.

Analysis: As it is evident from the discussion above, in general,
Set theory domain: A similar trend can be noticed in the case of {he ayailability of newly learnt methods that capture general patterns
set theory conjectures. We gave our learning mechanism examples reasoning improves the performance of the proof planner. In par-
from which it learnt one new method. This method consists of elim-tjcy|ar, the number ofnatchinggwhich are the most expensive part
inating the universal quantifiers, then transforming statements abou the proof search) is reduced across domains, as indicated in Ta-
sets to statement about elements of sets, and then proving (with thge 1. Furthermore, as expected, learnt methods cause proofs to be
Otter theorem prover) or disproving (with the Satchmo model genershorter, since they encapsulate a number of other methods. Also,
ator) these statements. Since all of the theorems on which we testgfetimeis in general reduced when using learnt methods. There are
our proof planner are of a similar type, we only give the average figsome overheads, and in some cases these are bigger than the im-
ures for the number ahatchingsandproof lengthin Table 1. Asin provements. Theime should be related to the reduced number of
the residue class case, there is a reduced numbematdhingsre- matchingsbut it is not in all our cases (group theory), this indicates
quired when a learnt method is available. This number is roughlythat our implementation of the execution of learnt methods, as de-
reduced by a factor of two. As expected, fiveof lengthis smaller scriped ing3, is not the most efficient, and can be improved.
when a planner can use our learnt method. In general, theoveragewhen using learnt methods is improved,

11 Note that assoc-z3z-times and closed-z3z-plusplus in Table 1 are our se¥thich is also indicated by the fact that using learnt metHodgGA
ond and first running example, respectively. can prove theorems that it can otherwise not prove.

The reason for the improvements described above is due to thieope is that ultimately, as the learning becomes more complex, the
fact that our learnt methods provide a structure according to whiclsystem will be able to find better or new proofs of theorems across a
the existing methods can be applied, and hence they direct searaiumber of problem domains.

This structure also gives a better explanation why certain methods There are several limitations of our approach that could be im-
are best applied in particular combinations. For example, the simpliproved in the future. Namely, the learning algorithm may overgener-
fication method for group theory examples indicates how the methalise, so we need to examine what are good heuristics for our general-
ods about associativity, inverse and identity should be combined tasation and how suboptimal solutions can be improved. In particular,

gether, rather than applied blindly in any possible combination.

we want to address the question how to deal with noise in the exam-

ples. In order to reduce unnecessary steps, the preconditions of the

5 Related work

Our approach to learning methods is related to techniques for lear
ing macro-operators, which was originally proposed for planning in
artificial intelligence [13, 9]. But within theorem proving and proo
planning related work is scarce. E.g., some work has been done
applying machine learning techniques to theorem proving, in par-

learnt methods would ideally be stronger. Currently, we use an appli-
r1:_&1bi|ity test to search if the preconditions of the method outline are
satisfied. In the future, preconditions should be learnt as well. Finally,
§ 0N order to model the human learning capability in theorem proving

ore adequately it would be necessary to model how humans intro-
c{cﬁuce new vocabulary for new (emerging) concepts.

ticular on improving the proof search [5, 14]. However, not much A demonstration of EARNQMATIC implementation can be found

work has concentrated on high level learning of structures of proo 9
and extending the reasoning primitives within an automated theoren]"
prover.

fOn the following web pagehttp://www.cs.bham.ac.uk/
mk/demos/LearnOmatic/
with

Further information, also
links to papers with more comprehensive references

Silver [15] and Desimone [4] used precondition analysis which®a@n be found on http://www.cs.bham.ac.uk/mmk/

learns new inference schemas by evaluating the pre- and postcon

Jrojects/MethodFormation/

tions of each inference step used in the proof. A dependency chaf:cknowledgements We would like to thank Alan Bundy, Predrag
between these pre- and postconditions is created, and constitutes t1€i¢, Achim Jung, and Stephen Muggleton for their helpful advice
pre- and postconditions of the newly learnt inference schema. The< our work, and Christoph BenZiiter, Andreas Meier, and Volker

schemas are syntactically complete proof steps, where&tmbeA

Sorge for their help with some of the implementation{IMEGA.

methods contain arbitrary function calls which cannot be determined is work was supported by EPSRC grant GR/M22031 and European

by just evaluating the syntax of the inference steps.

Kolbe, Walter, Melis and Whittle have done related work on the
use of analogy [11] and proof reuse [8, 7]. Their systems require
lot of reasoning with one example to reconstruct the features whichl1]
can then be used to prove a new example. The reconstruction effort
needs to be spent in every new example for which the old proof is to[2]
be reused. In contrast, we use several examples to learn a reasoning
pattern from them, and then with a simple application, without any 3]
reconstruction or additional reasoning, reuse the learnt proof methoé
in any number of relevant theorems.

In terms of a learning mechanism, more recent work on learning[4]
regular expressions, grammar inference and sequence learning [16]
is related. Learning regular expressions is equivalent to learning fi-
nite state automata, which are also recognisers for regular grammar$5]
Muggleton has done related work on grammatical inference method?ﬁl
[12]. The main difference to our work is that these techniques typi-
cally require a large number of examples in order to make a reliable
generalisation, or supervision or an oracle which confirms when new{7]
examples are representative of the inferred generalisation. Further-
more, these techniques only learn sequences. However, our langua
is larger than regular grammars as it includes constant repetitions o

expressions and expressions represented as trees. [l
Related is also the work on pattern matching in DNA sequence 0l

[2], as in the GENOME project, and some ideas on our learnin

mechanism have been inspired by this work.

6 Conclusion and future work [11]

In this paper we described a hybrid systeBARNQMATIC, whichis [12]

based on th€MEGA proof planning system enhanced by automatic
learning of new proof methods. This is an important advance in ad13]
dressing such a difficult problem, since it makes first steps in the
direction of enabling systems to better their own reasoning powef14]
Proof methods can be either engineered or learnt. Engineering is ex-
pensive, since every single new method has to be freshly engineeréa{sl
Hence, it is better to learn, whereby we have a general methodohﬁ]
ogy that enables the system to automatically learn new methods. The

Commission IHP Calculemus Project grant HPRN-CT-2000-00102.

REFERENCES

C. Benznilller, et al., QMEGA: Towards a mathematical assistant’, in
14th Conference on Automated Deductied., W. McCune, number
1249 in LNAI, pp. 252-255, (1997). Springer.

A. Brazma, ‘Learning regular expressions by pattern matching’, Tech-
nical Report TCU/CS/1994/1, Institute of Mathematics and Computer
Science, University of Latvia, (1994).

A. Bundy, ‘The use of explicit plans to guide inductive proofs’dth
Conference on Automated Deductj@us., E. Lusk and R. Overbeek,
number 310 in LNCS, pp. 111-120, (1988).

R.V. Desimone, ‘Learning control knowledge within an explanation-
based learning framework’, iRrogress in Machine Learning — Pro-
ceedings of 2nd European Working Session on Learning, EWSL-87
eds., |. Bratko and N. Lavia (1987). Sigma Press.

M. Fuchs and M. Fuchs, ‘Feature-based learning of search-guiding
heuristics for theorem provingAl Comm, 11, 175-189, (1998).

M. Jamnik, M. Kerber, M. Pollet, and C. Beniiter, ‘Automatic learn-

ing of proof methods in proof planning’, Technical Report CSRP-02-5,
School of Computer Science, University of Birmingham, UK, (2002).
T. Kolbe and J. Brauburger, iIRGIATOR — A Learning Prover’, in
14th Conference on Automated Deductied., W. McCune, number
1249 in LNAI, pp. 256-259, (1997). Springer.

T. Kolbe and C. Walther, ‘Reusing Proofs’, Proceedings of the 11th
ECAI ed., A. Cohn, 80-84, Wiley, (1994).

R.E. Korf, Learning to Solve Problems by Searching for Macro-
operators Pitman Publishing Ltd., 1985.

A. Meier and V. Sorge, ‘Exploring properties of residue classes’, in
Symbolic Calculation and Automated Reasoning: The Calculemus 2000
Symposiureds., M. Kerber and M. Kohlhase, pp. 175-190, (2001). A
K Peters.

E. Melis and J. Whittle, ‘Analogy in inductive theorem provinggur-

nal of Automated Reasoning2(2), (1998).

S. Muggleton, Acquisition of Expert KnowledgeAddison-Wesley,
1990.

D. Ruby and D.F. Kibler, ‘Learning subgoal sequences for planning’,
in Proceedings of the 11th IJCA&d., N.S. Sridharan, pp. 609-614,
(1989). International Joint Conference on Al, Morgan Kaufmann.

S. SchulzLearning Search Control Knowledge for Equational Deduc-
tion, Ph.D. dissertation, Fakaitf. Informatik, TU Minchen, 2000.

B. Silver, ‘Precondition analysis: Learning control information’Ma-
chine Learning 2eds., R.S. Michalski, et al, (1984). Tioga Press.

R. Sun and L. Giles, edsSequence Learning: Paradigms, Algorithms,
and Applicationsnumber 1828 in LNAI, 2000. Springer.

