
An Attribute Weight Setting Method for k-NN Based
Binary Classification using Quadratic Programming

Lu Zhang, Frans Coenen and Paul Leng1

1 The authors are with the Department of Computer Science,
the University of Liverpool, Liverpool L69 3BX, UK, emails:
{lzhang, frans, phl}@csc.liv.ac.uk.

Abstract. In this paper, we propose a new attribute weight setting
method for k-NN based classifiers using quadratic programming,
which is particular suitable for binary classification problems. Our
method formalises the attribute weight setting problem as a
quadratic programming problem and exploits commercial software
to calculate attribute weights. Experiments show that our method is
quite practical for various problems and can achieve a competitive
performance. Another merit of the method is that it can use small
training sets.

1. INTRODUCTION
The k-Nearest Neighbour (k-NN) algorithm [7] is a typical

lazy learning algorithm that has been intensively studied and
applied to classification problems. When classifying an instance, k-
NN selects k most similar instances in the training set of instances,
and uses the k similar instances to determine the class of the
instance under classification via some voting mechanism. Usually,
each instance is described as a sequence of attributes, i.e.
{A1,A2,…Aq} (where q is the number of attributes), and the
similarity between instance X={X1,X2,..Xq} and instance
Y={Y1,Y2,…Yq} can be calculated through formula (1). In formula
(1), Simi(X,Y) is the similarity between instance X and instance Y,
and Simi(Xi,Yi) is the similarity on the ith attribute between X and
Y.

∑
=

=
q

i
ii YXSimiYXSimi

1

),(),((1)

In formula (1), all the attributes for describing instances are
equally treated. However, for a real world problem some attributes
may be less important than others, and some attributes may even be
irrelevant. Therefore, many k-NN based classifiers parameterise the
similarity function (or the distance function) to deal with irrelevant
attributes (see e.g. VDM [23], CCF [5], MVDM [4], MI [6],
Relief-F [13], and k-NNVSM [25] etc.). Intuitively, more important
attributes will be assigned higher weights, and less important
attributes will be assigned lower weights. In reality, an attribute
weight setting algorithm is needed for a weighted k-NN based
classifier. In [26], a survey and empirical analysis of such
algorithms is provided. For an attribute-weighted k-NN classifier,
similarity between instances can be calculated through formula (2).
In formula (2) Wi is the weight on the ith attribute.

∑
=

=
q

i
iii YXSimiWYXSimi

1

),(*),((2)

In this paper, we propose a novel attribute weight setting
method using quadratic programming, which is particularly
suitable for binary classification problems. Compared with
previously proposed methods, our method has the following
advantages. 1) Our method has a sound theoretical foundation,
while most other methods are empirical. Other theoretical works on
attribute weight setting can be found in [18], [20] and [14]. 2)
From our experiments, the performance of our method is even
higher than previously proposed attribute weight setting methods.
3) Our method can use a small-size training set, and still get a good
performance.

2. SETTING ATTRIBUTE WEIGHTS VIA
QUADRATIC PROGRAMMING

2.1 Attribute Weight Setting Problem
The attribute weight setting problem in a weighted k-NN

classifier can be described as follows. There are n training
instances in the training set, each having a value in each of q
attributes and being assigned to a class. These training instances
will be used to calculate a set of attribute weights that will make
the classifier achieve a high performance when using the weights
and the training instances to classify new instances.

Supposing we already have a set of attribute weights, the set
of weights will be used in formula (2) to calculate the similarity
between two instances. The optimal set of attribute weights is a set
of weights that when using the set of attribute weights to classify
some new instances, the smallest number of misclassified instances
can be achieved. Obviously, the optimal attribute weight setting is
related to both the training instances and the instances under
classification. Therefore, the optimal attribute weights cannot be
calculated by only using the training set. However, if we can
assume that the training instances can fully represent the instances
under classification, it seems possible to get the set of optimal
attribute weights that can achieve the smallest prediction error only
using the training set itself. This is the attribute weight setting
problem we will discuss in this paper.

2.2 Quadratic Programming
A quadratic programming (QP) problem is a particular case of

an optimisation problem, which is to calculate the maximum or
minimum value of an objective function of a set of variables
subject to a set of constraints on the variables. For a quadratic
programming problem, each of the constraints is a linear equation
or a linear inequality, and the objective function is at most
quadratic [9]. Therefore, a QP problem can be represented in the
following form.

1,2,...n)j(0

or,

or,

:formsthreetheofoneofisConstraint

)1,2,...mi(Constraintsubject to

minimiseormaximise

1

1

1

11

=≥

≤

=

≥

=

+

∑

∑

∑

∑∑∑

=

=

=

= ==

j

i

n

j
jij

i

n

j
jij

i

n

j
jij

i

i

n

j

n

jk
kjjk

n

j
jj

x

bxa

bxa

bxa

xxCxc

(3)

In (3), x1, x2, … xn are the variables; ∑∑∑
= ==

+
n

j

n

jk
kjjk

n

j
jj xxCxc

11

is

the objective function; n is the number of variables; and m is the
number of constraints.

Quadratic programming is a well-studied area in optimisation,
and there have already been commercial software packages (such
as IBM OSL [12]) to solve quadratic programming problems.
Although there is lack of theoretical analysis of the complexity of
quadratic programming, it is shown in [17] that current quadratic
programming software is able to solve problems with several
thousand variables and several thousand constraints.

2.3 Formalising Attribute Weight Setting for
Binary Classification as Quadratic Programming

In this paper, our focus is on a particular subset of
classification problems – binary classification. In a binary
classification problem, each instance will be classified between two
classes. In this section, we will demonstrate how the attribute
weight setting problem in k-NN based binary classification can be
reduced to a quadratic programming problem.

2.3.1 Assumption for the method
When using a k-NN based classifier to classify instances, the

classifier will classify an instance to the class of a similar instance.
However, if there are many irrelevant attributes and/or different
attributes have different importance, the calculated similarities may
not reflect the real similarities. It is the responsibility of an attribute
weight setting method to acquire the set of weights that can make
the similarities calculated from formula (2) approximate to the real
similarities.

For a binary classification problem, let us assume that the real
similarity between instances in the same class is 1, and the real
similarity between instances in different classes is 0. Then, the
training process is to seek a set of weights, which, when applied to
instances in the training set through formula (2), will lead to
similarities that approximate to the real similarities.

2.3.2 Formalisation
Based on the assumptions, the attribute weight setting

problem in k-NN based binary classification can be viewed as an
optimisation problem whose aim is to minimise the differences
between the similarities calculated from formula (2) and the real
similarities obtained by comparing the classes. However, as there is
only one objective function in an optimisation problem, all the
differences between corresponding pairs of similarities should be
summed into the objective function. As the aim of the optimisation
problem is to minimise all the individual differences, we use the
sum of the square of the differences instead of the arithmetic sum
of the differences. Therefore, the optimisation problem can be
summarised as the following quadratic programming problem.

Supposing there are n training instances in the training set,
each having q attributes, the constraints in the problem can be
presented in (4), in which, Sijk is the similarity on the kth attribute
between instance i and instance j, ∑

=

q

k
kijkWS

1

is the similarity between

instance i and instance j calculated using formula (2), Rij is the real
similarity between instance i and instance j, Lij is the value by
which the calculated similarity is less than the real similarity, and
Mij is the value by which the calculated similarity is greater than
the real similarity. We will call the Lij and Mij as difference
variables.

),...1,(
1

jinjiRMLWS ijijij

q

k
kijk <==−+∑

=

(4)

As analysed above, the objective function in this problem is to
minimise the sum of the square of each Lij and Mij. Actually, our
aim is to minimise each Lij and Mij. However, as we have to
express our aim in one objective function, we choose the sum of
the square of each Lij and Mij to prevent any of them to be too
large. Therefore, the objective function can be presented in (5).

)(minimise
1

2

1

2∑ ∑
= +=

+
n

i
ij

n

ij
ij ML (5)

2.3.3 Complexity analysis
We provide here a brief analysis of the size of this quadratic

programming problem. As there is still no comprehensive analysis
of the complexity of quadratic programming problems, this
analysis can only indicate how large this quadratic programming
problem can be, but not the actual complexity of the problem.

From the above formalisation, there are q weight variables
and n*(n-1) difference variables. The number of the constraints in
(4) is n*(n-1). Therefore, the above quadratic programming
problem is a quadratic programming problem with n*(n-1) +q
variables and n*(n-1) constraints.

2.3.4 Simplification
From the above complexity analysis, the size of the

formalised quadratic programming problem is not linear to the
number of training instances. Therefore, with the increase of the
number of the training instances, the formalised quadratic
programming problem may become unmanageable. In such a case,
some simplification mechanism can be applied to reduce the size of
the quadratic programming problem, which may also reduce the
performance of the classifier in some extent.

In the above formalisation, each instance is compared with all
the other instances. If we only compare each instance with a subset
of other instances, we can reduce the size of the formalised
quadratic programming problem. Supposing an instance is only
compared with another p (p≤n-1) instances, we will have q weight
variables and n*p difference variables, and the number of
constraints will be n*p. Therefore, it becomes a quadratic
programming problem with n*p+q variables and n*p constraints.

3. EXPERIMENTAL RESULTS

3.1 Experimental Method
To test the performance of our method, we have applied our

method to four binary classification data sets, acquired from UCI
Machine Learning Repository [1]. For each data set, we randomly
choose 100 instances in the data set as the training data. Based on
the 100 instances, we calculate the attribute weight setting using
our method without any simplification. Then, the calculated setting
will be used to classify the remaining instances in the data set. The
accuracy of classifying the remaining instances is recorded, and as
the comparison, the accuracy of standard k-NN classification
without using any attribute weights is also recorded. When
calculating the attribute weight setting, we generate the
corresponding quadratic programming problem in MPS format
[19], and use IBM OSL [12] to solve the problem and get the
weight setting. To avoid occasional results, we perform the
experiment ten times for each data set. All the experiments are
performed on a Pentium III 500MHz PC with 128M RAM running
Windows NT 4.0. The CPU time of each weight setting calculation

is also recorded as the training time to indicate the manageability
of each formalised quadratic programming problem. In a k-NN
based classifier, the value of k will also affect the accuracy of
classification. As we are not aiming at investigating the effect of k
to our method, we just select different k for each different data set
to let the basic non-parameterised classifier get the best result in
the first experiment for the data set.

3.2 Descriptions of the Tested Data Sets
The four data sets are the Mushroom data set, the

Congressional Voting data set, the Breast Cancer data set, and the
Pima Indians Diabetes data set. The characteristics of the four
problems are summarised in table 1.

Table 1. Characteristics of the four tested problems
Data Set Number of

Instances
Number

Attributes
Mushroom 8124 22

Congressional Voting 435 16
Breast Cancer 286 9

Pima Indians Diabetes 768 8
In the Mushroom data set, an instance represents one type of

mushrooms. Each instance is characterised by 22 attributes, and
each instance is classified as either edible or poisonous. There are
8124 instances in the data set in total. In the Congressional Voting
data set, an instance represents one vote. Each instance is
characterised by 16 attributes, and each instance is classified as
either for democrats or for republicans. There are 435 instances in
the data set in total. In the Breast Cancer data set, an instance
represents one case of breast cancer. Each instance is characterised
by 9 attributes, and each instance is classified as either recurrent or
not recurrent. There are 286 instances in the data set in total. In the
Pima Indians Diabetes data set, an instance represents one report of
diabetes test. Each instance is characterised by 8 attributes, and
each instance is classified as either positive or negative. There are
768 instances in the data set in total.

3.3 Results on Less Noisy Data Sets
For the Mushroom data set, and the Congressional Voting

data set, there is not much noise in the data sets. Therefore, there
have been highly accurate methods reported in the literature, and
the standard instance based classification can also solve the
problems with high accuracy. Previous results on the Mushroom
data set can be found in [21] and [11]. Previous results on the
Congressional Voting data set can be found in [21] and [26]. The
results on the Mushroom data set are summarised in Table 2. We
select k as 1 when experimenting on this data set.

Table 2. Results on the Mushroom data set
Quadratic

Programming
Standard k-NN Training Time

(seconds)
99.40% 95.96% 1225
98.95% 98.77% 2291
99.50% 96.83% 2155
98.50% 96.07% 1628
98.60% 97.54% 2110
99.00% 98.90% 2240
98.95% 98.40% 2057
98.75% 98.73% 2292
96.11% 95.78% 1586
98.90% 98.02% 1819

On average, the accuracy of using quadratic programming
while setting attribute weights is 98.67%, while the accuracy of not
using attribute weights is 97.50%. The standard deviations are 0.9
and 1.2 percentage points respectively. There is an increase in
accuracy of 1.17 percentage points. The average training time for

the quadratic programming approach is 1940 seconds with the
standard deviation of 343 seconds. The results on the
Congressional Voting data set are summarised in Table 3. We
select k as 9 when experimenting on this data set.

Table 3. Results on the Congressional Voting data set
Quadratic

Programming
Standard k-NN Training Time

(seconds)
97.01% 92.54% 990
94.93% 91.64% 742
95.52% 88.96% 1232
94.93% 87.76% 1467
95.82% 90.45% 1068
96.12% 92.54% 1320
96.42% 93.13% 1418
95.52% 89.25% 1181
95.22% 90.45% 1163
95.22% 89.55% 1011

On average, the accuracy of using quadratic programming
while setting attribute weights is 95.67%, while the accuracy of not
using attribute weights is 90.63%. The standard deviations are 0.6
and 1.7 percentage points respectively. There is an increase in
accuracy of 5.04 percentage points. The average training time for
the quadratic programming approach is 1159 seconds with the
standard deviation of 206 seconds.

3.4 Results on Noisy Data Sets
There has been much noise in the Breast Cancer data set and

the Pima Indians Diabetes data set. Therefore, there has been no
accurate method reported in the literature and the standard k-NN
classifier can only solve the problems with low accuracy. Previous
results on the Breast Cancer data set can be found in [16], [2], [3]
and [24]. Previous results on the Pima Indians Diabetes data set
can be found in [22]. The results on the Breast Cancer data set are
summarised in Table 4. We select k as 17 when experimenting on
this data set.

Table 4. Results on the Breast Cancer data set
Quadratic

Programming
Standard k-NN Training Time

(seconds)
75.27% 74.73% 373
73.12% 70.43% 574
67.74% 67.74% 640
72.58% 71.51% 498
71.51% 70.97% 530
75.27% 74.19% 396
76.34% 74.73% 454
72.58% 69.89% 541
76.88% 72.04% 553
74.19% 72.04% 559

On average, the accuracy of using quadratic programming
while setting attribute weights is 73.55%, while the accuracy of not
using attribute weights is 71.83%. The standard deviations are 2.6
and 2.1 percentage points respectively. There is an increase in
accuracy of 1.72 percentage points. The average training time for
the quadratic programming approach is 512 seconds with the
standard deviation of 78 seconds. The results on the Pima Indians
Diabetes data set are summarised in Table 5. We select k as 13
when experimenting on this data set.

Table 5. Results on the Pima Indians Diabetes data set
Quadratic

Programming
Standard k-NN Training Time

(seconds)
75.60% 74.10% 334
73.80% 71.86% 380
74.25% 72.46% 412
73.05% 69.91% 385
74.40% 72.01% 380
70.51% 69.76% 396

72.60% 74.10% 390
73.80% 70.96% 401
74.55% 70.96% 429
73.50% 69.61% 431

On average, the accuracy of using quadratic programming
while setting attribute weights is 73.61%, while the accuracy of not
using attribute weights is 71.57%. The standard deviations are 1.3
and 1.6 percentage points respectively. There is an increase in
accuracy of 2.04 percentage points. The average training time for
the quadratic programming approach is 394 seconds with the
standard deviation of 27 seconds.

3.5 Analysis of the Experimental Results
Based on the above experimental results, we can find the

following merits of our method.

3.5.1 Stable increase in accuracy
For an attribute setting method for k-NN, the basic evaluation

is the increase over the standard k-NN. For the two less noisy data
sets, our method achieves increase in accuracy in all the 20
experiments unanimously. For the two noisy data sets, our method
achieves increase in accuracy in 18 experiments, zero increase in
one experiment and some decrease in another experiment. On
average, our method achieves increase in accuracy for all the four
data sets. It has been shown in [26] that any of the previous
weighted approaches analysed in that paper may achieve decrease
in accuracy for some data sets. However, our method seems more
stable in achieving increase in accuracy for different data sets. It
should be noted here that as there is no irrelevant attribute in any of
the four data sets, it is natural that our method does not achieve
dramatic increase in accuracy for any of them. In [26], six data sets
with no irrelevant attribute are tested against six methods. The
accuracies of the standard k-NN for the six data sets are
respectively 72.7±0.4 (LED-7), 82.1±0.4 (Waveform-21), 82.4±0.8
(Cleveland), 92.6±0.7 (Congressional Voting), 84.2±0.3 (Isolet),
and 69.6±0.2 (NETtalk). A summary of the increases achieved in
[26] is shown in Table 6. The average increases in accuracy in
percentage points for the six data sets are respectively 1.88 (Relief-
F [13]), 1.75 (k-NNVSM [25]), -0.22 (CCF [5]), 0.55 (VDM [23]),
1.88 (MVDM [4]), and 2.00 (MI [6]). Our method achieves an
average increase of 2.49 percentage points on the tested four data
sets.
Table 6. Previous results on data sets without irrelevant attributes

Data Set Relief-F k-NNVSM CCF VDM MVDM MI
LED-7 -1.0 0.0 -1.5 -1.4 -1.3 -1.2

Waveform-21 0.3 -0.5 -6.1 -3.7 -3.9 0.5
Cleveland -0.5 0.0 -1.3 0.2 0.7 -0.6

Congressional
Voting

2.9 2.5 1.0 2.1 2.1 2.0

Isolet 0.4 1.9 -1.1 -3.9 1.6 1.6
NETtalk 9.2 6.6 7.7 10.0 12.1 9.7

3.5.2 Bearable training time
The idea of using optimisation for machine learning has

already been proposed in the literature (see e.g. [15] and [10]). The
main drawback of this kind of approaches is they usually need
much computation, which may mean long training time. In our
experiments, the average training times for the four data sets are
respectively 32.3 minutes (Mushroom), 19.3 minutes
(Congressional Voting), 8.5 minutes (Breast Cancer), and 6.6
minutes (Pima Indians Diabetes). Any of the above training times
is bearable, and it can be predicted that the training time of our
method for larger training set and/or data sets with more attributes
should also be bearable.

3.5.3 Competitive performance
In both [21] and [11], the Mushroom data set is used to

evaluate the methods proposed in the corresponding papers. Both
accuracies acquired in the papers are approximately 95%. Both are
lower than the accuracy achieved by our method, which is 98.67%.
However, our result is a little lower than the result achieved by
RISE [8], which is 100%.

In [21], the STAGGER method is also applied to the
Congressional Voting data set and the accuracy is between 90%
and 95%. In [26], six weighted k-NN approaches are tested on the
Congressional Voting data set and the accuracies are respectively
95.5% (Relief-F [13]), 95.1% (k-NNVSM [25]), 93.6% (CCF [5]),
94.7% (VDM [23]), 94.7% (MVDM [4]) and 94.6% (MI [6]). The
accuracy of RISE [8] is 95.2%. All the above accuracies are
somewhat lower than the accuracy achieved by our method, which
is 95.67%.

The Breast Cancer data set is tested in [16], [2], [3] and [24].
The accuracy range acquired in [16] is 66%-72%. The accuracy
range acquired in [3] is 65%-72%. The accuracy range acquired in
[24] is 68%-73.5%. The accuracy acquired by RISE [8] is 67.7%.
All the above accuracies are somewhat lower than the accuracy
achieved by our method, which is 73.55%. The accuracy achieved
in [2] is 78%, a little higher than that of our method.

The accuracy acquired on the Pima Indians Diabetes data set
in RISE [8] is 70.4%, which is lower than our method. The
accuracy in [22] is 76%, which is a little higher than that of our
method, which is 73.61%. Please note that k-NN based approaches
usually have lower performance than other approaches [26]. The
above comparison of performance is summarised in Table 7.

Table 7. Comparison of average performance
Method Mushroom Congressional

Voting
Breast
Cancer

Pima
Indians
Diabetes

Ours 98.67% 95.67% 73.55% 73.61%
[11] 95% - - -
[21] 95% 90%-95% - -
[26] - 93.6%-95.5% - -
[16] - - 66%-72% -
[3] - - 65%-72% -
[24] - - 68%-73.5% -
[2] - - 78% -
[22] - - - 76%
[8] 100% 95.2% 67.7% 70.4%

3.5.4 Small training sets
Intuitively, our method can take all the comparisons between

any two training instances into consideration when training, and
therefore, our method may acquire enough knowledge from less
training instances to get a good performance. The experimental
results also indicate this merit.

In [21], 1000 instances are used as training instances for the
Mushroom data set. In our experiments, our method uses 100
training instances and the accuracy is higher that the accuracy
achieved in [21].

In [26], 305 instances are used as training instances for the
Congressional Voting data set to test the six weighted k-NN
approaches. In our experiments, our method uses 100 training
instances and the accuracy of our method is higher than that of any
of the six methods.

In [22], 576 instances are used as training instances for the
Pima Indians Diabetes data set to predict the rest 192 instances. In
our experiments, our method uses only 100 training instances and
achieves a little lower accuracy. In Table 8, there is a summary of
the above comparison.

Table 8. Comparison of training set sizes
Data Set Previous Methods Our Method

Training
Set Size

Average
Accuracy

Training
Set Size

Average
Accuracy

Mushroom 1000 95% 100 98.67%
Congressional

Voting
305 93.6%-95.5% 100 95.67%

Pima Indians
Diabetes

576 76% 100 73.61%

4. LIMITATION
The main limitation of our method may be the assumption that

the real similarity between instances in the same class is 1 and the
real similarity between instances in different classes is 0. Although
this seems natural for many problems, it is not always the case. For
example, when classifying instances as normal or abnormal, those
normal instances should be similar in nature, but those abnormal
instances may not be similar at all. Furthermore, instances in
different classes may not be totally dissimilar to each other. This is
more the case when the problem is not a binary classification
problem. It is always in nature that some classes are somewhat
similar to each other while other classes are dissimilar to each
other. Due to this reason, we think this method can achieve good
performance only on binary classification problems, and there
should be some adaptation before applying it to other classification
problems.

5. CONCLUSION
There have been quite a few attribute weight setting

algorithms for k-NN reported in the literature. In this paper, we
proposed a new attribute weight setting method for k-NN based
binary classification using quadratic programming. We also
performed a series of experiments on four previously known binary
classification problems. Besides that our method has a solid
theoretical foundation, the experimental results also show that our
method has the following merits: a stable increase in accuracy over
standard k-NN, bearable training time, a good performance
compared with other methods, and the ability to deal with small
training sets.

ACKNOWLEDGEMENTS
The work in this paper was supported by the UK DTI under

the Foresight ‘LINK’ programme (FLA009). Our thanks are due to
Colin Johnson and John Hucksteppe of Stoves PLC, Mike Delves
of NA Software Ltd., and Stan Price for their assistance with the
project.

REFERENCES
[1] C. L. Blake and C. J Merz, UCI Repository of Machine Learning

Databases [http://www.ics.uci.edu/~mlearn/MLRepository.html].
Irvine, CA: University of California, Department of Information and
Computer Science, 1998.

[2] G. Cestnik, I. Konenenko, and I. Bratko, ‘Assistant-86: A
Knowledge-Elicitation Tool for Sophisticated Users’, In Proceedings
of the 2nd European Working Session on Learning. I. Bratko & N.
Lavrac (Eds.) Progress in Machine Learning, 31-45, Sigma Press.
(1987).

[3] P. Clark, and T. Niblett, ‘Induction in Noisy Domains’, In
Proceedings of the 2nd European Working Session on Learning. I.
Bratko & N. Lavrac (Eds.) Progress in Machine Learning, 11-30,
Bled, Yugoslavia: Sigma Press. (1987).

[4] S. Cost, and S. Salzberg, A Weighted Nearest Neighbor Algorithm for
Learning with Symbolic Features. Machine Learning, 10, 57-78.
(1993).

[5] R. H. Creecy, B. M. Masand, S. J. Smith, and D. L. Waltz, ‘Trading
Mips and Memory for Knowledge Engineering’, Communications of
the ACM, vol. 35, pp. 48-64, (1992).

[6] W. Daelemans, S. Gills, and G. Durieux, Learnability and
Markedness in Data-Driven Acquisition of Stress (Technical Report
43). Tilburg, Netherlands: Tilburg University, Institute for Language
Technology and Artificial Intelligence, 1993.

[7] B. V. Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern
Classification Techniques. Los Alamitos, CA: IEEE Computer
Society Press, 1991.

[8] Domingos P. (1996). Unifying Instance-Based and Rule-Based
Induction, Machine Learning, 24(2), pages 141-168.

[9] R. Fourer, Nonlinear Programming Frequently Asked Questions,
[http://www-unix.mcs.anl.gov/otc/Guide/faq/nonlinear-programming-
faq.html], 2001.

[10] A. J. Grove, N. Littlestone, and D. Schuurmans, ‘General
Convergence Results for Linear Discriminant Updates’, In
Proceedings of the COLT 97, pp. 171-183, ACM Press. (1997).

[11] W. Iba, J. Wogulis, and P. Langley, ‘Trading off Simplicity and
Coverage in Incremental Concept Learning’, In Proceedings of the 5th
International Conference on Machine Learning, 73-79. Ann Arbor,
Michigan: Morgan Kaufmann. (1988).

[12] IBM, Optimization Solutions and Library (Version 3),
[http://www6.software.ibm.com/sos/osl/optimization.htm], 2001.

[13] I. Kononenko, ‘Estimating Attributes: Analysis and Extensions of
RELIEF’, In Proceedings of the 1994 European Conference on
Machine Learning, pp. 171-182, Catania, Italy: Springer Verlag.
(1994).

[14] C. X. Ling and H. Wang, ‘Computing Optimal Attribute Weight
Settings for Nearest Neighbor Algorithms’, Artificial Intelligence
Review, vol. 11, pp. 255-272, (1997).

[15] N. Littlestone, ‘Learning Quickly When Irrelevant Attributes Abound:
A New Linear-Threshold Algorithm’, Machine Learning, vol. 2, no.
4, pp. 285-318, (1988).

[16] R.S. Michalski, I. Mozetic, J. Hong, and N. Lavrac, ‘The Multi-
Purpose Incremental Learning System AQ15 and its Testing
Application to Three Medical Domains’, In Proceedings of the Fifth
National Conference on Artificial Intelligence, pp. 1041-1045,
Philadelphia, PA: Morgan Kaufmann. (1986).

[17] H. D. Mittelmann, ‘Benchmarking Interior Point LP/QP Solvers’,
Optimization Methods and Software 12, 655-670, (1999).

[18] M. Mohri and H. Tanaka, ‘An Optimal Weighting Criterion of Case
Indexing for Both Numeric and Symbolic Attributes’, In Aha (ed.)
Case-Based Reasoning: Papers from the 1994 Workshop, Menlo Park,
CA: AAAI Press. (1994).

[19] B. Murtagh, Advanced Linear Programming: Computation and
Practice. McGraw-Hill, 1981.

[20] K. Satoh and S. Okamoto, ‘Toward PAC-Learning Of Weights from
Qualitative Distance Information’, In Aha (ed.) Case-Based
Reasoning: Papers from the 1994 Workshop, Menlo Park, CA: AAAI
Press. (1994).

[21] J.S. Schlimmer, Concept Acquisition Through Representational
Adjustment (Technical Report 87-19). Doctoral dissertation,
Department of Information and Computer Science, University of
California, Irvine. 1987.

[22] J.W. Smith, J.E. Everhart, W.C. Dickson, W.C. Knowler, and R.S.
Johannes, ‘Using the ADAP Learning Algorithm to Forecast the
Onset of Diabetes Mellitus’, In Proceedings of the Symposium on
Computer Applications and Medical Care, pp. 261--265. IEEE
Computer Society Press. (1988).

[23] C. Stanfill and D. Waltz, ‘Toward Memory-Based Reasoning’,
Communications of the ACM, vol. 29, pp. 1213-1228, (1986).

[24] M. Tan, and L. Eshelman, ‘Using Weighted Networks to Represent
Classification Knowledge in Noisy Domains’, In Proceedings of the
Fifth International Conference on Machine Learning, pp. 121-134,
Ann Arbor, MI. (1988).

[25] D. Wettschereck, A Description of the Mutual Information Approach
and the Variable Similarity Metric (Technical Report 944). Sankt
Augustin, Germany, German National Research Center for Computer
Science, Artificial Intelligence Research Division. 1995.

[26] D. Wettschereck, D. W. Aha, and T. Mohri, ‘A Review and Empirical
Evaluation of Feature Weighting Methods for a Class of Lazy
Learning Algorithms’, Artificial Intelligence Review, vol. 11, pp.
273-314, 1997.

