

AREX – Classification Rules Extracting Algorithm Based
on Automatic Programming

Vili Podgorelec1 and Peter Kokol1 and Ivan Rozman1

Abstract. The paper presents a hybrid classification method of
BNF grammar-based genetic programming and evolutionary
decision tree induction, customized for the rule induction according
to a layered hierarchical scheme – the AREX approach. It
incorporates two original, independent evolutionary algorithms
which together solve the problem of automatic classification rules
induction. The method is applied to five real world databases (from
medicine and software engineering) and the results are compared to
those obtained with C5/See5 to evaluate the method’s efficiency.
Ideally, this paper will inspire future research in this same area and
along similar lines.

1 INTRODUCTION

In the past half a century artificial intelligence research has not
fulfilled many expectations and has left a lot of challenges open.
One of the very actual between them is to find a general machine
learning and decision making technique that works on real world
data and simultaneously include specific limitations of several
application areas but still not limit its all-purposeness.

It has been tried to solve the challenge with so called new
artificial intelligence, which most evident members are intelligent
systems. They are based on a variety of methodologies, one of the
most interesting of them is automatic programming. The goal of
automatic programming is to automatically construct a computer
program for solving a given problem. Automatic programming is
domain independent approach to problem solving and as such
appropriate basic technique for machine learning in intelligent
systems.

Our work concentrates on design and verification of an
intelligent system for automatic knowledge discovery with
automatic programming. For this purpose we: 1) analyzed
performance and adequacy of the existing automatic knowledge
discovery systems, 2) identified disadvantages of the existing
intelligent systems, 3) defined and verified general model for
intelligent systems for automatic knowledge discovery based on
automatic programming, and 4) analyzed performance of the
developed intelligent system with the emphasis on the real world
problems from medicine and software evaluation.

2 THE AREX ALGORITHM

Knowledge discovered with data mining algorithms should
ideally give an in-depth explanation of a problem domain along
with a good classification [5]. Experts are performing exhaustive
analyses of the results, which are the output of knowledge
discovery tools, in order to extract the useful knowledge. To make

1 University of Maribor – FERI, Smetanova 17, SI-2000 Maribor,
Slovenia

a part of their work as easy as possible the best way is to present
the results in a form of a set of classification rules, which are clear
and straightforward to understand, accept or reject. Ideal system
would therefore include:

- accuracy – classification with minimal error rate,
- compactness – use of a minimum number of rules, and
- simplicity – single rules are not complex.

Data to use as the source for knowledge discovery system are
represented with the set of training objects o1, …, oN. Each training
object oi is described with the values of attributes ai1, …, aik and the
accompanied decision ωi from the set of m possible decisions [Ω1,
…,Ωm]. Attributes can be either numeric (value is a numbers from a
continues interval) or discrete (value is one from the discrete set of
all possible values). It is not necessary for all values to be known,
as the algorithm can work also with missing values.

Knowledge that is discovered with the help of our algorithm is
represented with a set of classification rules. Each single rule in a
set is in the following form:

if <condition> then <decision>, where

<condition> := <c1> and … and <cd>, and
<decision> := ω, ω ∈ [Ω1, …, Ω2]

In this manner the rules are clear and easy enough for further
analyses and in the same time their functional power is strong
enough for successful classification. A set of classification rules
can lose on the understandability if the number of rules in a set is
too high. On the other hand the classification accuracy would
decrease if the number of classification rules in a set is too low.
Following this statement all the rules are arranged regarding their
importance into several levels to form the hierarchical
classification model (figure 1).

An approach to the distribution of data objects into subsets that
will be covered by the rules on a specific level is defined first. For
this purpose an algorithm for the construction of decision trees was
defined [8] – with the help of classification by decision trees it can
be determined which objects are appropriate to be used on a
specific level of classification.

The complete rules extracting algorithm has been called AREX
(Automatic Rules EXtractor). AREX uses as the input a training set
of objects and based on those objects classification rules are built,
hierarchically distributed over several levels. Algorithm AREX
includes a hybrid system of two basic algorithms: 1) an
evolutionary algorithm for the construction of decision trees that is
used to distribute the objects between levels and to build a part of
the initial set of classification rules, and 2) proGenesys system that
allows automatic evolution of programs in an arbitrary
programming language and is used for the construction of
classification rules on a single level. The basic outline of the
AREX algorithm is illustrated in figure 2 and can be described in
the following steps:

0. input: a set of training objects S and clearness tolerance t
1. build N evolutionary decision trees upon objects from S
2. copy all objects from S, classified in leaves in accordance

with clearness tolerance t in at least N/2+1 trees, to a set S*
and clear from a set S

3. from all N decision trees create M initial classification rules
(all leaves in accordance with clearness tolerance t are used)

4. with the proGenesys system create another M classification
rules randomly; initial population now contains 2×M
classification rules

5. using the proGenesys system evolve the final set of rules for
classifying objects from S* at the current level

6. find the optimal final set of rules using simple optimization
7. if S is not empty (there are still some unclassified objects for

the next level): 1) add |S| randomly chosen objects from S* to
S; 2) increase clearness tolerance t=2×t; 3) repeat the whole
procedure from step 1

8. finish if S is empty

(a1, a2, ..., ak)
level: 1

if <cond> then <decision>
if <cond> then <decision>
...

level: 2

if <cond> then <decision>
if <cond> then <decision>
...

level: N

if <cond> then <decision>
if <cond> then <decision>
...

decision

decision

decision

decision not possible

decision not possible

decision not possible

object

Figure 1. Multi-level hierarchical classification model

2.1 Genetic algorithm for the construction of

decision trees

First step of the genetic algorithm is the creation of the initial
population. A random decision tree is constructed based on the
following algorithm:

0. input: number of attribute nodes N that will be in the tree
1. select an attribute Xi from the set of all possible attributes and

set it as a rood node t
2. in accordance with the selected attribute's Xi type (discrete,

continuous) define a test for this node t: 1) for continuous
attributes in a form of ƒt(Xi) < φi , where ƒt(Xi) is the attribute
value for a data object and φi is a split constant; 2) for
discrete attributes two disjunctive sets of all possible attribute
values are randomly defined

Rules construction with
proGenesys system.

Input (training) objects -
attributes values

vectors

A set of evolutionary
decision trees.

IF ... THEN ... w1
IF ... THEN ... w2
IF ... THEN ... wn

IF ... THEN ... w1
IF ... THEN ... w2
IF ... THEN ... wn

IF ... THEN ... w1
IF ... THEN ... w2
IF ... THEN ... wn

A single classification level.

Simple
objects.

Complex
objects.

Randomly
selected
objects.

Hierarchical
classification model.

Initial rules.

Figure 2. The diagram of AREX algorithm

3. connect empty leaves to both new branches from node t
4. randomly select an empty leaf node t (the probability of

selecting an empty leaf is decreased with the depth of the leaf
in a growing tree)

5. randomly select an attribute Xi from the set of all possible
attributes (the probability of choosing an attribute depends on
a number of previous uses of that attribute in a tree – in this
manner unused attributes have better chances to be selected)

6. replace the selected leaf node t with the attribute Xi and go to
step 2

7. finish when N attribute nodes has been created

For each empty leaf the following algorithm determines the
appropriate decision class: let S be the training set of all training
objects N with K possible decision classes d1, .., dK and Ni is the
number of objects within S of a class di. Let St be the sample set at
node t (an empty leaf for which we are trying to select a decision
class) with Nt objects; Ni

t is the number of objects within St of a
decision class di. Now we can define a function that measures a
potential percentage of correctly classified objects of a class di:

i

t
i

N
N

itF =),((1)

Decision di

t for the leaf node t is then set as a decision di, for which
F(t,i) is maximal.

The ranking of an individual DT within a population is based on
the local FF:

∑ ∑
= =

⋅++−⋅=
K

i

N

i
uiii nuwtcaccwLFF

1 1

)()1((2)

where K is the number of decision classes, N is the number of
attribute nodes in a tree, acci is the accuracy of classification of
objects of a specific decision class di, wi is the importance weight
for classifying the objects of a decision class di, c(ti) is the cost of
using the attribute in a node ti, nu is number of unused decision
(leaf) nodes, i.e. where no object from the training set fall into, and
wu is the weight of the presence of unused decision nodes in a tree.

2.2 System proGenesys for automatic evolution of

programs

For constructing classification rules we developed a system for the
evolution of programs in an arbitrary programming language,
described with BNF productions – proGenesys (program
generation based on genetic systems). In our approach an
individual is represented with a syntax tree (a derivation tree), as it
is usual for grammar-based GP [4,12]. To get the final solution this
tree (genotype) is transformed into a program (phenotype) [11].

First step of automatic programming is the initialization of the
initial population.. For the successful continuation of the program
evolution process the initial programs should be evenly distributed
[3]. Known program initialization procedures are theoretically
correct but are working well only for small problems [6]. The
problem is that limitations regarding the tree size are not
considered during the induction. For this reason a lot of built trees
have to be rejected, which is time consuming. An initialization
procedure based on dynamic grammar pruning as proposed in [10]
could solve the problem. In the proGenesys system a procedure is
used that allows the induction of a program tree of exactly
specified size (figure 3).

<S>

<A>

"Build a tree of
depth i=3 !"

"How many different trees it is possible
to build in exactly two steps ?"

Build a tree of depth i=2 !

() () t

i card(X)
0
1
2
3

0
2
3
4

i card(Y)
0
1
2
3

0
7
8
5

i card(Z)
0
1
2
3

1
0
0
0

"three!" "eight!" "zero!"

derivation
probability = 3/11 derivation probability = 8/11

derivation
probability = 0/11

X Y Z

Figure 3. Controlled construction of derivation trees of a specific depth

A good classification rule should simultaneously be clear (most of
the objects covered by the rule should fall into the same decision
class) and general (it covers many objects – otherwise it tends to be
too specific). Those two criteria can be measured with the
following formulas:

num. of classified objects – 1

generality =
num. of objects of this decision class

 ω2
 Ω2
 ω1 clearness = 1 –

 Ω1

where ω1 is number of objects covered by the rule that belong to
the most frequent decision class, ω2 is number of objects covered
by the rule that belong to the second most frequent decision class,
Ω1 is number of all objects in the training set that belong to the
most frequent decision class of the rule, and Ω2 is number of all
objects in the training set that belong to the second most frequent
class of the rule. Now a fitness function can be defined as

FF = clearness × generality + ∑
=

N

i
itc

1
)((5)

where the last part represents a cost of the use of specific attributes,
the same as in the local fitness function LFF in building decision
trees.

2.3 Finding the optimal set of rules

System proGenesys is used to evolve single rules, whereas for the
classification of all objects on a specific level a set of rules is
required. For this purpose between all the evolved rules a set of
rules should be found that together classify all the objects – with
high classification accuracy and a small number of rules. A
problem is solved with a simple genetic algorithm that optimizes
the following fitness function:

∑ ∑
= =

⋅+⋅++−⋅=
K

i

N

i
umiii nuwnmwtcaccwFF

1 1
)()1((6)

where the first two parts are the same as in the LFF for building
decision trees, and nm is the number of multiple classified objects,
nu is the number of non-classified objects, and wm and wu are the
corresponding weights. The appropriate coverage of the training set
is thus achieved by reducing the number of not classified and
multiple classified objects. A more advanced way to achieve the
uniform coverage is discussed in [1].

3 ASSESSMENT OF RESULTS AND

DISCUSSION

To make an objective assessment of our method a comparison
of the obtained results has been made with the reference method
for building decision trees, namely C5/See5. The following
quantitative measures of efficiency have been used:

(4)

(3)

num. of correctly classified objects
accuracy =

num. of all objects

 sensitivity =
fntp

tp
+

 (8)

 specificity =
fptn

tn
+

 (9)

and also measures of efficiency regarding the understandability of
discovered knowledge: number of rules and number of used
attributes. Experiments have been made with five real-world
databases, four from the field of medicine and one from the field of
software engineering.

3.1 MVP database

Prolapse is defined as the displacement of a bodily part from its
normal position. The term mitral valve prolapse (MVP) [2],
therefore, implies that the mitral leaflets are displaced relative to
some structure, generally taken to be the mitral annulus. The silent
prolapse is the prolapse which can not be heard with the
auscultation diagnosis and is especially hard to diagnose. The
implications of the MVP are the following: disturbed normal
laminar blood flow, turbulence of the blood flow, injury of the
chordae tendinae, the possibility of thrombus’ composition,
bacterial endocarditis and finally hemodynamic changes defined as
mitral insufficiency and mitral regurgitation. Mitral valve prolapse
is one of the most prevalent cardiac conditions, which may affect
up to five to ten percent of normal population and one of the most
controversial one.

Using the Monte Carlo sampling method 900 children and
adolescents were selected representing the whole population under
eighteen years of life. Routinely they were called for an
echocardiography no matter of prior findings. 631 of them passed
an examination of their health state in a form of a carefully
prepared protocol specially made for the syndrome of MVP. The
protocol consisted of 103 parameters that can possibly indicate the
presence of MVP. Distribution of the three decision classes were:
5% prolapse, 6% silent prolapse, and 89% ok. A summary of the
MVP database is presented in table 1.

3.2 MRACID database

Through the help of classical medical research it has been
established that surgeries under the general anesthesia cause in
organism a tendency to dropping the blood’s pH value, also known
as predisposition to acidemia. The results of blood’s gases analysis,
serum electrolytes analysis, blood count and values of length of the
operation, blood pressure, pulse, temperature, age, weight, height,
sex, duration of the surgery and transfusion volume have been used
to define altogether 25 attributes. Altogether 82 children patients
were thoroughly examined in the study. Distribution between the
two decision classes were: 88% with the tendency towards acidosis
and 12% without the tendency towards acidosis. A summary of the
MRACID database is presented in table 1.

3.3 AAP database

The early and accurate diagnosis of acute appendicitis is a difficult
and challenging problem in everyday clinical routine. Of major

concern are the perforation rate (up to 20%) and negative
appendectomy rate (up to 30%). An important factor in the error
rate is poor discrimination between acute appendicitis and other
diseases that cause acute abdominal pain (AAP) [7]. This error rate
is still high, despite considerable improvements in history-taking
and clinical examination, computer-aided decision-support and
special investigation, such as ultrasound.

The database was built-up during an Concerted Action funded
by the European Commission during the COPERNICUS program.
Data was collected in 16 centers from Central and Eastern Europe.
For data collection the computer program developed in the
MEDWIS program was used. Medical terminology was translated
into 10 different languages, so that the participating centers could
be provided with national versions of the software. The final
diagnosis was based on the diagnosis at discharge. A summary of
the AAP database is presented in table 1.

3.4 AV database

Continuous time signals, like EEG, are often used in medicine by
the medical staff to provide some information about the state of the
patients. The objective of this study was to recognize patients with
Alzheimer disease based on the recorder EEG signals. EEG or
electroencephalogram is a record of electrical activity in the human
brain (Figure 4). The EEG is one of the tools a neurologist uses in
the diagnosis of brain conditions. There are several methods to
analyze continuous time signals in medicine. Data mining
techniques and data-based classification methods are not
appropriate to deal with these kind of data. However, applying
some domain knowledge enable one to extract parameters from
EEG signals, that provide enough distinguishable information
about a specific signal (Figure 5). In this way a set of continuous
attributes are obtained, based on the domain knowledge, which can
be used to construct a decision tree (avg, min, max, median in the
frequency domain, avg, median, max, balanced median in the time
domain, etc.). Distribution between the two decision classes was
very unbalanced: 88% of patients with Alzheimer disease and 12%
with some other vascular problems. A summary of the AV
database is presented in table 1.

. . .

Band 1
3 - 4Hz

F (Hz)

t (s)

70

56

t1: 70 > 56

b1: 3Hz + 4Hz

Figure 4. Selection of attributes from an EEG signal (band 1), showing
the characteristic points for the frequency (b1) and time (t1) domain

3.5 SCM database

Software development is a complex and complicated process in
which software faults are inserted into the code by mistakes during
the development process or maintenance. It has been shown that
the pattern of the faults insertion phenomena is related to the

(7)

measurable attributes of software objects, especially with the
software metrics [9].

In the study a medical software system has been used,
developed at the University of Udine, Italy. It consists of 904
software modules containing over 2 million lines of code in C++
language. For all modules a set of metrics’ results measured after
the development of the system and a seven years of maintenance
reports about found errors exist. Based on the number of
discovered errors modules have been tagged either as OK or
dangerous. The aim of the study is to classify the modules in those
two groups based on the metrics’ results. A summary of the SCM
database is presented in table 1.

Table 1. A summary of tested databases

dataset ∆ ∇ ◊
mvp 361 102 5,23% 5,71% 89,06%
mracid 82 24 87,80% 12,20%
aap 3439 18 47,34% 52,66%
av 207 40 88,00% 12,00%
scm 904 168 23,56% 76,44%

 ∆ num. of objects ∇ num. of attributes ◊ distribution of decision classes

3.6 The results

When using evolutionary methods it is important to guarantee
the convergence of evolutionary runs. Figure 5 shows average
convergence rates of 10 independent evolutionary runs for each
database for the first 100 generations.

0

0,2

0,4

0,6

0,8

1

1,2

0 10 20 30 40 50 60 70 80 90 100

generations

fit
ne

ss

MVP
MRACID
SCM
AAP
AV

Figure 5. Fitness scores of the best solutions in each population

For the objective comparison of efficiency for a knowledge
discovery method upon each database the universal criteria have
been defined:

 efficiencyclassification = sensitivity × specificity (10)

average number of rules for a method simplicity = 1 – max. number of rules for all methods

 efficiency = sensitivity × specificity × simplicity (12)

All three criteria are normalized values between 0 and 1, therefore
the result (i.e. efficiency of a method) is expressed as a value in
percents between 0 and 100%, where the most efficient method has
the highest score. With those criteria efficiency of our method can
be objectively evaluated upon all five databases (table 2); it has
been compared with the C5/See5 tool [13].

Table 2. A comparison of efficiency of methods C5/See5 and AREX

 C5/See5 AREX
dataset ∆ ∇ ◊ ∆ ⊗ ◊
mvp 92,28 10,59 5,53 91,47 41,18 31,17
mracid 91,94 25,71 12,86 95,98 31,43 27,34
aap 84,84 23,69 17,09 83,25 95,04 66,00
av 88,66 13,75 7,14 93,07 31,25 23,07
scm 79,16 20,32 8,77 83,27 90,97 58,94
 ∆ accuracy ∇ simplicity ◊ efficiency

To be able to confirm a higher efficiency of our method AREX
when compared to C5/See5, the statistical significant difference
between the results has been calculated using the Leven-T test for
the comparison of equivalence of variances. The results show
statistical significant difference with high probability for sensitivity
(level 0.002), efficiency (0.001), and simplicity (0.000). Regarding
all the results achieved with our method AREX we can say, that
automatic programming is an appropriate method to achieve more
efficient knowledge discovery on some real-world medical
databases.

REFERENCES

[1] C. Anglano, A. Giordana, G. Lo Bello, L. Saitta, An experimental

evaluation of coevolutive concept learning, 19-27, International
Conference on Machine Learning ICML98, 1998.

[2] R. Devereoux, ‘Diagnosis and Prognosis of Mitral Valve Prolaps’,
The New England Journal of Medicine, 320, 1077-1079, (1989).

[3] A. Geyer-Schulz and W. Böhm, Exact uniform initialization for
genetic programming, Foundations of Genetic Algorithms 4, 1996.

[4] F. Gruau, On using syntactic constraints with genetic programming,
377-394, Advances in Genetic Programming II, MIT Press, 1996.

[5] J. Han and M. Kamber, Data Mining: Concepts and Techniques,
Morgan Kaufmann Publishers, Inc., 2000.

[6] H. Hörner. A C++ class library for genetic programming. M.Sc.
thesis, Vienna University of Economics, 1996.

[7] Ch. Ohmann, V. Moustakis, Q. Yang, K. Lang, ‘Evaluation of
automatic knowledge acquisition techniques in the diagnosis of acute
abdominal pain’, Artificial Intelligence in Medicine, 8, 23-36, (1996).

[8] V. Podgorelec and P. Kokol, Evolutionary decision forests – decision
making with multiple evolutionary constructed decision trees, 97-103,
Problems in Applied Mathematics and Computational Intelligence,
WSES Press, 2001.

[9] D.J. Paulish and A.D. Carleton, ‘Case Studies of Software Process
Improvement Measurement’, IEEE Computer, 9, 50-57, (1994).

[10] A. Rattle, M. Sebag, Genetic programming and domain knowledge:
beyond the limitations od grammar-guided machine discovery, 211-
220, Parallel Problem Solving from Nature VI, Springer Verlag, 2000.

[11] C. Ryan, Shades – a polygenic inheritance scheme, 140-147,
Proceedings of Mendel'97 Conference, 1997.

[12] P.A. Whigham, ‘Inductive Bias and Genetic Programming’, IEE
Conference Proceedings, 414, 461-466, (1995).

[13] −, RuleQuest Research Data Mining Tools, http://www.rulequest.com

(11)

