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Abstract. We considerthe useof affine formulas,i.e., conjonc-
tionsof linearequationsmodulo � , for approximatingpropositional
knowledge.Theseformulasarevery closeto CNF formulas,andal-
low for efficient reasoning; moreover, they canbe minimizedeffi-
ciently. We show thatthis classof formulasis identifiableandPAC-
learnablefrom examples,thatanaffine leastupperboundof a rela-
tion canbecomputedin polynomialtimeandagreatestlowerbound
with the maximumnumberof modelsin subexponentialtime. All
theseresultsare better than thosefor, e.g., Horn formulas,which
areoftenconsideredfor representingor approximatingpropositional
knowledge.For all thesereasonswe arguethat affine formulasare
goodcandidatesfor approximatingpropositionalknowledge.

1 INTR ODUCTION

Affine formulascorrespondto one of the only six classesof rela-
tionsfor which thegeneralizedsatisfiabilityproblemis tractable[9].
Theseformulasconsistin conjunctions(or, equivalently, systems)of
linearequationsmodulo � , andareverycloseto usualCNFformulas.
Indeed,in somesenseusualdisjunctioninsidetheclausesis simply
replacedwith additionmodulo � , andaswell as,e.g.,Horn formu-
las, affine formulasarestableunderconjunction.Intuitively, while
Horn clausesrepresentcausalrelations,linear equationsrepresent
parity relationsbetweenvariables(with, asa specialcase,equations
over only two variablesspecifyingeitherthat they mustbeequalor
that they mustbe different).Moreover, mostof the notionsthatare
commonlyusedwith CNF formulas(suchasprime implicants/ates)
canbetransposedstraightforwardly to them.Finally, a greatdealof
reasoningtasksthat are intractablewith generalCNF formulasare
tractablewith affine formulas: e.g.,satisfiabilityor deduction.It is
alsotrue of problemsthat areintractableeven with Horn formulas,
althoughtheseformulasareoftenconsideredfor representingor ap-
proximatingknowledge: e.g.,countingof models,minimization.

Nevertheless,not many authorshave studiedthis classof formu-
las ; mainly Schaefer[9], Kavvadias,SideriandStavropoulos[6, 8]
andZanuttini andHébrard[12]. Moreover, noneof themhasreally
studiedthemasacandidatefor representingor approximatingpropo-
sitional knowledge.We believe however that they are good candi-
datesfor approximation,for instancein the senseof [10] : given a
knowledgebase(KB), theideais to computeseveralapproximations
of it with bettercomputationalproperties,andto uselater theseap-
proximationsfor helpingto answerqueriesthatareaskedto it. Most
of thetime,theapproximationswill givetheanswersto thesequeries,
andin casethey donot,sincetheapproximationshave goodcompu-
tationalproperties,only a small amountof time will have beenlost
andthequerywill beaskeddirectly to theKB. Notealsothatsome�
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KBs canberepresentedexactlyby a formulawith goodproperties;
in this case,the formulacangive theanswerto any query. To sum-
marize,approximationscanhelpsaving alot of timewhenanswering
queries(for instancein anon-lineframework), especiallyif they can
bereasonedwith efficiently andif their sizeis reasonable.

Notmany classesof formulassatisfytheserequirements.Hornfor-
mulasare often consideredfor approximatingknowledge (seefor
instance[10]), but they have somelimits : e.g.,theshortestHornap-
proximationof a knowledgebasemay be exponentiallylarger than
its setof models,andsomeproblemsarenot tractablewith Horn for-
mulas: countingthemodels,abduction,minimization.. .Affine for-
mulassatisfytheserequirementsquitebetter: on onehandthey all
canbemadevery small,which guaranteesthatanaffine approxima-
tion canalmostneverbebiggerthantheoriginalKB, andontheother
hand,they have verygoodcomputationalpropertiesfor reasoning.

Wefocushereontheacquisitionof affineformulasfrom relations,
with acomputationalpointof view ; in otherwords,weareinterested
in thecomplexity of computingaffine approximationsof knowledge
basesrepresentedassetsof vectors.Wefirst present(Section2) sev-
eralsimpletechnicalresultsaboutvectorspacesthatwill beuseful.
Then we consider(Section3) the identificationof an affine struc-
turein a relation[4], whichcorrespondsto thespecialcasewhenthe
knowledgebasecanberepresentedexactly by anaffine formula ; it
is well-known thataffine formulasareidentifiable,but we recall the
proof for sake of completeness.Thenwe study(Section4) thepro-
cessof approximatinga relationwith affine formulas[10] : weshow
that the affine leastupperboundof a relationcan be computedin
polynomial time, and that an affine greatestlower boundwith the
maximum numberof modelscan be computedin subexponential
time. Finally (Section5), we considertheproblemof PAC-learning
theseformulas[11], whichcorrespondsto thecasewhentherelation
is affine but the algorithmhasa limited accessto it ; we show that
affine formulasarePAC-learnablefrom examplesonly.

We wish to emphasizethat theseresultsarebetterthanthecorre-
spondingonesfor Hornformulas.Althoughthey arealsoidentifiable,
theproblemof approximationwith Horn formulasis intractable: the
Horn leastupperboundof a relation may be exponentially larger
thanit, andcomputinga Horn greatestlower boundwith the maxi-
mumnumberof modelsis NP-hard.Finally, thequestionis still open
whetherHorn formulasarePAC-learnablefrom examples.We also
wish to emphasizeherethatwe considertheclassof affine formulas
mainlyfor approximatingpropositionalknowledge,independentlyof
theknowledgethatthey canrepresentexactly.

2 PRELIMIN ARIES AND TECHNICAL TOOLS

Weassumeacountablenumberof propositionalvariables� ��� ��� �	����� .
A linear equation(modulo � ) is anequationof theform ��
������
����



����� ��� 
������ , ����� � �"!$# , where� 
%� � ����� �&� 
�� standsfor � 
�('����� ' ��
 � (mod � ). An affineformula is a finite conjunctionof linear
equations; e.g.,theformula ) :* � � �+��,-�+��. � ! /10 * ���2���3, �4� /
is affine.A 5 -placevector 6 �7� � ��! #$8 , seenasa �:9 ! assignmentto
thevariables� � � � � ���	����� � 8 , is a modelof anaffine formula ) over
thesamevariables(written 6<; � ) ) if 6 satisfiesall theequations
of ) . We denoteby 6�= >@? the > th componentof 6 , andfor 6 ��� 6A� ��$� �"!$#$8 , wewrite 6 � �B6 � for the 5 -placevector 6 suchthat C3> �!:���"�	��� 5 � 6B= >D? � 6 � = >D?E�F6A�:= >D? .

A setof vectorsGIH � � �"!$# 8 is calledan 5 -placerelation, andan5 -placerelation G is saidaffine if it is thesetof all themodelsof an
affine formula ) over thevariables� � � � � ���"����� � 8 ; ) is thensaidto
describeG . For instance,the J -placerelation G :�$�K�:� ! � � �:�K� !:!K� � !:! �:� � � !:! � !:� ! �:�:�K� � ! �K�:� !:� !:!K!:! � �K!K!:!K!:!$#
is affine and is describedby the formula ) above. The numberof
vectorsin a relation G is written ; GL; .

It is awell-known factthatthesatisfiabilityproblemis polynomial
for affine formulas[9] ; indeed,it correspondsto decidingwhether
a given systemof equationsmodulo � hasa solution,andthuscan
be solved by gaussianelimination [3, Section8]2. Thus this prob-
lem canbesolved in time M *@N � 5 / for anaffine formula of

N
equa-

tionsover 5 variables.Deductionof clauses,i.e., theproblemof de-
ciding )O; �QP where ) is an affine formula and P is a clause(fi-
nite disjunctionof negatedandunnegatedvariables),is polynomial
too ; indeed,it correspondsto decidingwhetherthe affine formula) 0&RTS"UWVKX * ��
 �Y� /Z0�RL[\S"U]V:X * ��
 � !"/ is unsatisfiable,which

requirestime M *W*@N '_^ / � 5 / for a clauseof length ^ . Minimizing
an affine formula or countingits modelscanalsobe performedef-
ficiently by putting ) in echelon form [3, Section8], which again
requirestime M *@N � 5 / with gaussianelimination.

We now introducetheparallelthatwe will usebetweenaffine re-
lationsandvectorspacesover the two-elementfield (vectorspaces
for short).For G a relationand 6 � G , let Ga` denotethe relation�"b ��6 � bB� G # ; for ) anaffineformulaand 6Q; � ) , let ) ` denote
theaffine formula obtainedfrom ) by replacing�3
 with ��
1� ! for
every > suchthat 6B= >D? � ! , andsimplifying. Let usfirst remarkthat
for all G � 6 � ) ,

* G ` / ` � G and
* ) ` / ` � ) . Now supposethatG is affine andthat ) describesit. Thenfor any model 6 of ) (i.e.,

for any 6 � G ), it is easily seenthat ) ` describesG ` and thatGa` is avectorspace; conversely, if G is a relationsuchthatfor any6 � G , G ` is avectorspace,then G is affine (see[3, Theorems8.9
and9.1]). This correspondenceallows usto usetheusualnotionsof
linearalgebra,andespeciallythenotionof basisof a vectorspace.

Letusfirst recallthatthecardinalityof avectorspaceoverthetwo-
elementfield is alwaysapowerof � . A basisc of avectorspaced is
asetof e�fKg � ; dh; vectorsof d thatarelinearly independent,i.e.,such
thatnoneis alinearcombinationof theothers,andthatgenerated in
thesensethattheir linearcombinationsareall andonly theelements
of d ; let us also recall that two different linear combinationsof
linearly independentvectorsgive two differentvectors(whichyields; di; � �\j k-j ). For moredetailswe referthereaderto [3].

Example1 We go on with the relation G above. Since G is affine
and � !:! �:�L� G , therelation Gal �W� lWl :�$�K�:�:�K� � �:�K�:� !K� � !:!K! � � � !:!K!:!:� ! �:� ! � � ! �K� !K!:� !:!K! �:� �K!K!:! � !$#� Mostof theresultswewill usefrom [3] aregivenfor equationswith realor

complex coefficients andunknowns, but canbe appliedstraightforwardly
to our framework with thesameproofs.

is a vectorspace, andits subset� �:�:�K� !K� � !:!K! � � ! �:� ! � # is oneof its
bases.

We end this sectionby giving four simplecomplexity resultscon-
cerningbasesandlinearly independentsetsof vectors.Therestof the
paperusesno result from linear algebrabut theseones.The proofs
aregivenin appendix.

Proposition1 Let cmH �$� �"!$# 8 and 6 �n�$� �"!$# 8 . Deciding
whether c is a set of linearly independentvectors, or whether 6
is linearly independentfrom c canbeperformedin time M * ; ci; � 5 / .
Proposition2 Given a relation G over 5 variables,finding a lin-
early independentsubsetof G that is maximalfor set inclusionre-
quirestime M * ; GL; 5 , / .
Proposition3 Given a basis c of a vector space dnH �$� �"!$# 8 ,
computingan affine formula ) describing d requires time M * 5 . / ,
and ) containsat most5 equations.

Proposition4 Givenan 5 -placerelation G anda linearly indepen-
dent setof vectors coHQG , decidingwhetherthe vector space d
generatedby c is includedin G requirestime M * ; GL; 5 / .
3 IDENTIFICA TION

The problemof structure identificationwasformalizedby Dechter
and Pearl[4]. It consistsin somekind of knowledgecompilation,
wherea formulais searchedwith requiredpropertiesandthatadmits
a givensetof models.In our framework, it correspondsto checking
whethersomeknowledgegivenasa relationcanberepresentedex-
actly by anaffine formulabeforetrying to approximateit by sucha
formula.Identifyinganaffinestructurein arelation G meansdiscov-
eringthat G is affine,andcomputinganaffine formula ) describing
it.

It is well-known from linear algebra(seealso [9, 6]) that affine
structuresare identifiable, i.e., that thereexists an algorithm that,
given a relation G , can eitherfind out that G is the set of models
of noaffine formulaover thesamevariables,or give sucha formula,
in timepolynomialin thesizeof G .

Thealgorithmis thefollowing.Wefirst transformtheprobleminto
oneof vectorspaces,by choosingany 6 � G andcomputingthe
relation G ` . Theproblemhasnow becomethatof decidingwhetherG ` is a vectorspace.Thenwe computea subsetc ` of G ` that is
linearly independentandmaximalfor setinclusion(Proposition2) ;
weknow by maximalityof ca` thatall thevectorsin Ga` arelinearly
dependentfrom c ` , i.e., that G ` is includedin the vector space
generatedby c ` . Thus if ; G ` ; � �Ej k�pqj , we can concludethatGr` is exactly this vectorspace,andwe cancomputefrom cr` an
affine formula )1` describingGa` (Proposition3) ; theformula ) �* ) ` / ` will describe

* G ` / ` � G . Otherwise,if ; G ` ;1s� �Ej k p j , we
canconcludethat G ` is nota vectorspace,i.e., that G is notaffine.

Proposition5 (identification) Affine structures are identifiable in
time M * ; GL; 5 , ' 5 . / , where G is the relation and 5 the numberof
variables.

Proof. Computing G ` from G requirestime M * ; GL; 5 / , computingcr` , M * ; GL; 5 , / (Proposition2), computing )�` from ca` , M * 5 . /
(Proposition3) andfinally, computing ) requirestime M * ; ) ` ; / HM * 5 � / . t

Forsakeof completeness,wealsomentiontheapproachin [12] for
proving theidentifiability of affinestructures; thisapproachexhibits
andusesa syntacticlink betweenusualCNFsandaffine formulas
insteadof resultsfrom linearalgebra.



4 APPRu OXIMA TION

We now turn our attentionto the problemof approximation itself.
Approximatinga relation G by an affine formulameanscomputing
anaffineformula ) whosesetof modelsis ascloseaspossibleto G ;
thusthisprocesstakesplacenaturallywhen G cannotberepresented
exactly by an affine formula. Many measuresof closenesscan be
considered,but wewill focusonthetwo notionsexploredby Selman
andKautzin [10].

Thefirst waywecanapproximateG isbyfindinganaffineformula)�vxwKy whosesetof modelsGrvxwKy is asupersetof G , but minimal for set
inclusion.Then )�vxw$y is calledanaffine leastupperbound(LUB) ofG [10, 4]. Thesecondnotionis dual to this one: we now searchfor
anaffineformula )�z{vxy whosesetof modelsGrz{vxy is asubsetof G , but
maximalfor setinclusion.The formula ) z{vxy is thencalledanaffine
greatestlower bound(GLB) of G [10]. Remarkthat if G is affine,
then )�vxw$y and )�z{vxy bothdescribeit.

Example2 (continued) We considerthe non-affine relation G ��$�K�:� !K!:� � !K! � !:�$! �:�K�:� �$!K!:!K! � � !K!:!:!K!$# . It is easily seenthat ) �* � � �|� , �}� .~� ! /-0 * � � �|� ,���� / is its (unique)affine LUB
(with � models),andthat theformula ) 0 * � , �+� . �F��� �}� / is its
affineGLB with themaximumnumberof models( � ).

SelmanandKautzsuggestto usetheseboundsin thefollowing man-
ner. If G is a knowledgebase,storeit aswell asanaffine LUB )�vxw$y
andanaffine GLB )�z{vxy of it. When G is askeda deductive query P ,
i.e., whenit mustbe decidedGQ; ��P where P is a clause,first de-
cide )�vxwKya; �_P : if theansweris positive, thenconcludeGO; ��P . On
theotherhand,if theansweris negative, thendecide)�z{vxy�; ��P : if
theansweris negative, thenyou canconcludeG�s; ��P . In caseit is
positive, thenyoumustquery G itself. In thecaseof affine(or Horn)
approximations,sincedeductionis tractable,eitherthe answerwill
have beenfoundquickly with theboundsor only a smallamountof
time will have beenlost, undertheconditionthat thesizeof theap-
proximationis comparableto or lessthanthesizeof G ; but wehave
seenthat,contraryto Horn formulas,affine formulascanalwaysbe
madevery small.

Westudyherethesetwo notionsof approximationwith affine for-
mulas.

4.1 Affine LUBs

We first consideraffine LUBsof relations.Let G bea relation.Once
againwe transformthe problemof computingan affine LUB of G
into a problemof vectorspaces,by choosing6 � G andconsider-
ing therelation Gr` . Since Gr` is a vectorspaceif andonly if G is
affine,weconsidertheclosured3` of Ga` underlinearcombinations,
i.e., theuniquesmallestvectorspaceincluding G ` , andtheassoci-
atedaffine relation d � * d ` / ` . It is easilyseenthat d is uniquely
defined(whatever 6 � G hasbeenchosen)andis thesmallestaffine
relationincluding G . It followsthattheaffineLUB )�vxw$y of arelationG is uniqueup to logical equivalence,andthat its setof modelsis
exactly d (seealso[9, 6]).

Now wemustcomputeanaffineformula )�` describingd3` , given
the relation G ` ; we will thenset )�vxwKy � * ) ` / ` . The ideais the
sameasfor identification: computea basisc ` of d ` , andthenuse
Proposition3 for computing ) ` . But we have seenthat d ` is the
closureof Gr` underlinearcombination,andthusany maximal(for
set inclusion) linearly independentsubsetof G ` is a basisof d ` .
Finally, we getthefollowing result.

Proposition6 (LUB) Let G be a 5 -placerelation.Theaffine LUB)�vxw$y of G is uniqueup to logical equivalenceandcanbecomputed
in time M * ; G�; 5 , ' 5 . / .
Proof. We must first choose6 � G and compute Gr` , in timeM * ; GL; 5 / . Then we must computea maximal linearly independent
subsetc ` of G ` , in time M * ; GL; 5 , / (Proposition2). Finally, we
mustcompute) ` from c ` andset )�vxwKy � * ) ` / ` , which requires
time M * 5 . / (Proposition3). t
4.2 Affine GLBs

Contraryto the caseof LUBs, the affine GLB of a relation is not
uniqueup to logicalequivalencein general,andthereis evennorea-
sonfor two affine GLBs of a relationto have thesamesize.What is
mostinterestingthenis to searchfor anaffine GLB ) `(� S:� z	vxy with
themaximumnumberof modelsoverall affineGLBs.Theassociated
decisionproblemis NP-hardfor Horn GLBs (see[7]), but we show
herethatthereexistsa subexponentialalgorithmfor theaffine case;
remarkthat while NP-hardproblemscanbe consideredintractable,
subexponentialalgorithmscanstayreasonablein practice.

We still work with therelation Ga` for a given 6 � G . Whatwe
mustdois find avectorspaced ` includedin G ` andwith maximum
cardinality, and then to computean affine formula ) ` describingd3` ; wewill thenset ) `(� S:� z	vxy(� * )�` / ` . Weproceedby searching
themaximal

N
for which thereexists

N
linearly independentvectors6 �������	��� 6�� � G ` thatgenerateavectorspaced ` includedin G ` .

Since
N

canonly rangebetween! and e�f:g � ; G ` ; � e�fKg � ; GL; , we get
a subexponentialalgorithm.

Proposition7 (maximum GLB) Let G be an 5 -placerelation.An
affineGLB ) `(� S:� z	vxy of G with themaximumnumberof modelscan

becomputedin time M * ; GL; 5 * e�fKg�e�f:ga; G�; / ����� �W�1j ��j � � / .
Proof. We searchthe maximal

N
by dichotomy. Begin with

N �e�fKg�; GL; 9 � . For a given
N
, computeall the � j ��p�j��� subsetsof G ` ofN

vectors,andfor eachoneof them,testwhetherit is linearly inde-
pendent(in time M *@N � 5 / with Proposition1) andwhetherthevector
spaceit is abasisfor is includedin Ga` (in time M * ; GL; 5 / with Propo-
sition4). If it is thecasefor at leastonesubsetof size

N
, thenincreaseN

(by dichotomy)andgoon,otherwisedecrease
N

andgoon.Finally,
since

N
is alwaysboundedby e�fKg � ; GL; , at most e�fKg � e�f:g � ; GL; differ-

ent
N
’swill have beentried,andwe getthetimecomplexityM *W* e�fKg�e�f:ga; G�; /��I� ; GL;e�fKg�; GL; � � *W* e�f:ga; G�; / � 5 ' ; GL; 5 /W/

which is lessthan M *W* e�f:g�e�f:g�; GL; / ; GL; � �W��j ��j * ; GL; 5 /W/ , which in turn

equalsM * ; G�; 5 * e�f:g(e�fKg�; GL; / � �x� �W��j ��j � � / . t
5 PAC-LEARNING

We finally turn our attentionto the problemof learning affine for-
mulasfrom examples.Themaindifferencewith theotherproblems
consideredso far is that the algorithmhasnot accessto the entire
relation G . It mustcomputeanaffine approximationof anaffine re-
lation G by askingasfew informationsaspossibleabout G . Never-
theless,learningis a rathernaturalextensionof approximation,since
it correspondsin somesenseto introducinga dynamicalaspectin
it : thealgorithmis supposedto improve its resultwhenit is allowed
moretime for askinginformationsaboutG .



We considerherethePAC-learningframework of Valiant[11, 1],
with examplesonly. In this framework, we wish an algorithmto be
ableto computea function ) of 5 variables(in ourcontext, anaffine
formula)by askingonly apolynomialnumberof vectorsof anaffine
relation G , suchthat ) approximateswith high probability therela-
tion G ratherclosely(ProbablyApproximatelyCorrectlearning).

More precisely, an affine 5 -placerelation G is given, aswell as
anerrorparameter� . Thealgorithmmustcomputeanaffine formula) over thevariables� � ��������� � 8 suchthat ) approximatesG with an
errorcontrolledby � ; we will authorizehereonly one-sidederrors,
i.e., themodelsof ) mustform a subsetof G . At any time, thealgo-
rithm canaska vector 6 � G to anoracle,but thenumberof these
callsmustbepolynomialin 5 and � , aswell asthework performed
with eachvector3. Note that in a first time we assumethat thealgo-
rithm knows 5 , while this is not thecasein Valiant’s framework, but
we will seeat theendof thesectionhow to dealwith this problem.

To beasgeneralaspossible,a probabilitydistribution � over the
vectors6 � G is fixed,for two purposes: (i) whenaskedavectorofG , theoracleoutputs6 � G with probability � * 6 / , independently
of the previously outputvectors(ii) the error correspondingto the
affine formula ) computedby the algorithmis definedas   * ) / �¡ ` V ��¢ `�£j ¤�¥ � * 6 / , and ) is saidto be a correct approximationofG if   * ) /�¦4! 9 � .

Finally, the classof affine formulaswill be said PAC-learnable
fromexamplesonly if thereexistsanalgorithmthat,for afixedaffine5 -placerelation G andarealnumber� , cancomputein timepolyno-
mial in 5 and � , andwith apolynomialnumberof callsto theoracle,
anaffine formula ) thatwith probabilityat least !Z§&! 9 � is a correct
approximationof G . We exhibit heresuchanalgorithm4.

The idea is first to treat G as G ` , where 6 is the first vector
obtainedfrom theoracle,i.e., to replaceeachobtainedvector b withb ��6 ; onceagainthis is donefor tranformingthe probleminto
oneof vectorspaces.The ideais thento obtaina certainnumberof
vectorsof G ` from the oracleandto maintaina maximal linearly
independentsubsetc ` of them.When enoughvectorshave been
asked,thealgorithmcancomputeanaffine formula )�` from thisset
(Proposition3) andoutput ) � * ) ` / ` ; sincec ` H¨G ` and G ` is
closedunderlinearcombination,themodelsof ) ` will alwaysform
a subsetof G ` , asrequired.

Thepoint is thatonly a polynomialnumberof vectorsareneeded
for ) ` to be with high probability a correctapproximationof G ` .
To show this, we will usethe function © * � � 5 / definedin [11] ; the
value © � © * � � 5 / is thesmallestintegersuchthatin © independent
Bernoulli trials ª � �������"� ª�« eachwith probability ¬ 
a ! 9 � of suc-
cess(the ¬�
 ’s beingnotnecessarilyequal),theprobabilityof having
at least5 successesis at least !®§&! 9 � . Valiantshows that © * � � 5 / is
almostlinearin � and 5 (moreprecisely, C�5  !K� C��°¯ !:� © * � � 5 /Z¦�$� * 5 ' e�fKg\±�� / ). We show below that © * � � 5 / vectorsof Ga` are
enoughfor ) ` to becorrect.

Proposition8 (PAC-learning) Theclassof affineformulasis PAC-
learnablefrom © * � � 5 / examples,where � is theerror parameterand5 thenumberof variablesinvolved.

Proof. We have to show that if the algorithmpresentedabove has
obtained© * � � 5 / vectors(remindthateachvector b is replacedwith, In the framework of [11], the runningtime canalsobepolynomial in the

sizeof theshortestaffine descriptionof ² , but it will beuselesshere.. Following [11] and for sake of simplicity, we useonly one parameter³
for boundingboth theprobabilityof successof thealgorithmandthecor-
rectnessof ´ ; but two parameters³ � and ³ � couldbeusedwith thesame
complexity results.

b �_6 , where 6 is the first vectorobtained)andkept a maximal
linearly independentsubsetc ` of them,thenanaffine formula ) `
describingthevectorspacegeneratedby c ` is acorrectapproxima-
tion of Gr` . We have seenthat the setof modelsof )�` is a subset
of Ga` , as required.Now we have to show that with probability at
least !�§~! 9 � ,   * ) /�¦4! 9 � . Wethusconsidertheevent   * ) / ¯ ! 9 � ,
andshow that its probability is lessthan ! 9 � . For this purpose,we
associateto eachcall to the oraclea trial ª 
 , which is considered
a successif andonly if the vectorobtainedis linearly independent
from the currentindependentsetof vectors c ` maintainedby the
algorithm.Sincec ` canonly increaseduringtheprocess,theprob-
ability ¬ 
 of successof ª 
 is alwaysat least   * ) / . Now sincethere
are

N ¦ 5 linearly independentvectorsin G ` and ) ` is not correct
(   * ) / ¯ ! 9 � ), the algorithmhasobtainedlessthan

N
successes;

finally, sincethe calls to the oracleareindependentBernoulli trials
and © * � � 5 / *  © * � � N /W/ suchcalls have beenmade,the definition
of © * � � N / guaranteesthatthis canhappenwith probability lessthan! 9 � . Thusthe learningalgorithmis correct.To completethe proof,
it sufficesto remarkthat thework performedby thealgorithmwith
eachvector requiresonly polynomial time, sinceit correspondsto
decidingthe linear independenceof a vector 6 from thecurrentsetc ` , and ; c ` ; ¦ 5 ; thusProposition1 concludes.t

To concludethesection,we considerthecasewhenthealgorithm
doesnot know in advancethenumberof variableson which there-
lation G is built. Thenthe vectorsoutputby the oraclearebuilt onµ  5 variables,but arenotnecessarilytotal ; in caseapartialvector6 is output, it meansthat all total vectorsmatching 6 matchone
vectorin G . But it is easilyshown thatif G really dependsona vari-
able ��
 andis affine, thenall partialvectorslike above mustassigna
valueto ��
 , sincea modelassigning� to ��
 cannotbea modelany
moreif thevalueof � 
 becomes� ; indeed,if � � � � 
� �	������� � 
� # sat-
isfiesa linearequationdependingon � 
 , � � � �L� !:� � 
%� �����	��� � 
�� #
necessarilyfalsifiesit. Thusthe algorithmneedsonly take into ac-
count the variablesthat aredefinedin all the vectorsoutputby the
oracle,andtheresultstaysthesame(with © * � � µ / callsto theoracle).

6 CONCLUSION

We have presentedaffine formulasasgoodcandidatesfor approxi-
matingpropositionalknowledge.Indeed,wehaveseenthatthesefor-
mulasadmitvery goodcomputationalpropertiesfor reasoningtasks
(in particularsatisfiability, deduction,countingof models)andare
guaranteedto bevery short: their sizecanalwaysbeminimizedef-
ficiently to M * 5 � / , where5 is thenumberof variablesinvolved.

Thenwe have shown that theseformulascaneasilybe acquired
from examples.Indeed,this classis identifiable, which meansthat
given a relation G , an affine formula ) with G as its set of mod-
els canbe computed,if it exists, in polynomial time. Whensucha
formuladoesnotexist, anaffine leastupperboundof G canbecom-
putedwith roughlythesamealgorithm,andanaffine greatestlower
boundof G with themaximalnumberof modelscanbecomputedin
subexponentialtime.Finally, wehaveshown thataffine formulasare
PAC-learnablefrom examplesonly.

We have arguedthatall theseresultsmadeaffine formulasan in-
terestingclassfor approximatingknowledge,by comparingthemto
the correspondingonesfor Horn formulas,which areoften consid-
eredfor representingor approximatingpropositionalknowledge.In-
deed,Horn formulasareidentifiableaswell asaffine formulasand
with a comparabletime complexity [4, 12] ; on the otherhand,the
Horn LUB of a relationcanbeexponentiallybiggerthanit [5, The-
orem6] while theaffine LUB of a relationcanalwaysbecomputed



in polynomial time, andcomputinga Horn GLB of a relationwith
themaximumnumberof modelsis a NP-hardproblem[7], while it
is only subexponentialfor affine formulas.Then,affine formulasare
PAC-learnablefrom examplesonly while the problemis still open
for Horn formulas; [2] only gives an algorithmfor learningHorn
formulaswith accessto anequivalenceoracle.All theseresultsshow
thatacquisitionof affine formulasfrom examplesis in generaleas-
ier thanacquisitionof Horn formulas.But we alsoemphasizethat
workingwith affine formulasis alsoeasierin generalthanwith Horn
formulas.For instance,mininmizing or countingthe modelsof an
affine formula is polynomial,while it is intractablewith Horn. In a
forthcomingpaper, westudymoredeeplythepropertiesof affinefor-
mulasfor reasoning,aswell astheirsemantics,i.e.,thenaturalpieces
of knowledgethatthey canreally represent.
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APPENDIX

Wegive heretheproofsof thepropositionsgivenin Section2.

Proposition1 Let cmH � � �"!$# 8 and 6 �n� � �"! # 8 . Deciding
whether c is a setof linearly independentvectors, or whether 6
is linearly independentfrom c canbeperformedin time M * ; c�; � 5 / .
Proof. For thefirst point, transformc into a setof non-zerovectorsc·¶ in echelonform with gaussianelimination,in time M * ; c�; � 5 / , and
checkwhether ; c ¶ ; � ; c�; [3, Theorem6.16].For thesecondpoint,
still transformc into c ¶ , thentransformc ¶E¸A� 6 # into a set c ¶ ¶ in
echelonform, andcheckwhether ; c ¶ ¶ ; � ; c ¶ ; . t

Proposition2 Given a relation G over 5 variables,finding a lin-
early independentsubsetof G that is maximalfor set inclusionre-
quirestime M * ; GL; 5 , / .
Proof. Thesubsetc of G is built stepby step.First initialize it with
any vector 6 l � G not identically � . During theprocess,pick any
vector 6 � G notyet in c , andcheckwhetherit is linearly indepen-
dentfrom c (Proposition1). If yes,addit to c , otherwiseeliminate
it from G . Sincetherecannotbe morethan 5 linearly independent
vectorsin � � �"!$# 8 [3, Theorem5.1], thenumberof vectorsin c can
never exceed5 , andeachvectorof G is consideredonly once,yield-
ing thetimecomplexity M * ; G�;�; ci; � 5 / H¨M * ; G�; 5 , / . t
Proposition3 Given a basis c of a vector space dnH �$� �"!$#$8 ,
computingan affine formula ) describing d requires time M * 5 . / ,
and ) containsat most5 equations.

Proof. First completethe basis c �¹� 6 � �	���"��� 6 � # with 5 § N
vectors 6 � �	������� 6 8 �}�$� ��!$# 8 suchthat � 6 � ���	����� 6 8 # is a basis
for the vectorspace� � �"! # 8 ; this canbe donein time M * ; ci; � 5 '5 � / HºM * 5 , / by putting c in echelonform. Then associatethe
linear equation �» � *½¼ 
 ¤ � ¢ ¾ ¾ ¾ ¢ 8�¿ 
 »$� 
°��� / to 6�» for À � N '!K�����"��� 5 , wherethe ¿ 
 » ’s areuniquelydeterminedfor a given À �� N ' !:�"�����	� 5 # by thesystem

Á » �
ÂÃÃÃÃÃÃÃÃÄ ÃÃÃÃÃÃÃÃÅ

6 � = ! ? ¿ � »Æ� ���	� � 6 � = 5�? ¿ 8 » � ������6 » � � = ! ? ¿ � » � ���	� � 6 » � � = 5�? ¿ 8 » � �6L»\= ! ? ¿ � »Æ� ���	� � 6L»\= 5�? ¿ 8 » � !6�»{Ç � = ! ? ¿ � »Æ� ���	� � 6�»{Ç � = 5�? ¿ 8 » � ������6 8 = ! ? ¿ � » � ���	� � 6 8 = 5�? ¿ 8 » � �
Thenthe affine formula ) � R 8» ¤ � Ç �   » describesd . Indeed,by
constructionof

Á » , for > � !K���"����� N , 6 
 satisfies �» , thusevery lin-
earcombinationof � 6 � �"�����	� 6�� # satisfiesevery  �» , thus d is in-
cludedin thesetof modelsof ) . On theotherhand,if 6 �F�$� �"!$# 8
is not in d , then it is the linear combinationof somevectorsof� 6 � �	�"����� 6 8 # , amongwhich at leastone 6L» with À|¯ N

; write6 � 6L»�� ¼_ÈÉ ¤ � 6 
�Ê ; then8Ë 
 ¤ � ¿ 
 »$6�= >D? � 8Ë 
 ¤ � ¿ 
 » * 6L»\= >D?E� ÈË É ¤ � 6 
�Ê = >D? /
� 8Ë 
 ¤ � ¿ 
 » 6 » = >D?E� ÈË É ¤ � * 8Ë 
 ¤ � ¿ 
 » 6~
 Ê = >D? /

Since
¼ 8
 ¤ � ¿ 
 »$6 
Ê = >@? �Ì� for all Í and

¼ 8
 ¤ � ¿ 
 »$6L»\= >D? � ! (by
constructionof

Á » ), we get
¼ 8
 ¤ � ¿ 
 » 6B= >D? � ! , i.e., 6 doesnot sat-

isfy   » , andthusdoesnot satisfy ) . Thereare 5 § N
systems

Á » to
solve, eachone in time M * 5 , / with gaussianelimination ( 5 equa-
tionsand 5 unknowns),thusthetotal timecomplexity of theprocess
is M *W* 5 § N / 5 , / H * 5 . / . t
Proposition4 Givenan 5 -placerelation G anda linearly indepen-
dent setof vectors coHQG , decidingwhetherthe vector space d
generatedby c is includedin G requirestime M * ; GL; 5 / .
Proof. It sufficesto generateall the linearcombinationsof vectors
of c , andto answer’no’ assoonasoneis not in G , or ’yes’ if all are
in G . Sincetwo differentlinearcombinationsof linearly independent
vectorsaredifferent,eachvectorof G canbefoundatmostonce,and
deciding6 � G requirestime M * 5 / if G is sorted(in time M * ; G�; 5 /
with a radixsort),whichcompletestheproof. t


