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Abstract. The paper presents a hybrid classification method of 
BNF grammar-based genetic programming and evolutionary 
decision tree induction, customized for the rule induction according 
to a layered hierarchical scheme – the AREX approach. It 
incorporates two original, independent evolutionary algorithms 
which together solve the problem of automatic classification rules 
induction. The method is applied to five real world databases (from 
medicine and software engineering) and the results are compared to 
those obtained with C5/See5 to evaluate the method’s efficiency. 
Ideally, this paper will inspire future research in this same area and 
along similar lines. 
 
 
1 INTRODUCTION 
 
In the past half a century artificial intelligence research has not 
fulfilled many expectations and has left a lot of challenges open. 
One of the very actual between them is to find a general machine 
learning and decision making technique that works on real world 
data and simultaneously include specific limitations of several 
application areas but still not limit its all-purposeness. 

It has been tried to solve the challenge with so called new 
artificial intelligence, which most evident members are intelligent 
systems. They are based on a variety of methodologies, one of the 
most interesting of them is automatic programming. The goal of 
automatic programming is to automatically construct a computer 
program for solving a given problem. Automatic programming is 
domain independent approach to problem solving and as such 
appropriate basic technique for machine learning in intelligent 
systems. 

Our work concentrates on design and verification of an 
intelligent system for automatic knowledge discovery with 
automatic programming. For this purpose we: 1) analyzed 
performance and adequacy of the existing automatic knowledge 
discovery systems, 2) identified disadvantages of the existing 
intelligent systems, 3) defined and verified general model for 
intelligent systems for automatic knowledge discovery based on 
automatic programming, and 4) analyzed performance of the 
developed intelligent system with the emphasis on the real world 
problems from medicine and software evaluation. 

 
 

2 THE AREX ALGORITHM 
 

Knowledge discovered with data mining algorithms should 
ideally give an in-depth explanation of a problem domain along 
with a good classification [5]. Experts are performing exhaustive 
analyses of the results, which are the output of knowledge 
discovery tools, in order to extract the useful knowledge. To make 
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a part of their work as easy as possible the best way is to present 
the results in a form of a set of classification rules, which are clear 
and straightforward to understand, accept or reject. Ideal system 
would therefore include: 

- accuracy – classification with minimal error rate, 
- compactness – use of a minimum number of rules, and 
- simplicity – single rules are not complex. 

Data to use as the source for knowledge discovery system are 
represented with the set of training objects o1, …, oN. Each training 
object oi is described with the values of attributes ai1, …, aik and the 
accompanied decision ωi from the set of m possible decisions [Ω1, 
…,Ωm]. Attributes can be either numeric (value is a numbers from a 
continues interval) or discrete (value is one from the discrete set of 
all possible values). It is not necessary for all values to be known, 
as the algorithm can work also with missing values.  

Knowledge that is discovered with the help of our algorithm is 
represented with a set of classification rules. Each single rule in a 
set is in the following form:  
 

if <condition> then <decision>, where 
 
<condition> := <c1> and … and <cd>, and 
<decision> := ω, ω ∈ [Ω1, …, Ω2] 

 
In this manner the rules are clear and easy enough for further 
analyses and in the same time their functional power is strong 
enough for successful classification. A set of classification rules 
can lose on the understandability if the number of rules in a set is 
too high. On the other hand the classification accuracy would 
decrease if the number of classification rules in a set is too low. 
Following this statement all the rules are arranged regarding their 
importance into several levels to form the hierarchical 
classification model (figure 1). 

An approach to the distribution of data objects into subsets that 
will be covered by the rules on a specific level is defined first. For 
this purpose an algorithm for the construction of decision trees was 
defined [8] – with the help of classification by decision trees it can 
be determined which objects are appropriate to be used on a 
specific level of classification. 

The complete rules extracting algorithm has been called AREX 
(Automatic Rules EXtractor). AREX uses as the input a training set 
of objects and based on those objects classification rules are built,  
hierarchically distributed over several levels. Algorithm AREX 
includes a hybrid system of two basic algorithms: 1) an 
evolutionary algorithm for the construction of decision trees that is 
used to distribute the objects between levels and to build a part of 
the initial set of classification rules, and 2) proGenesys system that 
allows automatic evolution of programs in an arbitrary 
programming language and is used for the construction of 
classification rules on a single level. The basic outline of the 
AREX algorithm is illustrated in figure 2 and can be described in 
the following steps: 



0. input: a set of training objects S and clearness tolerance t 
1. build N evolutionary decision trees upon objects from S 
2. copy all objects from S, classified in leaves in accordance 

with clearness tolerance t in at least N/2+1 trees, to a set S* 
and clear from a set S 

3. from all N decision trees create M initial classification rules 
(all leaves in accordance with clearness tolerance t are used)  

4. with the proGenesys system create another M classification 
rules randomly; initial population now contains 2×M 
classification rules 

5. using the proGenesys system evolve the final set of rules for 
classifying objects from S* at the current level 

6. find the optimal final set of rules using simple optimization 
7. if S is not empty (there are still some unclassified objects for 

the next level): 1) add |S| randomly chosen objects from S* to 
S; 2) increase clearness tolerance t=2×t; 3) repeat the whole 
procedure from step 1 

8. finish if S is empty 
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Figure 1.   Multi-level hierarchical classification model 
 
 
2.1  Genetic algorithm for the construction of 

decision trees 
 
First step of the genetic algorithm is the creation of the initial 
population. A random decision tree is constructed based on the 
following algorithm: 
 

0. input: number of attribute nodes N that will be in the tree 
1. select an attribute Xi from the set of all possible attributes and 

set it as a rood node t 
2. in accordance with the selected attribute's Xi type (discrete, 

continuous) define a test for this node t: 1) for continuous 
attributes in a form of ƒt(Xi) < φi , where ƒt(Xi) is the attribute 
value for a data object and φi is a split constant; 2) for 
discrete attributes two disjunctive sets of all possible attribute 
values are randomly defined 
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Figure 2.   The diagram of AREX algorithm 
 
 

3. connect empty leaves to both new branches from node t 
4. randomly select an empty leaf node t (the probability of 

selecting an empty leaf is decreased with the depth of the leaf 
in a growing tree) 

5. randomly select an attribute Xi from the set of all possible 
attributes (the probability of choosing an attribute depends on 
a number of previous uses of that attribute in a tree – in this 
manner unused attributes have better chances to be selected) 

6. replace the selected leaf node t with the attribute Xi and go to 
step 2 

7. finish when N attribute nodes has been created 

 
For each empty leaf the following algorithm determines the 
appropriate decision class: let S be the training set of all training 
objects N with K possible decision classes d1, .., dK and Ni is the 
number of objects within S of a class di. Let St be the sample set at 
node t (an empty leaf for which we are trying to select a decision 
class) with Nt objects; Ni

t is the number of objects within St of a 
decision class di. Now we can define a function that measures a 
potential percentage of correctly classified objects of a class di: 
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Decision di

t for the leaf node t is then set as a decision di, for which 
F(t,i) is maximal. 

The ranking of an individual DT within a population is based on 
the local FF: 
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where K is the number of decision classes, N is the number of 
attribute nodes in a tree, acci is the accuracy of classification of 
objects of a specific decision class di, wi is the importance weight 
for classifying the objects of a decision class di, c(ti) is the cost of 
using the attribute in a node ti, nu is number of unused decision 
(leaf) nodes, i.e. where no object from the training set fall into, and 
wu is the weight of the presence of unused decision nodes in a tree. 
 
2.2 System proGenesys for automatic evolution of 

programs 
 
For constructing classification rules we developed a system for the 
evolution of programs in an arbitrary programming language, 
described with BNF productions – proGenesys (program 
generation based on genetic systems). In our approach an 
individual is represented with a syntax tree (a derivation tree), as it 
is usual for grammar-based GP [4,12]. To get the final solution this 
tree (genotype) is transformed into a program (phenotype) [11]. 

First step of automatic programming is the initialization of the 
initial population.. For the successful continuation of the program 
evolution process the initial programs should be evenly distributed 
[3]. Known program initialization procedures are theoretically 
correct but are working well only for small problems [6]. The 
problem is that limitations regarding the tree size are not 
considered during the induction. For this reason a lot of built trees 
have to be rejected, which is time consuming. An initialization 
procedure based on dynamic grammar pruning as proposed in [10] 
could solve the problem. In the proGenesys system a procedure is 
used that allows the induction of a program tree of exactly 
specified size (figure 3). 
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Figure 3.   Controlled construction of derivation trees of a specific depth 

 
A good classification rule should simultaneously be clear (most of 
the objects covered by the rule should fall into the same decision 
class) and general (it covers many objects – otherwise it tends to be 
too specific). Those two criteria can be measured with the 
following formulas: 

 
num. of classified objects – 1 

generality =  
num. of objects of this decision class 

 ω2  
 Ω2  
 ω1  clearness = 1 –  

 Ω1  
 
where ω1 is number of objects covered by the rule that belong to 
the most frequent decision class, ω2 is number of objects covered 
by the rule that belong to the second most frequent decision class, 
Ω1 is number of all objects in the training set that belong to the 
most frequent decision class of the rule, and Ω2 is number of all 
objects in the training set that belong to the second most frequent 
class of the rule. Now a fitness function can be defined as 
 

FF = clearness × generality + ∑
=

N

i
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where the last part represents a cost of the use of specific attributes, 
the same as in the local fitness function LFF in building decision 
trees. 
 
2.3 Finding the optimal set of rules 
 
System proGenesys is used to evolve single rules, whereas for the 
classification of all objects on a specific level a set of rules is 
required. For this purpose between all the evolved rules a set of 
rules should be found that together classify all the objects – with 
high classification accuracy and a small number of rules. A 
problem is solved with a simple genetic algorithm that optimizes 
the following fitness function: 
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where the first two parts are the same as in the LFF for building 
decision trees, and nm is the number of multiple classified objects, 
nu is the number of non-classified objects, and wm and wu are the 
corresponding weights. The appropriate coverage of the training set 
is thus achieved by reducing the number of not classified and 
multiple classified objects. A more advanced way to achieve the 
uniform coverage is discussed in [1]. 
 
 
3 ASSESSMENT OF RESULTS AND 

DISCUSSION 
 

To make an objective assessment of our method a comparison 
of the obtained results has been made with the reference method 
for building decision trees, namely C5/See5. The following 
quantitative measures of efficiency have been used: 
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num. of correctly classified objects 
accuracy =  

num. of all objects 
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and also measures of efficiency regarding the understandability of 
discovered knowledge: number of rules and number of used 
attributes. Experiments have been made with five real-world 
databases, four from the field of medicine and one from the field of 
software engineering. 
 
3.1 MVP database 
 
Prolapse is defined as the displacement of a bodily part from its 
normal position. The term mitral valve prolapse (MVP) [2], 
therefore, implies that the mitral leaflets are displaced relative to 
some structure, generally taken to be the mitral annulus. The silent 
prolapse is the prolapse which can not be heard with the 
auscultation diagnosis and is especially hard to diagnose. The 
implications of the MVP are the following: disturbed normal 
laminar blood flow, turbulence of the blood flow, injury of the 
chordae tendinae, the possibility of thrombus’ composition, 
bacterial endocarditis and finally hemodynamic changes defined as 
mitral insufficiency and mitral regurgitation. Mitral valve prolapse 
is one of the most prevalent cardiac conditions, which may affect 
up to five to ten percent of normal population and one of the most 
controversial one. 

Using the Monte Carlo sampling method 900 children and 
adolescents were selected representing the whole population under 
eighteen years of life. Routinely they were called for an 
echocardiography no matter of prior findings. 631 of them passed 
an examination of their health state in a form of a carefully 
prepared protocol specially made for the syndrome of MVP. The 
protocol consisted of 103 parameters that can possibly indicate the 
presence of MVP. Distribution of the three decision classes were: 
5% prolapse, 6% silent prolapse, and 89% ok. A summary of the 
MVP database is presented in table 1. 
 
3.2 MRACID database 
 
Through the help of classical medical research it has been 
established that surgeries under the general anesthesia cause in 
organism a tendency to dropping the blood’s pH value, also known 
as predisposition to acidemia. The results of blood’s gases analysis, 
serum electrolytes analysis, blood count and values of length of the 
operation, blood pressure, pulse, temperature, age, weight, height, 
sex, duration of the surgery and transfusion volume have been used 
to define altogether 25 attributes. Altogether 82 children patients 
were thoroughly examined in the study. Distribution between the 
two decision classes were: 88% with the tendency towards acidosis 
and 12% without the tendency towards acidosis. A summary of the 
MRACID database is presented in table 1. 
 
3.3 AAP database 
 
The early and accurate diagnosis of acute appendicitis is a difficult 
and challenging problem in everyday clinical routine. Of major 

concern are the perforation rate (up to 20%) and negative 
appendectomy rate (up to 30%). An important factor in the error 
rate is poor discrimination between acute appendicitis and other 
diseases that cause acute abdominal pain (AAP) [7]. This error rate 
is still high, despite considerable improvements in history-taking 
and clinical examination, computer-aided decision-support and 
special investigation, such as ultrasound. 

The database was built-up during an Concerted Action funded 
by the European Commission during the COPERNICUS program. 
Data was collected in 16 centers from Central and Eastern Europe. 
For data collection the computer program developed in the 
MEDWIS program was used. Medical terminology was translated 
into 10 different languages, so that the participating centers could 
be provided with national versions of the software. The final 
diagnosis was based on the diagnosis at discharge. A summary of 
the AAP database is presented in table 1. 
 
3.4 AV database 
 
Continuous time signals, like EEG, are often used in medicine by 
the medical staff to provide some information about the state of the 
patients. The objective of this study was to recognize patients with 
Alzheimer disease based on the recorder EEG signals. EEG or 
electroencephalogram is a record of electrical activity in the human 
brain (Figure 4). The EEG is one of the tools a neurologist uses in 
the diagnosis of brain conditions. There are several methods to 
analyze continuous time signals in medicine. Data mining 
techniques and data-based classification methods are not 
appropriate to deal with these kind of data. However, applying 
some domain knowledge enable one to extract parameters from 
EEG signals, that provide enough distinguishable information 
about a specific signal (Figure 5). In this way a set of continuous 
attributes are obtained, based on the domain knowledge, which can 
be used to construct a decision tree (avg, min, max, median in the 
frequency domain, avg, median, max, balanced median in the time 
domain, etc.). Distribution between the two decision classes was 
very unbalanced: 88% of patients with Alzheimer disease and 12% 
with some other vascular problems. A summary of the AV 
database is presented in table 1. 
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Figure 4.   Selection of attributes from an EEG signal (band 1), showing 
the characteristic points for the frequency (b1) and time (t1) domain 

 

3.5 SCM database 
 
Software development is a complex and complicated process in 
which software faults are inserted into the code by mistakes during 
the development process or maintenance. It has been shown that 
the pattern of the faults insertion phenomena is related to the 
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measurable attributes of software objects, especially with the 
software metrics [9]. 

In the study a medical software system has been used, 
developed at the University of Udine, Italy. It consists of 904 
software modules containing over 2 million lines of code in C++ 
language. For all modules a set of metrics’ results measured after 
the development of the system and a seven years of maintenance 
reports about found errors exist. Based on the number of 
discovered errors modules have been tagged either as OK or 
dangerous. The aim of the study is to classify the modules in those 
two groups based on the metrics’ results. A summary of the SCM 
database is presented in table 1. 
 
 

Table 1.   A summary of tested databases 
 
dataset ∆ ∇ ◊ 
mvp 361 102 5,23%     5,71%     89,06% 
mracid 82 24 87,80%     12,20% 
aap 3439 18 47,34%     52,66% 
av 207 40 88,00%     12,00% 
scm 904 168 23,56%     76,44% 

  ∆ num. of objects   ∇ num. of attributes   ◊ distribution of decision classes 
 
 
3.6 The results 
 

When using evolutionary methods it is important to guarantee 
the convergence of evolutionary runs. Figure 5 shows average 
convergence rates of 10 independent evolutionary runs for each 
database for the first 100 generations. 
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Figure 5.   Fitness scores of the best solutions in each population 
 
 
For the objective comparison of efficiency for a knowledge 
discovery method upon each database the universal criteria have 
been defined: 
 
    efficiencyclassification = sensitivity × specificity (10) 
 

average number of rules for a method simplicity = 1 –  max. number of rules for all methods 
 
    efficiency = sensitivity × specificity × simplicity (12) 
 
 

All three criteria are normalized values between 0 and 1, therefore 
the result (i.e. efficiency of a method) is expressed as a value in 
percents between 0 and 100%, where the most efficient method has 
the highest score. With those criteria efficiency of our method can 
be objectively evaluated upon all five databases (table 2); it has 
been compared with the C5/See5 tool [13]. 
 
 

Table 2.   A comparison of efficiency of methods C5/See5 and AREX 
 
 C5/See5 AREX 
dataset ∆ ∇ ◊ ∆ ⊗ ◊ 
mvp 92,28 10,59 5,53 91,47 41,18 31,17 
mracid 91,94 25,71 12,86 95,98 31,43 27,34 
aap 84,84 23,69 17,09 83,25 95,04 66,00 
av 88,66 13,75 7,14 93,07 31,25 23,07 
scm 79,16 20,32 8,77 83,27 90,97 58,94 
     ∆ accuracy       ∇ simplicity       ◊ efficiency 
 
 
To be able to confirm a higher efficiency of our method AREX 
when compared to C5/See5, the statistical significant difference 
between the results has been calculated using the Leven-T test for 
the comparison of equivalence of variances. The results show 
statistical significant difference with high probability for sensitivity 
(level 0.002), efficiency (0.001), and simplicity (0.000). Regarding 
all the results achieved with our method AREX we can say, that 
automatic programming is an appropriate method to achieve more 
efficient knowledge discovery on some real-world medical 
databases. 
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