
Querying Semistructured Data Using a Rule-Oriented
XML Query Language

Tadeusz Pankowski1

Abstract. The goal of the paper is to propose a semistructured data
model for representing XML documents and a language for query-
ing semistructured database representing XML data. The language is
based on a path calculus and on its extension involving rules (in Dat-
alog style) and Skolem functions. Three kinds of matching between
query variables and database objects are discussed: a rigid, semirigid,
and flexible matching. The flexible matching is of special importance
since semistructured data does not conform to a rigid schema, its
structure is often not known in advance and its structure may change
frequently. We propose a method, which is based on regular path ex-
pressions, supporting valuation of query variables according to those
three kinds of matching. The containment problem for this match-
ings is discussed. The main idea of an experimental implementation
is outlined.

1 INTRODUCTION

Semistructured data has no absolute schema fixed in advance, has ir-
regular structure, is incomplete and heterogeneous. Such data arises
mainly when the data is stored in sources that do not require a rigid
structure (such as the World-Wide Web), and when data is integrated
from heterogeneous sources (especially when new sources are fre-
quently added). It is commonly agreed that data models and query
languages, designed for well-structured data, are inappropriate in
such environments [1], [2]. XML (Extensible Markup Language) [3]
is fast becoming the dominant standard for representation and in-
terchange semistructured data on the Internet. Many heterogeneous
information sources can structure their external views as repositories
of XML data, no matter what their internal storage mechanisms.

Thus, modeling and querying semistructured data repositories is a
new challenge in the field of intelligent data retrieval and knowledge-
based systems.

In the paper we follow the assumption that semistructured data is
a rooted, labeled directed graph. Such data must be:

• exchanged over the Web and presented to users,
• stored in some repositories - in text files on the Web, within a

database system supporting storing and querying the data, or in a
mixed form,

• capable for reasoning, especially when heterogeneous data
sources are integrated or when approximate answers to queries
are expected.

We discuss some modeling alternatives to achieve goals mentioned
above. For exchanging and presenting data - the XML data model,

1 Chair of Control, Robotics and Computer Science, Poznań University of
Technology, Poland, email: Tadeusz.Pankowski@put.poznan.pl

for storing the data within conventional database system - an object-
oriented model being a variant of OEM [1], [4], and for reasoning
purposes - a very simple description logic (to show that a semistruc-
tured data can be understood as a knowledge base) [5], [10].

The main part of the paper concerns querying semistructured data.
Since the same information may be captured by diversity of data
structures, a fixed query and exact matching (that is typical for well-
structured data) could not give the all expected information. To solve
this problem, and to avoid query rewriting, in [6] a flexible matching
is proposed. We follow this idea and propose a class of path expres-
sions as well as an algorithmic method for computing all ”standard”
and ”non-standard” matchings for such path expressions. Next we
propose a path calculus. Path calculus queries return answers con-
sisting of tuples of objects. To construct well-formed semistructured
data from answers, we extend the query language introducing rules.
Path calculus query forms the body of a rule and the rule head is
devoted to create the expected resulting object. Rules are in Datalog
style and involve Skolem functions.

The main contribution of the paper is the original proposal of
well-defined syntax and semantics of a language for manipulating
semistructured data. The rule-orientation of the language allows for
utilization of both the paradigm of first-order calculus and the flex-
ibility of data structuring in XML. Regular path expressions sup-
port three kinds of matching, the rigid matching (typical for well-
structured data query languages), semirigid matching (typical for
other semistructured data languages) and flexible matching. The
problem of query containment for queries based on those three kinds
of matching is discussed.

The rest of the paper is organized as follows: Section 2 gives basic
ideas and motivation for research. Models of semistructured data are
discussed in Section 3. In Section 4 we give syntax and semantics
of path calculus and its rule-oriented extension. A theorem of query
containment is proven. Section 5 concludes the paper and outlines
some future research.

2 MOTIVATION AND BASIC IDEA

Semistructured data retrieval systems may be characterized as fol-
lows [6]:

• data does not conform to a rigid schema - it is difficult to design
queries,

• the structure of the database changes frequently - queries should
be rewritten frequently,

• data is contributed by many users in a variety of design - the query
should deal with different structures of data,

• the description of the schema is large (e.g. made in DTD) - it is
difficult to use the schema for formulating queries.

Semistructured data is commonly perceived as a rooted, labeled
directed graph. All edges, all leaves and some non-leaf nodes of a
data graph are labeled with strings (texts). Additionally, a unique
identifier may be assigned to each node (we will denote identifiers
by integers). There is aroot label, which uniquely identifies a data
graph. An example of a data graph is in Figure 1,bib is the root label
of the data graph.

���

�

����

	

�

�
�

�
��
�
��

�
��
�

�

�

�

�

����

�

�
��
�

�

����

��

����

��

����

��

�

�

��

�

�

��

�����

�

�����

�� �	��

����������

�

����

�

���

�
��

����

����

�����

���

����
 ����

!�"#�� $
�
��

Figure 1. An example of data graph

Semistructured query languages have ability to reach to arbitrary
depth in the data graph. This is possible by means of path expression.
A simple path expression is a sequence of edge labels separated by
dots and starting with the root label. E.g. the following path expres-
sion

bib.book.author.name

is intended to look for all the books and their authors. Matching is
a mapping which assigns a sequence of data graph edges to every
path expression. A labelL from a path expression is mapped to a
data graph edge with labelL. Every matching of a path expression
L1, ..., Ln can be represented as a sequence of nodes(i1, ..., in),
whereik is a node with an incoming edge labeled withLk. In ex-
act or rigid matching adjacent path expression labels are mapped to
adjacent data graph edges. Notice that using the exact matching, we
are not able to find all answers because an author node can either be
below or above a book node.

The classical query-answer paradigm can not be directly used for
querying semistructured data. This is due to the following:

1. To capture irregular structure of data and to avoid query reformu-
lation, an extended concept of matching path expressions and data
graph paths is needed. We distinguish three kinds of matching:

• in the rigid matchingadjacent labels of a path expression are
mapped to adjacent edges of one path and the ordering is pre-
served, e.g. (1, 2, 4, 5) rigidly matches the path expression
bib.book.author.name, while (1, 8, 9, 10) does not;

• in the semirigid matching, labels of a path expression are
mapped to edges of one path and the ordering is preserved, but

adjacent labels in the path expression must not be mapped to
adjacent edges of the database path, e.g. (1, 8, 9, 10) semirigidly
matchesbib.book.author.name, while (1, 14, 12, 18) does not;

• in theflexible matchinglabels of a path expression are mapped
to edges of data graph; the ordering need not be preserved; no-
tice that the path expression is not necessarily mapped to a path
in the data graph. E.g. (1, 14, 12, 18) flexibly matches the path
expressionbib.book.author.name. Because such notion of ac-
ceptable matchings (answers) might be too general, we will
assume some restrictions. In some approaches the problem of
choosing appropriate answers is solved by means of ranking
them (e.g. [7]).

2. For lack of basic predicates (like relation names in relational cal-
culus) specified in advance, some partially defined path expres-
sions may be used. In our approach, any path expression is con-
sistent with some matching type.

3. Final result of the query must be provided as an object (e.g. as
an XML document). Thus, a mechanism for creating new objects
should exist in the query language.

3 SEMISTRUCTURED DATA MODELS

Semistructured data is commonly specified as an XML document.
Thus we assume that a system for processing semistructured data
should support XML format both on its input and output. In our
experimental implementation [13] XML data is transformed into an
object-oriented model and is stored within a relational database sys-
tem. In this section we review the modeling capability of XML, pro-
pose a semistructured object-oriented data model (SSOO), and show
how semistructured data can be defined by means of a description
logic.

3.1 XML as a model of semistructured data

An XML document is a textual representation of data and consists of
hierarchically nested element structure starting with a root element.
The basic component in XML is anelement. An element consists
of start-tag, the correspondingend-tagandcontent, i.e. the structure
between the tags. All content elements aresubelementsof their par-
ent element. With elements we can associateattributes. An attribute
is a pair(name = ”value”) and is included within the start-tag of
an element. A well-formed XML element must conform to the fol-
lowing syntax (* denotes zero or many occurrences of the preceding
symbol):

element ::= <tagattribute*> content*</tag>
attribute ::= name=”text”
content ::= element| text

The semistructured data from Figure 1 can be specified as the fol-
lowing XML data:

<bib>
<book title="SQL" year="1999">

<author>
<name>Codd</name>

</author>
</book>
<year>

2000
<book title="C++">

<author>

<name>Smith</name>
</author>

</book>
</year>
<author name="Wirth">

<year>
1999
<book>

<title>Pascal</title>
</book>
<book>

<title>Modula</title>
</book>

</year>
</author>

</bib>

3.2 Object-oriented model of semistructured data

Object-oriented approaches to semistructured data models were
emerging with the development of the Object Exchange Model
(OEM) [4], [8] and are rooted in object-oriented database models.
There is a number of variants of the OEM data model [1]. In this
paper we propose a variant called SSOO (+ denotes one or many
occurrences of the preceding symbol):

object ::= oid (content+)
content ::= label : oid| text

Definition 1 Let ID be a countable and infinite set of object identi-
fiers, LAB - a set of labels, TXT - a set of texts, and CONT - a set of
contents created according to the rules specified above.

A quadruple DB = (ID, LAB, TXT, CONT) we call a database, and
a pair (OID, con) - a state of the databas, where

• OID is a finite subset of ID,
• con : OID → 2CONT is a function which associates a subset of

CONT to every identifier in OID.

An identifierid ∈ ID is said to be defined if con is defined on it; if id
is not defined we assumecon(id) = ∅. Additionally, we assume that
every identifier occurring in con(id), forid ∈ OID, is defined.2

3.3 Modeling semistructured data in description
logic

Description logics allow for representing a domain of discourse in
terms ofconceptsand roles. Concepts model classes of individu-
als, while roles model relationships between classes. Starting from
atomic conceptsandatomic roles, one can build complex concepts
and roles by applying certainconstructs. We will consider a very
simple description logic, SSDL, which can be used to describe
semistructured data. In SSDL three constructors are assumed:exis-
tential quantifiers over roles(∃), intersection on concepts(u), and
role inverse(!). We use the following notations:L for atomic roles,
A for primitive atomic concepts, andD for defined atomic concepts.
Complex concepts,C, and complex roles,R, conform to the follow-
ing syntax:

C ::= ∃R.D | A | C u C,
R ::= L | !L.

Semantics of SSDL might be defined by means of interpretation
I = (∆I ,.I), where∆I is a set of individuals, and.I is aninterpre-
tation function. Then:

AI ⊆ ∆I ,
DI ⊆ ∆I ,
LI ⊆ ∆I ×∆I ,
!LI = {(x′, x)|(x, x′) ∈ LI},

(∃R.D)I = {x ∈ ∆I |∃x′.(x, x′) ∈ RI ∧ x′ ∈ DI},
(C u C′)I = CI ∩ C′I .

A set of assertions (definition statements) of the form

D =def C

is a semistructured knowledge base. In a definition statement (see
[9]) D cannot appear in the left-hand side of other definition state-
ments. The definition is intended to define the conceptD in terms of
C, i.e., to defineD as a concept denoting the set of the individuals
satisfyingC. E.g. the concept:1999 u ∃author.C5 may denote in-
dividuals that are from the year 1999 and that are related through the
binary relation (role)author with some individual from the set of
individuals denoted by the conceptC5.

To describe SSOO data by means of SSDL, we assume that texts
are primitive concepts, identifiers are defined concepts, and labels are
roles. Then for data from Figure 1, we have:C0 = ∃ bib.C1, C1 =∃
book.C2u ∃ year.C7u ∃ author.C12, ..., C7 = 2000u ∃ book.C8,
..., etc.

4 QUERY LANGUAGE

Our query language ([13], [15]) is based on regular paths which are
the basic constructs for semistructured data query languages [8], [11]
[12]. The differences are what a path expression denotes. In our ap-
proach, it denotes a set ofoid sequences (paths) of the same length.
The set is called apath tableand is an extension of the path expres-
sion. Components of the path expression, separated by dots, consti-
tute thetype of the path table. This approach was used in an ex-
perimental system, called XML-SQL, which we implemented in a
relational database system [13].

In this section we mainly address the problem of facilitating dif-
ferent kinds of matchings. We propose a class of path expressions
and rules for computing their extensions (semantics). The extension
of a path expression consists of a set of matchings, and the structure
of the path expression determines the kind of matching.

4.1 Path calculus

Path expressions:

P ::= L | P.E | P.(∗, !).E | P.(! , ∗).E
E ::= L | ∗ | !

A path expressionP consists of identity expressions,E, where ev-
ery identity expression returns a set of object identifiers. The value of
a path expression which consists ofn-components (n ≥ 1) separated
by dots, is a set of sequences of object identifiers of length equal to
n. The meaning of identity expression is:

• labelL denotes alloids of objects (nodes) with an incoming edge
labeled withL, every path expression must begin with the root
label,

• ”∗” matches any path (also the empty path),
• ” ! ” matches inverse of any edge,
• P.(∗, !).E andP.(! , ∗).E are conditional path expressions.

Semantics of path expressions:
To define semantics for path expressions we assume that a data

graph is represented by means of the following two tables:

EdgeTab(ParentOid, Label, Oid).
ValueTab(ParentOid, Value).

If oid1(content) is an object, where(L : oid2) ∈ content, and
text ∈ content, then:

(oid1, L, oid2) ∈ EdgeTab,
(oid1, text) ∈ V alueTab.

Every path expressionP is treated as an 1-place predicate denot-
ing a set ofoid sequences. Semantics of path expressions is given
by the following rules;last(v), andfront(v) returns, respectively,
the last element, and the front (all elements except the last one) of a
sequencev; u • w denotes the concatenation of sequencesu andw:

1. ”L”(x) :- EdgeTab(, L, x)
2. ”P.L”(v) :- ”P”(u) ∧ EdgeTab(last(u), L, x)

∧v = u • x
3. ”P. ∗ ”(v) :- ”P”(u) ∧ v = u • last(u)

”P. ∗ ”(v) :- ”P. ∗ ”(u) ∧ EdgeTab(last(u), , x)
∧v = front(u) • x

4. ”P.! ”(v) :- ”P”(u) ∧ EdgeTab(x, , last(u))
∧v = u • x

5. ”P.(∗, !).E”(v) :- ”P. ∗ .E”(v)
”P.(∗, !).E”(v) :- ¬(”P. ∗ .E”(v) ∧ ”P.(! , ∗).E”(v)

6. ”P.(! , ∗).E”(v) :- ”P.! .E”(v)
”P.(! , ∗).E”(v) :- ¬”P.! .E”(v) ∧ ”P.! . ∗ .E”(v)
”P.(! , ∗).E”(v) :- ¬”P.! .E”(v) ∧ ¬(”P.! . ∗ .E”(v)

∧”P.! .(! , ∗).E”(v)

Definition 2 A query over a DB is an expression of the form

{path var.E, ..., path var.E|φ},
whereφ is a formula (query qualifier),path var is a path variable,
andE is an identity expression. The syntax of a query qualifier is:

φ ::= ”P”(path var) | ¬φ | φ ∧ φ | ∃path var φ
| scalar = scalar,

scalar ::= path var.E | text | val(path var.E) 2

The following expression is a query:

{v.title | ”bib.∗ .book.title”(v)∧∃u”bib.∗ .book.(∗, !).year”(u)
∧v.book = u.book ∧ val(u.year) = 1999}.

Example 1 To find all books and their authors, we can write the
following queries:

Q1 = {v.book, v.author, v.name| ”bib.book.author.name”(v)},
Q2 = {v.book, v.author, v.name| ”bib.*.book.author.name”(v)},
Q3 = {v.book, v.author, v.name|

”bib.*.book.(*, !).author.name”(v)},
where results for these queries against Figure 1 are, respectively:

Q1 = {(2, 4, 5)},
Q2 = {(2, 4, 5), (8, 9, 10)},
Q3 = {(2, 4, 5), (8, 9, 10), (14, 12, 18) (16, 12, 18)}. 2

Each of the above queries is intended to retrieve the same infor-
mation but uses different semantics for matching. This semantics is
chosen through the path expression used in qualifier of the query
(rigid, semirigid and flexible). The consequences of making the de-
cision can be formalized as follows.

Definition 3 Let P be a path expression andl1, ..., ln be all labels
occurring inP . A ground query over a database DB and a path ex-
pressionP is a query of the form

QDB(P) = {v.l1, ..., v.ln|P (v)}. 2

Proposition 1 Let P be a path expression composed of two path
expressionsP1 andP2, i.e.P = P1.P2. Then for every database DB
the following containments hold

QDB(P1.P2) ⊆ QDB(P1. ∗ .P2) ⊆ QDB(P1.(∗, !).P2),

where eachQDB(P) is a ground query over DB andP .

Proof To show the first inclusion let us assume that
”P1.P2”(v), v = v1 • v2 andP1(v1) ∧ P2(v2).

Then forv′ = v1 • last(v1) • v2, the formula

”P1. ∗ .P2”(v′)

holds. So, the first inclusion is true.
The second inclusion follows from the implication:

”P1. ∗ .P2”(v) ⇒ ”P1.(∗, !).P2”(v).

Thus, the proposition is proven.2

A queryQDB(P) is a rigid query if it has no occurrence of∗ and
! ; it is a semirigid query if it has not any occurrence of! . Otherwise
it is a flexible query. For our running example we have:

Q1 ⊆ Q2 ⊆ Q3

Q1, Q2, andQ3 are rigid, semirigid and flexible ground queries, re-
spectively. Notice thatQ3 is equivalent to the query:

Q4 = {v.book, v.author, v.name|
”bib. ∗ .author.name.(∗, !).book”(v)}

Two databases DB and DB’ are equivalent if for any query Q,

QDB = QDB′ .

The equivalence may be referred to as a rigid, semirigid, or flexible
equvalence, depending on the class of queries under consideration.

4.2 Creating objects

To support creation of objects we use rules, where head of a rule
constructs a semistructured data object, and the body of the rule de-
livers bound variables used in the construction. A rule conforms to
the following syntax:

obj expr :- Query(x1, ..., xn)

where
obj expr ::= oid expr | oid expr(content expr+)

content expr ::= label expr : obj expr | text expr
oid expr ::= newOid(variable∗) | variable

A rule is intended to create a new object (answer to a query). The
head of the rule constructs the object using bound variables defined
in the body. The body of the rule is a formulaQuery(x1, ..., xn),
whereQ is a query considered as ann-place predicate,n ≥ 1. Such
defined variables are then used as control variables or parameters
within the head of the rule.

ThenewOid(x1, ..., xn) function is aSkolem function(in the con-
text of the head it occurs in). Every invocation ofnewOid() without
arguments creates a new object and returns its identifier. The function
with argumentsx1, ..., xn, creates a new object for every distinct val-
uation of variables, we say that this object and its identifier depend
on x1, ..., xn. Every next invocation for the same valuation of argu-
ments returns the identifier that depends on this valuation.

The semantics of the expressionnewOid(...)(content expr) is
as follows:

• if newOid() has the empty set of arguments or it is the first invo-
cation ofnewOid(...) with the given arguments, then a new object
is created with the content determined by thecontent expr and
the identifier of the newly created object is returned;

• every next invocation ofnewOid(...)(content expr) with the
same values of arguments appends the content determined by the
content expr to the current content of the object created by the
first invocation; the identifier of the object is returned.

Formally, every invocation of

newOid(...)(content)

in a database states = (OID, con) returns an identifierid and
changes states into s′ = (OID′, con′) where:

OID′ = OID ∪ {id},
con′(i) = con(i), for i 6= id,

andcon′(id) = con(id) ∪ content.

Example 2 Let Q be a query from Example 1. By means of the rule,
the following result object may be constructed:

newOid()(result :
newOid($b)(book:$b,

newOid($b,$a)(author:$a)
)

) :- {v.book,v.author,v.name|
"bib.*.book.(*,!_).author.name"(v)} ($b,$a,$n)

This query can be written as the following XML-SQL rule [13]:

<result>
<book>($b)

$b
<author>($b,$a)

$n
</author>

</book>
</result> :- Answer($b,$a,$n)

where theAnswer table is obtained by the following SQL query op-
erating on path tables:

select v.book as $b,
v.author as $a,
v.name as $n into Answer

from "bib.*.book.(*,!_).author.name" v

The resulting object from Example 2 can be in turn introduced
into the database, so the database is transformed into a new state.
Note, however, that some book objects (e.g. 2 and 8) may contain
information about authors. In such a case we say that the book ob-
ject subsumes their author object. A subsumed object should be re-
moved from the resulting object to avoid unnecessary redundancy.
(Subsumptions between semistructured objects we have discussed in
[14]).

5 CONCLUSION

In the paper we have discussed some problems concerning query-
ing semistructured data repositories. The role of such information
sources in data retrieval and knowledge-based systems becomes in-
creasingly important. We consider a semistructured data model in

which a semistructured database is perceived as an edge labeled
graph. Data retrieval is performed by means of a first-order path
calculus. To capture non-rigid data, we propose a method that al-
lows to use rigid, semirigid or flexible semantics. The query con-
tainment problem for these semantics is discussed. Modifications of
the database, constructing query results as objects and inserting them
into the database is supported by the rules and Skolem functions [15].
There are several interesting problems to investigate within our ap-
proach. One is to study implications due to the fact that operating
on path tables we actually operate on views over the database. The
other problem concerns object subsumptions and their consequences
to data retrieval and result construction.

REFERENCES
[1] S. Abiteboul, P. Buneman, D. Suciu,Data on the Web. From Relational

to Semistructured Data and XML, Morgan Kaufmann, San Francisco,
2000.

[2] V. Vianu, A Web Odyssey: from Codd to XML,Proc. of the 20th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, PODS’2001, May 21-23, Santa Barbara, 2001.

[3] Extensible Markup Language (XML), World Wide Web Consortium
(W3C), www.w3.org.TR/REC-xml.

[4] Quass D., Rajaraman A., Sagiv Y., Ullman J., Widom J., Query-
ing Semistructured Heterogenous Information,Proc. of International
Conference on Deductive and Object-Oriented Databases, DOOD95,
LNiCS 1013, 319–344, 1995.

[5] D. Calvanese, G. De Giacomo, M. Lenzerini, Modeling and Querying
Semi-Structured Data,Networking and Information Systems Journal2
(2), 253–273, 1999.

[6] Y. Kanza, Y. Sagiv, Flexible Queries over Semistructured Data,Proc.
of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, PODS’2001, May 21-23, Santa Barbara, 2001.

[7] S.Amer-Yahia, S. Cho, D. Srivastava, Tree Pattern Relaxation,Ad-
vances in Database Technology - EDBT 2002, (C. S. Jensen, K. G.
Jeffery, J. Pokorny, S. Saltenis, E. Bertino, K. Bloehm, M. Jarke, eds.),
LNiCS 2287, Springer, 496–513, 2002.

[8] Abiteboul S., D. Quass, J. McHugh, J. Widom, J.L. Wiener, The Lorel
query language for semistructured data,International Journal of Digi-
tal Libraries1 (1), 68–88 (1997).

[9] G. De Giacomo, Lenzerini M., A Uniform Framework for Concept
Definitions in Description Logics,Journal of Artificial Intelligence Re-
search6, 87–110 (1997).

[10] I. Horrocks,DAML+OIL: A Reason-able Web Ontology Language,Ad-
vances in Database Technology - EDBT 2002, (C. S. Jensen, K. G. Jef-
fery, J. Pokorny, S. Saltenis, E. Bertino, K. Bloehm, M. Jarke, eds.),
LNiCS 2287, Springer, 2–13, 2002.

[11] P. Buneman, M. Fernandez, D. Suciu, UnQL: a query language and al-
gebra for semistructured data based on structural recursion,The VLDB
Journal9, 76–110 (2000).

[12] XQuery 1.0: An XML Query Language.W3C Working Draft,
www.w3.org/TR/xquery

[13] T. Pankowski, XML-SQL: An XML Query Language Based on SQL
and Path Tables,VIII. Conference on Extending Database Technol-
ogy, EDBT’2002, Workshop XML-Based Data Management (XMLDM),
March 24-28, Prague, 48–68, 2002.

[14] T. Pankowski, Approximate Answers in Databases of Labeled ob-
jects,Intelligent Information Systems, (M. Klopotek, M. Michalewicz,
S.T. Wierzchon, eds), Advances in Soft Computing, Physica-Verlag A
Springer-Verlag Company, Heidelberg New York, 351–361, 2000.

[15] T. Pankowski, PathLog: A query language for schemaless databases
of partially labeled objects,Fundamenta Informaticea, 49 4, 369–395,
2002.

