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Abstract. We considerthe use of affine formulas,i.e., conjonc-
tions of linear equationamodulo2, for approximatingpropositional
knowledge.Theseformulasarevery closeto CNF formulas,andal-
low for efficient reasoning morewer, they canbe minimized effi-
ciently. We shaw thatthis classof formulasis identifiableand PAC-
learnablefrom examples thatan affine leastupperboundof arela-
tion canbecomputedn polynomialtime anda greatestower bound
with the maximumnumberof modelsin subexponentialtime. All
theseresultsare betterthan thosefor, e.g., Horn formulas, which
areoftenconsideredor representingr approximatingpropositional
knowledge.For all thesereasonsve aguethat affine formulasare
goodcandidategor approximatingoropositionaknowledge.

1 INTRODUCTION

Affine formulascorrespondo one of the only six classesof rela-
tionsfor which thegeneralizedatisfiabilityproblemis tractable9].
Theseformulasconsistin conjunctiongor, equivalently, systemspf
linearequationsnodulo2, andarevery closeto usualCNFformulas.
Indeed,in somesenseausualdisjunctioninsidethe clauseds simply
replacedwith additionmodulo2, andaswell as,e.g.,Horn formu-
las, affine formulasare stableunderconjunction.Intuitively, while
Horn clausesrepresentausalrelations,linear equationsrepresent
parity relationsbetweenvariableg(with, asa specialcase gquations
over only two variablesspecifyingeitherthatthey mustbe equalor
thatthey mustbe different). Moreover, mostof the notionsthatare
commonlyusedwith CNF formulas(suchasprime implicants/ates)
canbetransposedtraightforvardly to them.Finally, a greatdealof
reasoningasksthat are intractablewith generalCNF formulasare
tractablewith affine formulas: e.g.,satisfiabilityor deduction|t is
alsotrue of problemsthat areintractableeven with Horn formulas,
althoughtheseformulasareoften consideredor representingr ap-
proximatingknowledge: e.g.,countingof models,minimization.
Neverthelessnot mary authorshave studiedthis classof formu-
las; mainly Schaefef9], Kavvadias,Sideriand Stasropoulos[6, 8]
andZanuttiniandHébrard[12]. Moreover, noneof themhasreally
studiedthemasa candidatdor representingr approximatingoropo-
sitional knowvledge. We believe however that they are good candi-
datesfor approximationfor instancein the senseof [10] : givena
knowledgebase(KB), theideais to computesereralapproximations
of it with bettercomputationapropertiesandto uselatertheseap-
proximationsfor helpingto answemueriesthatareasledto it. Most
of thetime, theapproximationsvill givetheanswerso thesequeries,
andin casethey do not, sincethe approximationdave goodcompu-
tationalpropertiesonly a smallamountof time will have beenlost
andthe querywill be asleddirectly to the KB. Note alsothatsome
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KBs canberepresentedxactly by a formulawith goodproperties
in this case the formula cangive the answerto ary query To sum-
marize approximationganhelpsaving alot of timewhenanswering
querieg(for instancean anon-lineframenork), especiallyif they can
bereasoneavith efficiently andif their sizeis reasonable.

Notmary classesf formulassatisfythesaequirements-Hornfor-
mulas are often consideredior approximatingknowledge (seefor
instancg10]), but they have somelimits : e.g.,the shortesHorn ap-
proximationof a knowledgebasemay be exponentiallylarger than
its setof models,andsomeproblemsarenottractablewith Hornfor-
mulas: countingthe models,abductionminimization.. . Affine for-
mulassatisfy theserequirementgjuite better: on onehandthey all
canbemadevery small,which guaranteethatan affine approxima-
tion canalmostnever bebiggerthantheoriginal KB, andontheother
hand,they have very goodcomputationapropertiesor reasoning.

Wefocushereontheacquisitionof affine formulasfrom relations,
with acomputationapointof view ; in otherwords,we areinterested
in the compleity of computingaffine approximationof knowledge
basegepresentedssetsof vectors Wefirst presen{Section2) sev-
eral simpletechnicalresultsaboutvectorspaceghatwill be useful.
Thenwe consider(Section3) the identificationof an affine struc-
turein arelation[4], which correspond$o the specialcasewhenthe
knowledgebasecanbe represente@xactly by anaffine formula; it
is well-known thataffine formulasareidentifiable,but we recallthe
proof for sale of completenessThenwe study(Section4) the pro-
cessof approximatinga relationwith affine formulas[10] : we shav
that the affine leastupperboundof a relation can be computedin
polynomial time, and that an affine greatestower boundwith the
maximum numberof modelscan be computedin subeponential
time. Finally (Section5), we considerthe problemof PAC-learning
thesegformulas[11], which correspondso the casewhentherelation
is affine but the algorithmhasa limited accesdo it ; we shav that
affine formulasarePAC-learnabldrom examplesonly.

We wish to emphasizahattheseresultsarebetterthanthe corre-
spondingonesfor Hornformulas.Althoughthey arealsoidentifiable,
theproblemof approximatiorwith Hornformulasis intractable the
Horn leastupperbound of a relation may be exponentially larger
thanit, and computinga Horn greatestower boundwith the maxi-
mumnumberof modelsis NP-hard Finally, thequestionis still open
whetherHorn formulasare PAC-learnablefrom examples.We also
wish to emphasizénerethatwe considerthe classof affine formulas
mainlyfor approximatingpropositionaknowledge independentlyf
theknowledgethatthey canrepresenexactly.

2 PRELIMIN ARIES AND TECHNICAL TOOLS

Weassume countablexumberof propositionavariablese, z, . . ..
A linear equation(modulo2) is anequationof theform z;, & z;, ®



@z, =a,a € {0,1}, wherez;, @ --- @ z;, standdor z;, +
-+ + z;, (mod2). An affineformulais afinite conjunctionof linear
equations e.g.,theformula¢ :

(1 ®xsPra=1)A (22D 23 =0)

is affine. A n-placevectorm € {0, 1}", seerasa0/1 assignmenito
thevariablesz1, z2, ..., z,, is amodelof anaffine formula¢ over
the samevariables(written m |= ¢) if m satisfiesall the equations
of ¢. We denoteby m|[i] theith componendf m, andfor mi, ms €
{0, 1}", wewrite m; @ my for then-placevectorm suchthatVi =
1,...,n,m[i] = mi[i] ® ma[i].

A setof vectorsR C {0, 1}" is calledann-placerelation andan
n-placerelationR is saidaffineif it is the setof all the modelsof an
affine formula¢ overthevariablese1, 2, . .., 2, ; ¢ is thensaidto
describeR. Forinstancethe5-placerelationR :

{00010, 00011, 01100, 01101, 10000, 10001, 11110, 11111}

is affine andis describedby the formula ¢ above. The numberof
vectorsin arelationR is written | R|.

It is awell-known factthatthe satisfiabilityproblemis polynomial
for affine formulas[9] ; indeed, it corresponds$o decidingwhether
a given systemof equationgnodulo2 hasa solution,andthuscan
be solved by gaussiarelimination [3, Section8]?. Thusthis prob-
lem canbe solved in time O(k?n) for an affine formula of k¥ equa-
tionsover n variables Deductionof clausesi.e., the problemof de-
ciding ¢ = a whereg is an affine formulaanda is a clause(fi-
nite disjunctionof negatedand unneyatedvariables),is polynomial
too ; indeed,it correspondso decidingwhetherthe affine formula
&N Np,ea(@i = 0) A A, co(xi = 1) is unsatisfiablewhich
requirestime O((k + £)?n) for a clauseof length £. Minimizing
an affine formula or countingits modelscanalso be performedef-
ficiently by putting ¢ in echelonform [3, Section8], which again
requirestime O(k*n) with gaussiarelimination.

We now introducethe parallelthatwe will usebetweeraffine re-
lationsandvector spacesver the two-elementfield (vectorspaces
for short).For R arelationandm € R, let R,, denotetherelation
{p@®m, u € R} ;for ¢ anaffineformulaandm |= ¢, let ¢,, denote
the affine formula obtainedfrom ¢ by replacingz; with z; & 1 for
every i suchthatml[i] = 1, andsimplifying. Let usfirst remarkthat
for all R,m, ¢, (Rm)m = R and(¢m)m = ¢. Now supposehat
R is affine andthat ¢ describest. Thenfor ary modelm of ¢ (i.e.,
for arny m € R), it is easily seenthat ¢,, describesR,,, andthat
R,, is avectorspace corversely if R is arelationsuchthatfor ary
m € R, Ry, isavectorspacethenR is affine (se€[3, Theorems.9
and9.1]). This correspondencallows usto usethe usualnotionsof
linearalgebraandespeciallythe notion of basisof a vectorspace.

Letusfirstrecallthatthecardinalityof avectorspaceoverthetwo-
elemenfield is alwaysapower of 2. A basisB of avectorspaceV is
asetof log, |V'| vectorsof V' thatarelinearlyindependent,e., such
thatnoneis alinearcombinatiorof theothers,andthatgeneratd” in
thesensehattheir linearcombinationsareall andonly the elements
of V' ; let us alsorecall that two different linear combinationsof
linearly independentectorsgive two differentvectors(whichyields
[V| = 2!Bl). For moredetailswe referthereadetto [3].

Example1l We go on with the relation R above SinceR is affine
and01100 € R, therelation Ro1100 :

{00000, 00001, 01110, 01111, 10010, 10011, 11100, 11101}

2 Most of theresultswe will usefrom [3] aregivenfor equationswith realor
comple coeficients and unknavns, but canbe appliedstraightforvardly
to our framework with the sameproofs.

is a vectorspace andits subset{00001, 01110, 10010} is oneof its
bases.

We endthis sectionby giving four simple compleity resultscon-
cerningbasesndlinearlyindependensetsof vectors Therestof the
paperusesno resultfrom linear algebrabut theseones.The proofs
aregivenin appendix.

Propositionl Let B C {0,1}" and m € {0,1}". Deciding
whetherB is a setof linearly independentectos, or whetherm
is linearly independentrom B canbe performedn time O(| B|*n).

Proposition2 Givena relation R over n variables,finding a lin-
early independensubsetof R that is maximalfor setinclusionre-
quirestime O(|R|n?).

Proposition3 Given a basis B of a vectorspaceV C {0,1}",
computingan affine formula ¢ describingV" requirestime O(n*),
and¢ containsat mostn equations.

Proposition4 Givenann-placerelation R anda linearly indepen-
dentsetof vectos B C R, decidingwhetherthe vector spaceV’
geneatedby B is includedin R requirestime O(|R|n).

3 IDENTIFICA TION

The problemof structue identificationwas formalizedby Dechter
and Pearl[4]. It consistsin somekind of knowledge compilation,
whereaformulais searchedvith requiredpropertiesandthatadmits
a givensetof models.In our framework, it correspondso checking
whethersomeknowledgegiven asa relationcanbe representeéx-

actly by anaffine formulabeforetrying to approximateit by sucha
formula.ldentifying anaffine structuren arelation R meansliscov-

eringthat R is affine, andcomputinganaffine formula¢ describing
it.

It is well-known from linear algebra(seealso([9, 6]) that affine
structuresare identifiable i.e., that there exists an algorithm that,
given a relation R, caneitherfind out that R is the setof models
of no affine formulaoverthe samevariablesor give sucha formula,
in time polynomialin the sizeof R.

Thealgorithmis thefollowing. Wefirst transformtheprobleminto
one of vectorspacespy choosingary m € R andcomputingthe
relationR,,,. Theproblemhasnow becomethatof decidingwhether
R,, is avectorspace Thenwe computea subsetB,, of R, thatis
linearly independenandmaximalfor setinclusion(Proposition2) ;
we know by maximalityof By, thatall thevectorsin R,,, arelinearly
dependenfrom B,,, i.e., that R,, is includedin the vector space
generatecby B,,. Thusif |R,,| = 2/®/ we canconcludethat
R, is exactly this vector spaceandwe cancomputefrom B,, an
affine formula¢,, describingR,,, (Proposition3) ; theformula¢ =
(¢m)m Will describg R, )m = R. Otherwisejf |R,| # 25!, we
canconcludethat R, is notavectorspacej.e.,thatR is notaffine.

Proposition 5 (identification) Affine structues are identifiablein
time O(|R|n® + n*), whee R is the relation and n the numberof
variables.

Proof. ComputingR,, from R requirestime O(|R|n), computing
B, O(|R|n®) (Proposition2), computing ¢., from B,,, O(n*)
(Proposition3) andfinally, computing¢ requirestime O(|¢m|) C
O(n?).0

For sale of completenessye alsomentiontheapproachn [12] for
proving theidentifiability of affine structures this approachexhibits
andusesa syntacticlink betweenusual CNFs and affine formulas
insteadof resultsfrom linearalgebra.



4 APPROXIMA TION

We now turn our attentionto the problemof approximationitself.
Approximatinga relation R by an affine formula meanscomputing
anaffine formula¢ whosesetof modelsis ascloseaspossibleto R ;
thusthis procesgakesplacenaturallywhenR cannotberepresented
exactly by an affine formula. Many measureof closenessan be
consideredbut we will focusonthetwo notionsexploredby Selman
andKautzin [10].

Thefirstway we canapproximateR is by findinganaffineformula
od1up Whosesetof modelsR;,, is asupersebf R, but minimalfor set
inclusion.Theng;,; is calledanaffine leastupperbound(LUB) of
R [10, 4]. Thesecondhotionis dualto this one: we now searchor
anaffine formula¢g:, whosesetof modelsRg;, is asubsebf R, but
maximalfor setinclusion.The formula ¢, is thencalledanaffine
greatestiower bound (GLB) of R [10]. Remarkthatif R is affine,
thendi.s ande,i, bothdescribeit.

Example 2 (continued) We considerthe non-afine relation R =
{00011, 01101, 10000, 11110, 11111}. It is easily seenthat ¢ =
(x1 ® x3 B x4 = 1) A (x2 @ 3 = 0) is its (unique)affine LUB
(with 8 models) andthattheformula¢g A (z3 @ x4 ® x5 = 0) isits
affine GLB with the maximurmumberof models(4).

SelmanandKautz suggesto usetheseboundsin thefollowing man-
ner If R is aknowledgebasestoreit aswell asanaffine LUB ¢;.
andanaffine GLB ¢, of it. WhenR is asled a deductve querya,
i.e., whenit mustbe decidedR = a whereq is a clause first de-
cide¢ius = a:if theansweris positive, thenconcludeR = a. On
the otherhand, if the answeris negative, thendecideggi,, |= o : if
the answeris negative, thenyou canconcludeR [~ «. In caseit is
positive, thenyou mustqueryR itself. In the caseof affine (or Horn)
approximationssincedeductionis tractable eitherthe answerwill
have beenfound quickly with the boundsor only a smallamountof
time will have beenlost, underthe conditionthatthe sizeof the ap-
proximationis comparableo or lessthanthesizeof R ; but we have
seenthat, contraryto Horn formulas,affine formulascanalwaysbe
madevery small.

We studyherethesetwo notionsof approximatiorwith affine for-
mulas.

4.1 Affine LUBs

We first consideraffine LUBs of relations.Let R bearelation.Once
againwe transformthe problemof computingan affine LUB of R
into a problemof vectorspacesby choosingm € R andconsider
ing therelation R,,,. Since R, is avectorspacef andonly if R is
affine, we considetheclosureV,,, of R,, underlinearcombinations,
i.e., the uniguesmallestvectorspaceincluding R,,, andthe associ-
atedaffinerelationV = (Vi)m. It is easilyseenthat V' is uniquely
defined(whateverm € R hasbeenchosenjyndis thesmallestaffine
relationincluding R. It followsthattheaffine LUB ¢, of arelation
R is uniqueup to logical equivalence,andthatits setof modelsis
exactly V' (seealso[9, 6]).

Now we mustcomputeanaffine formula¢,, describingV;,,, given
therelation R,,, ; we will thensetgi,o = (ém)m. Theideais the
sameasfor identification: computea basisB,,, of V,,,, andthenuse
Proposition3 for computing¢,,. But we have seenthatV,,, is the
closureof R,, underlinearcombinationandthusary maximal(for
setinclusion) linearly independensubsetof R,, is a basisof V;,.
Finally, we getthefollowing result.

Proposition 6 (LUB) Let R be a n-placerelation. Theaffine LUB
s Of R is uniqueup to logical equivalenceand canbe computed
in time O(|R|n® + n*).

Proof. We mustfirst choosemm € R andcomputeR,,, in time

O(|R|n). Thenwe mustcomputea maximal linearly independent
subsetB,, of R.,, in time O(|R|n®) (Proposition2). Finally, we

mustcomputeg,, from B, andsetgi,, = (¢pm)m, Whichrequires
time O(n*) (Proposition3). O

4.2 Affine GLBs

Contraryto the caseof LUBs, the affine GLB of a relationis not
uniqueupto logical equivalencein generalandthereis evennorea-
sonfor two affine GLBs of arelationto have the samesize.Whatis
mostinterestingthenis to searchfor anaffine GLB ¢maz—gis With
themaximumnumberf modelsover all affine GLBs. Theassociated
decisionproblemis NP-hardfor Horn GLBs (see[7]), but we shav
herethatthereexists a subexponentialalgorithmfor the affine case;
remarkthat while NP-hardproblemscanbe consideredntractable,
sube&ponentialalgorithmscanstayreasonablén practice.

We still work with therelation R, for agivenm € R. Whatwe
mustdois find avectorspacéy,,, includedin R,,, andwith maximum
cardinality and thento computean affine formula ¢,, describing
Vi ; wewill thensetpmaz—giv = (dm)m . We proceeddy searching
the maximalk for which thereexists & linearly independentectors
mi,...,my € R, thatgeneratavectorspacéy,, includedin R,,.
Sincek canonly rangebetweenl andlog, |R..| = log, | R|, we get
asubeponentialalgorithm.

Proposition 7 (maximum GLB) Let R be an n-placerelation. An
affine GLB @rmaz—g1s Of R with themaximurmumberof modelscan

becomputedn time O(| R|n(log log | R]) 28 IED*).

Proof. We searchthe maximal k£ by dichotomy Begin with &k =
log |R|/2. For agiven k, computeall the (%=1} subsetof R, of
k vectors,andfor eachoneof them,testwhetherit is linearly inde-
penden(in time O(k*n) with Propositionl) andwhetherthe vector
spacét is abasisfor is includedin R, (in time O(|R|n) with Propo-
sition4). If it is thecasefor atleastonesubsebdf sizek, thenincrease
k (by dichotomy)andgoon, otherwisedecreas& andgoon.Finally,
sincek is alwaysboundedby log, | R|, at mostlog, log, | R| differ-
entk’swill have beentried, andwe getthetime compleity

|R|
log 1
O((log log | R]) x <log|R|

) x ((log |R|)*n + | Rn))

which is lessthan O((log log |R|)|R|los |R| (IR|n)), which in tumn
equalsO(| R|n(log log | R[)20°8 1ED?*). O

5 PAC-LEARNING

We finally turn our attentionto the problemof learning affine for-
mulasfrom examples.The main differencewith the otherproblems
consideredso far is that the algorithm hasnot accesso the entire
relation R. It mustcomputean affine approximatiorof anaffine re-
lation R by askingasfew informationsaspossibleaboutR. Never-
theless|earningis arathernaturalextensionof approximationsince
it correspondsn somesenseto introducinga dynamicalaspectin
it : thealgorithmis supposedo improve its resultwhenit is allowed
moretime for askinginformationsaboutR.



We considerherethe PAC-learningframewvork of Valiant[11, 1],
with examplesonly. In this framework, we wish an algorithmto be
ableto computea function¢ of n variableg(in our contet, anaffine
formula) by askingonly a polynomialnumberof vectorsof anaffine
relation R, suchthat ¢ approximatesvith high probability the rela-
tion R ratherclosely(ProbablyApproximatelyCorrectlearning).

More precisely an affine n-placerelation R is given, aswell as
anerrorparametee. Thealgorithmmustcomputean affine formula
¢ overthevariablesey, . . ., £, suchthat¢ approximatesk with an
error controlledby e ; we will authorizehereonly one-sidecerrors,
i.e.,themodelsof ¢ mustform asubsebf R. At ary time, thealgo-
rithm canaskavectorm € R to anoracle,but the numberof these
callsmustbe polynomialin n ande, aswell asthework performed
with eachvectorf. Notethatin a first time we assumehatthe algo-
rithm knows n, while thisis notthe casein Valiant’s framework, but
we will seeattheendof thesectionhow to dealwith this problem.

To beasgeneralaspossible a probability distribution D over the
vectorsm € R is fixed,for two purposes (i) whenasledavectorof
R, theoracleoutputsm € R with probability D(m), independently
of the previously outputvectors(ii) the error correspondingo the
affine formula ¢ computedby the algorithmis definedas E(¢) =
> mer,mze P(m), andé is saidto be a correct appioximationof
Rif E(p) <1/e.

Finally, the classof affine formulaswill be said PAC-learnable
fromexamplesonlyif thereexistsanalgorithmthat,for afixedaffine
n-placerelation R andarealnumbere, cancomputen time polyno-
mial in n ande, andwith a polynomialnumberof callsto theoracle,
anaffine formula¢ thatwith probabilityatleastl — 1 /¢ is acorrect
approximatiorof R. We exhibit heresuchanalgorithnf.

The idealis first to treat R as R,,, wherem is the first vector
obtainedfrom the oracle,i.e., to replaceeachobtainedvectory with
1 @ m ; onceagainthis is donefor tranformingthe probleminto
oneof vectorspacesThe ideais thento obtaina certainnumberof
vectorsof R,, from the oracleandto maintaina maximallinearly
independensubsetB,,, of them.When enoughvectorshave been
asled, thealgorithmcancomputeanaffine formulag,, from thisset
(Propositior8) andoutputé = (¢ )m ; SinceB,, C R,, andR,, is
closedunderlinearcombinationthe modelsof ¢.,, will alwaysform
asubsebf R,,, asrequired.

Thepointis thatonly a polynomialnumberof vectorsareneeded
for ¢, to bewith high probability a correctapproximatiorof R,,,.
To shaw this, we will usethe function L(e, n) definedin [11] ; the
valueL = L(e, n) is thesmallesintegersuchthatin L independent
Bernoullitrials T, . . . , Tt eachwith probability P; > 1/e of suc-
cesg(the P;’s beingnot necessarilyequal) the probability of having
atleastn successess atleastl — 1/e. ValiantshavsthatL(e, n) is
almostlinearin £ andn (morepreciselyVn > 1,Ve > 1, L(e, n) <
2e(n + log, €)). We shav belav that L(e, n) vectorsof R, are
enoughfor ¢,, to becorrect.

Proposition 8 (PAC-learning) Theclassof affineformulasis PAC-
learnablefrom L(e, n) exampleswheee is theerror parameterand
n the numberof variablesinvolved.

Proof. We have to shaw thatif the algorithmpresentedabove has
obtainedL (e, n) vectors(remindthateachvectory is replacedwith

3 In the framework of [11], the runningtime canalsobe polynomialin the
sizeof the shortestffine descriptionof R, butit will beuselessere.

4 Following [11] andfor sale of simplicity, we useonly one parametei
for boundingboth the probability of succes®f the algorithmandthe cor
rectnesf ¢ ; but two parameters; andes could be usedwith the same
complity results.

© @& m, wherem is the first vector obtained)and kept a maximal
linearly independensubsetB,,, of them,thenanaffine formula¢,,
describinghevectorspacegeneratedby B,, is acorrectapproxima-
tion of R,,. We have seenthatthe setof modelsof ¢,, is a subset
of R,,, asrequired.Now we have to shav thatwith probability at
leastl —1/e, E(¢) < 1/e. WethusconsidettheeventE(¢) > 1/,
andshaw thatits probability is lessthan1/e. For this purposewe
associatdo eachcall to the oraclea trial T3, which is considered
a successf andonly if the vectorobtainedis linearly independent
from the currentindependensetof vectorsB,, maintainedby the
algorithm.SinceB,,, canonly increaseduringthe processthe prob-
ability P; of succes®f T; is alwaysat leastE(¢). Now sincethere
arek < n linearlyindependentectorsin R,, and¢,, is hotcorrect
(E(¢) > 1/e), the algorithm hasobtainedlessthank successes
finally, sincethe calls to the oracleareindependenBernoulli trials
and L(e,n)(> L(e, k)) suchcalls have beenmade,the definition
of L(g, k) guaranteethatthis canhapperwith probability lessthan
1/e. Thusthelearningalgorithmis correct.To completethe proof,
it suficesto remarkthatthe work performedby the algorithmwith
eachvector requiresonly polynomialtime, sinceit correspondso
decidingthe linearindependencef a vectorm from the currentset
B, and|B,,| < n; thusPropositionl concludesO

To concludethe sectionwe considerthe casewhenthealgorithm
doesnot know in advancethe numberof variableson which there-
lation R is built. Thenthe vectorsoutputby the oraclearebuilt on
t > n variablesput arenot necessarilyotal ; in casea partialvector
m IS output,it meansthat all total vectorsmatchingm matchone
vectorin R. Butit is easilyshavn thatif R really depend®navari-
ablez; andis affine, thenall partialvectorslik e abore mustassigra
valueto z;, sincea modelassigninga to z; cannotbe a modelary
moreif thevalueof z; becomes ; indeed|f {z, z;,,...,z;, } sat-
isfiesalinearequationdependingnz;, {T =z ® 1, zs,, - .., T4, }
necessarilfalsifiesit. Thusthe algorithmneedsonly take into ac-
countthe variablesthat are definedin all the vectorsoutputby the
oracle andtheresultstaysthesame(with L(e, t) callsto theoracle).

6 CONCLUSION

We have presentediffine formulasasgood candidatesor approxi-
matingpropositionaknowledge.Indeedwe have seerthatthesefor-
mulasadmitvery goodcomputationapropertiesor reasoningasks
(in particularsatisfiability deduction,countingof models)and are
guaranteedo be very short: their sizecanalwaysbe minimizedef-
ficiently to O(n”), wheren is the numberof variablesinvolved.

Thenwe have shavn that theseformulascan easily be acquired
from examples.Indeed,this classis identifiable which meansthat
given a relation R, an affine formula ¢ with R asits setof mod-
els canbe computed;f it exists,in polynomialtime. Whensucha
formuladoesnotexist, anaffine leastupperboundof R canbecom-
putedwith roughly the samealgorithm,andanaffine greatestiower
boundof R with the maximalnumberof modelscanbecomputedn
sube&ponentiattime. Finally, we have shavn thataffine formulasare
PAC-learnablefrom examplesonly.

We have arguedthatall theseresultsmadeaffine formulasanin-
terestingclassfor approximatingknowledge,by comparingthemto
the correspondingnesfor Horn formulas,which are often consid-
eredfor representingr approximatingoropositionaknowledge.In-
deed,Horn formulasareidentifiableaswell asaffine formulasand
with a comparablgime compleity [4, 12] ; on the otherhand,the
Horn LUB of arelationcanbe exponentiallybiggerthanit [5, The-
orem6] while the affine LUB of arelationcanalwaysbe computed



in polynomialtime, and computinga Horn GLB of a relationwith

the maximumnumberof modelsis a NP-hardproblem[7], while it

is only subexponentiaffor affine formulas.Then,affine formulasare
PAC-learnablefrom examplesonly while the problemis still open
for Horn formulas; [2] only gives an algorithmfor learningHorn

formulaswith accesso anequialenceoracle All theseresultsshav

thatacquisitionof affine formulasfrom examplesis in generaleas-
ier thanacquisitionof Horn formulas.But we also emphasizehat
workingwith affine formulasis alsoeasielin generathanwith Horn

formulas. For instance mininmizing or countingthe modelsof an
affine formulais polynomial,while it is intractablewith Horn. In a
forthcomingpaperwe studymoredeeplythepropertieof affine for-

mulasfor reasoningaswell astheirsemanticsi.e.,thenaturalpieces
of knaowledgethatthey canreally represent.
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APPENDIX
We give herethe proofsof the propositionggivenin Section2.

Propositionl Let B C {0,1}" andm € {0,1}". Deciding
whetherB is a setof linearly independentectos, or whetherm
is linearly independentrom B canbe performedn time O(| B|*n).

Proof. Forthefirst point, transformB into a setof non-zerovectors
B' in echelorform with gaussiarelimination,in time O(| B|?n), and
checkwhether|B’| = |B| [3, Theorem6.16]. For the secondpoint,
still transformB into B', thentransformB’ U {m} into asetB” in
echelorform, andcheckwhetherlB”| = |B'|. O

Proposition2 Givena relation R over n variables,finding a lin-
early independensubsetf R that is maximalfor setinclusionre-
quirestime O(|R|n?).

Proof. ThesubsetB of R is built stepby step.Firstinitialize it with
ary vectormg € R notidentically0. During the processpick ary
vectorm € R notyetin B, andcheckwhetherit is linearlyindepen-
dentfrom B (Propositionl). If yes,addit to B, otherwiseeliminate
it from R. Sincetherecannotbe morethann linearly independent
vectorsin {0,1}" [3, Theorem5.1], the numberof vectorsin B can
never exceedn, andeachvectorof R is considerednly once yield-
ing thetime compleity O(|R||B|?n) C O(|R|»®).0O

Proposition3 Given a basis B of a vectorspaceV C {0,1}",
computingan affine formula ¢ describingV’ requirestime O(n*),
and¢ containsat mostn equations.

Proof. First completethe basisB = {mi,...,m} with n — k
vectorsms,...,mn € {0,1}" suchthat{m.,...,m,} is abasis
for the vectorspace{0, 1}™ ; this canbe donein time O(|B|*n +
n?) C O(n®) by putting B in echelonform. Then associatethe
linearequationE; = (B,_, ,cijzi = 0)tom; forj =k +
1,...,n, wherethe ¢;;'s are uniquely determinedfor a given j €
{k+1,...,n} bythesystem

([ ma[l] ¢y & - @& man] ey = 0
mi—1[l] ¢y & - @& mjoaln] ;= 0

Si=q mill] a; & - @ miln] ey = 1
mital] ey & - @ mypln] ey = 0

{ ma[l] ey & -+ @ man] cy = 0

Thenthe affine formula¢ = A’_, ., E; describesV. Indeed,by
constructiorof S;, fors = 1,..., k, m; satisfiesE;, thuseverylin-
earcombinationof {m, ..., m} satisfiesevery E;, thusV isin-
cludedin the setof modelsof ¢. Onthe otherhand,if m € {0,1}"
is notin V, thenit is the linear combinationof somevectorsof
{m1,...,m,}, amongwhich at leastone m; with j > k ; write
m=m; ® @flzl m;, ; then

n n £
Peimli] = @ eis(msli] © P manlil)
i=1 =1 h=1
n A n
= @Cz’jmz‘ [i] & ED(EP ciymin 1)

h=1 i=1
Since@]_, cijms, [i] = 0 for all h and @], cijm;[i] = 1 (by
constructiorof S;), we get@"_, ci;mli] = 1, i.e.,m doesnotsat-
isfy E;, andthusdoesnot satisfy¢. Therearen — k systemsS; to
solve, eachonein time O(n®) with gaussiarelimination (n equa-
tionsandn unknavns),thusthetotaltime compleity of theprocess
isO((n — k)n3) C (n*).O

Proposition4 Givenann-placerelation R anda linearly indepen-
dentsetof vectos B C R, decidingwhetherthe vector spaceV’
geneatedby B is includedin R requirestime O(|R|n).

Proof. It suficesto generatall the linear combinationsof vectors
of B, andto answerno’ assoonasoneis notin R, or'yes’ if all are
in R. Sincetwo differentlinearcombination®f linearlyindependent
vectorsaredifferent,eachvectorof R canbefoundatmostonce and
decidingm € R requiresime O(n) if R is sorted(in time O(|R|n)
with aradix sort), which completeghe proof. ]



