
An Incremental Algorithm for Tree-shaped Bayesian
Network Learning

Josep Roure Alcobé 1

Abstract. Incremental learning is a very important approach to
learning when data is presented in short chunks of instances. In such
situations, there is an obvious need for improving the performance
and accuracy of knowledge representations or data models as new
data is available. It would be too costly, in computing time and mem-
ory space, to use the batch algorithms processing again the old data
together with the new one.

We present in this paper an incremental algorithm for learning
tree-shaped Bayesian Networks. We propose a heuristic able to trig-
ger the updating process when data invalidates, in some sense, the
current structure. The algorithm rebuilds the network structure from
the branch which it is found to be invalidated. We will experimen-
tally demonstrate that the heuristic is able to obtain almost optimal
tree-shaped Bayesian Networks while saving computing time.

1 Introduction

During the nineties, there have been a great deal of effort in develop-
ing algorithms for learning Bayesian Networks from data. See, Bun-
tine [3] for an overview of the literature and Heckerman [7] for a
tutorial. Most of this work has focused in non-incremental learning
algorithms. Such algorithms, also called batch, infer a Bayesian Net-
work based on the entire set of available data.

In this paper we focus on incremental learning of Bayesian Net-
works. This sort of learning attempts to update current Bayesian Net-
works in response to newly observed data instances. Langley [9]
stated that an algorithm is incremental if (1) it inputs one training
experience at a time, (2) does not reprocess any previous data in-
stances, and (3) retains only one knowledge structure in memory.

Each of these three constraints aims at clear objectives. The first
wants incremental algorithms to be able to output a Bayesian Net-
work at any moment of the learning process. The second keeps low
and constant the time required to process each data instance over all
the data set. And finally, the third constraint wants learning algo-
rithms not to do unreasonable memory demands.

We propose, in this paper, an incremental heuristic. We could pro-
cess together the old and new data with a batch algorithm in order to
learn a new Bayesian Network. That would require lot of computing
time and to store all the data instances. The main objective of our ap-
proach is to spend less time than a batch approach and to store only
that information, from the data set, useful for learning.

We focus on tree-shaped Bayesian Networks because they are
simple structures easier to learn than general ones and because the
amount of information needed from the data set can be stored in main

1 Departament d’Informàtica i Gestió, Escola Universitària Politècnica de
Mataró, Avda. Puig i Cadafalch 101-111, 08303 Mataró, Catalonia, Spain,
roure@eupmt.es

memory as we will argue later on. We apply the heuristic to the algo-
rithm proposed by Chow and Liu [4] which learns tree structures.

The Chow and Liu’s algorithm, CL algorithm from now on, builds
a maximal cost tree introducing branches into the tree in decreasing
cost order. Roughly speaking, our heuristic states that new data inval-
idates the tree-shaped structure when the branches are not anymore
in decreasing cost order. Then, the tree is rebuilt from the first branch
found to be in a bad position into the order. In this way, our algorithm,
can both detect the need of updating and update the current network.
We will call our proposal ACO heuristic (Arches in Correct Order).
Note that we use, in the name, arches instead of branches for a reason
that will be clear later on.

We relax, in our work, the first Langley’s constraint allowing to
process a short chunk of data instances instead of each single in-
stance. This point does not break the spirit of the constraint as one
single data instance slightly modifies the information available, and
it would almost surely not trigger the updating process.

The rest of this paper is organized as follows. In Section 2, we in-
troduce the batch algorithm proposed by Chow and Liu [4]. In Sec-
tion 3, we present our incremental algorithm and the ACO heuristic
to guess when a network should be updated. In Section 4, we empir-
ically evaluate our proposal. Finally, in Section 5, we conclude with
some remarks and with a short discussions of related work.

2 Chow and Liu’s batch algorithm

In this section we study the algorithm proposed by Chow and
Liu [4]. They designed an algorithm to estimate the underlying n-
dimensional discrete probability distribution from a set of samples.
The algorithm yields as an estimation the product of n � 1 second
order distributions that optimally approximates the probability dis-
tribution. This product can also be formulated like a distribution of
n � 1 first order dependence relationships among the n variables,
forming a tree dependence structure.

The algorithm uses the mutual information as closeness measure
between P (X) and P� (X), where P (X) is the probability distribu-
tion from a set of samples, and P� (X) is the tree dependence distri-
bution. It is an optimization algorithm that gives the tree distribution
closest to the distribution from the samples. Let us give some nota-
tion in order to explain the Chow and Liu’s measure and algorithm.

Let (m1; � � � ;mn) be a permutation of integers 1; 2; � � � ; n, let
j(i) be a mapping with 0 � j(i) � i, let T = (X; E) be a depen-
dence tree where X(T) = fXmi

j1; 2; � � � ; ng is the set of nodes,
E(T) = f(Xmi

; Xmj(i)
)j1; 2; � � � ; ng is the set of branches, and

where X0 is the null node. If we now assign the mutual informa-
tion between two variables, I(Xmi

;Xmj(i)
), as a cost to every de-

pendence tree branch, the maximum-cost dependence tree is defined

as the tree T such that for all T 0 in Tn,
P

n

i=1
I(Xmi

;Xmj(i)
) �P

n

i=1
I(Xmi

;Xmj0(i)
). Where Tn stands for the set of trees with n

variables.
Chow and Liu applied some transformations to Kullback-Leibler

divergence DKL(P; P�), and obtained the following expression:

DKL(P; P�) = �

nX
i=1

I(Xmi
;Xmj(i)

) +

nX
i=1

H(Xmi
)�H(X)

From the expression above, it is observed that H(Xmi
) and

H(X) for all i are independent of the tree dependence distribu-
tion. Thus, sinceDKL(P; P�) is non-negative, minimizing the close-
ness measure DKL(P; P�) is equivalent to maximizing the termP

n

i=1
I(Xmi

;Xmj(i)
). This result allowed Chow and Liu to use

the Kruskal algorithm for the construction of trees of maximum to-
tal cost where I(Xmi

;Xmj(i)
) may represent the distance cost from

node Xmi
to node Xmj(i)

. An undirected graph is formed by start-
ing with a graph without branches and adding a branch between two
nodes with the highest mutual information. Next, a branch is added
which has maximal mutual information associated and does not in-
troduce a cycle in the graph. This process is repeated until the (n�1)

branches with maximum mutual information associated are added as
seen in Algorithm 1.

In this paper, we give a direction to all the branches of the tree.
We take as the root of the tree one of the nodes of the first branch
and the direction of the branches introduced afterwards goes from
the node already into the structure to the one recently introduced.
As all branches have direction we will call them arches and will be
represented as ordered pairs of nodes (Xmi

; Xmj(i)
).

Algorithm 1 CL

Require: a database D onX = fXm1 ; � � � ; Xmng variables
Ensure: T be a dependence tree structure

Calculate SUFFD(T)

T = (V; E) the empty tree whereV(T) = f;g and
E(T) = f;g

Calculate costs for every pair I(Xmi
;Xmj

)

Select the maximum cost pair (Xmi
; Xmj

)

V(T) = fXmi
; Xmj

g; E(T) = f(Xmi
; Xmj

)g

repeat
B(T) = f(Xmi

; Xmj
) j ((Xmi

; Xmk
) 2 E(T) _

(Xmk
; Xmi

) 2 E(T)) ^Xmj
62 V(T)g

Select the max cost pair (Xmi
; Xmj

) from B(T)

V(T) = V(T) [fXmj
g

E(T) = E(T) [f(Xmi
; Xmj

)g

until (V = X)

3 An incremental algorithm

In this section we propose an incremental algorithm in order to learn
a tree-shaped Bayesian network when new training data instances
are available. Our algorithm revises an already learnt tree-shaped
Bayesian Network without processing the old data instances. It ac-
tually modifies the old structure only when it is invalidated, in some
sense, by the new data. The main objective is to spend less comput-
ing time than a batch approach that learnt a structure from scratch
each time new data was available.

We introduce some notation before the explanation of our algo-
rithm. Let ND

X (x) be the number of instances in D where X = x.

Let bND

X
be the vector of numbers ND

X
(x) for all values ofX . We call

the vector bND

X
the sufficient statistics of the variable X , suffD(X).

In the same way, the sufficient statistics of the tree T , suffD(T), are
defined as the set of vectors bNXmi

;Xmj(i)
8i : 0 � i � n.

To find the maximal cost tree we need the vector numbersbND

Xmi
;Xmj (i)

for all the pairs of variables in X(T), we will call

this set of numbers SUFFD(T). Note that SUFFD[D0(T) can be
calculated as bND

X � bND
0

X , where � stands for the addition of vector
components.

We divide our algorithm into two steps. In the first step, the algo-
rithm calculates the sufficient statistics for both old D and new D

0

data instances, and in the second, it revises the tree structure accord-
ing to the new sufficient statistics.

In the first step of the algorithm, we assume that sufficient statistics
of the old data set D are stored. Thus, in order to recover the suffi-
cient statistics, SUFFD[D0(T), of the whole set of data instances
the algorithm does not need to go through the old ones.

The second step of the algorithm uses a heuristic in order to de-
cide whether to update the tree structure. The heuristic decides to
update the structure when the arches are not in correct order. When
the tree is built for the very first time using the CL algorithm, arches
are introduced into the tree structure in decreasing cost order. This
order O is stored. When new data instances D0 are presented, the
cost I(Xmi

;Xmj(i)
) for each branch is calculated again using the

new sufficient statistics SUFFD[D0(T), and only when the order O
does not hold anymore, that is, when arches are not in decreasing
cost order, the structure is updated.

Algorithm 2 ACO heuristic

Require: a database D0 onX = fXm1 ; � � � ; Xmng variables a tree
structure T , an order O of branches and SUFFD(T)

Ensure: T 0 be a dependence tree structure
Calculate SUFFD[D0(T)

T
0 = (V; E) the empty tree whereV(T 0) = E(T 0) = f;g

Let Xmh
be the root of T

B(T) = f(Xmh
; Xmj

) j (Xmh
; Xmj

) 2 E(T)g

continue=false; k=0
if ((Xmi

; Xmj
)O(1) =

= arg max(Xmr ;Xms)2B(T)\E(T)I(Xmr ; Xms)) then
V(T 0) = fXmh

; Xmj
g; E(T 0) = f(Xmh

; Xmj
)g

continue=true; k=2 be the number of branches added (+ 1)
end if
while (continue) and (k � jE(T)j) do
B(TO(k)) = f(Xmi

; Xmj
) j ((Xmi

; Xmk
) 2 E(TO(k)) _

(Xmk
; Xmi

) 2 E(TO(k))) ^Xmj
62 V(TO(k))g

if ((Xmi
; Xmj

)O(k) =

= arg max(Xmr ;Xms)2B(TO(k))\E(T)
I(Xmr ; Xms)) then

V(T 0) = V(T 0) [fXmj
g

E(T 0) = E(T 0) [f(Xmi
; Xmj

)g; k++
else

continue=false
end if

end while
if (k � jV (X)j) then

Continue building T 0 using the original CL algorithm
end if

More precisely our algorithm, see Algorithm 2, inspects the
arches in the order O they were added into the tree. When an arch

(Xmi
; Xmj(i)

)O(k) at the k-th position in O has not the highest cost
among all candidate arches present into the former structure, the tree
is rebuilt from that arch using the original CL algorithm.Formally,
when the arch at the k-th position (Xmi

; Xmj(i)
)O(k) 6=

arg max(Xmk
;Xml

)2B(T
O(k))\E(T)

I(Xmk
; Xml

). Where TO(k)

stands for the tree built only with the first k � 1 arches of the order
O and B(TO(k)) stands for the set of arches that do not introduce
any cycle in TO(k), B(TO(k)) = f(Xmi

; Xmj
) j ((Xmi

; Xmk
) 2

E(TO(k)) _ (Xmk
; Xmi

) 2 E(TO(k))) ^Xj 62 V(TO(k))g.
Note, it may happen that (Xmi

; Xmk
) has the maximum cost

among the arches in B(TO(k)) \ E(T) and not among the ones in
B(TO(k)). In such situation, the ACO heuristic and the CL algorithm
would not recover the same tree structure.

We assume, in this paper, that we can store in main memory
all the sufficient statistics SUFF(T). If all variables in X have the
same number of values val(X) then the jsuff(Xmi

; Xmj(i)
)j =

j bN
X
D
mi

;Xmj(i)
j = val(X)2, and the number of values of the

SUFF(T) of all alternative trees in Tn is (n2) � val(X)2 which is
quadratic in the number of variables and the number of values. In our
experiments, we used sparse ADtrees [10], with only two levels, as a
compact representation of the sufficient statistics.

If we had so many variables in the data so that the storage became
infeasible, we would not be able to use this incremental algorithm.
Even though, in such situation we could use some method to reduce
the number of attributes excluding the less relevant ones, see for ex-
ample [12].

4 Experiments

We conducted several experiments in order to compare the repeated
use of the batch CL algorithm against our incremental ACO heuristic.
We presented data instances to both algorithms in chunks of 100 and
compared the Bayesian Networks produced during all the learning
process. We used five well-known datasets, one generated from the
alarm network [1] (37 variables and 20.000 instances), and four from
the UCI machine learning repository [11]: Nursery (9 variables and
12.960 instances), Chess (7 variables and 28.056 instances), Mush-
room (23 variables and 8.124) and DNA (61 variables and 3.190 in-
stances).

We presented the instances to the algorithms in three different kind
of orders. Namely, an order where similar instances are consecutive,
another where dissimilar instances are consecutive, and finally a ran-
dom order. We used five different orders of each kind to run both
algorithms, and all numbers presented in the tables of this section are
the mean and the standard deviation of the quantity being analyzed.

We used these three different kind of orders because it is widely re-
ported in the literature that incremental algorithms may yield differ-
ent results when the same instances are presented in different orders.
It is seen, in the field of incremental clustering, that when dissimilar
instances are consecutively presented, results are much better than
when similar instances are presented together [5]. This may occur
because, in the former case, initial observations are sampled from
different parts of the description space leading initial structures to
approximate the actual probability distribution of the dataset, while
in the later, rather skewed structures may be built at the beginning,
biasing the rest of the learning process.

4.1 Computational time gain

The main objective of the algorithm proposed in this work was to
reduce the time spent in learning a new network structure when the
system already learned one from past data. In Table 1, we show the
CPU clock ticks spent by both algorithms in order to learn all the
network structures produced when data sets are presented in chunks
of 100 instances.

We can see that the batch algorithm uses much more CPU clock
ticks than the ACO heuristic. We also note from the table that the
more attributes data sets have the greater the gain is. Compare Alarm
against Nursery and Chess results. And also, we can see that the gain
grows with the number of data instances (see Alarm results). This last
point is due to the fact than when many data instances have already
been processed, the new data instances slightly modify the probabil-
ity distribution of the database and therefore the network structure
does not need to be updated.

Another cause which may influence the time spent is the order
in which the instances are presented. Usually, when dissimilar in-
stances are presented consecutively, the network structures learned
from data are not good models of the probability distribution of the
entire database. Thereof, the incremental algorithm spends more time
as it must update the network structure. We see, at Table 1, that the
time spent is usually lower when random orders are used.

Table 1. CPU clock ticks spent in learning

Batch Incremental Gain (%)
Rand 1296 (24.22) 250 (14.69) 80.71

Alarm Sim 1382 (24.23) 496 (16.23) 64.11
Diss 1468 (23.29) 306 (14.79) 79.16

Rand 56 (7.32) 34 (10.27) 39.28
Nursery Sim 56 (10.92) 44 (7.40) 21.42

Diss 44 (9.87) 40 (9.15) 9.09

Rand 316 (17.01) 170 (15.10) 46.20
Chess Sim 344 (12.05) 212 (15.46) 38.37

Diss 336 (18.07) 154 (16.22) 54.16

Rand 440 (7.52) 224 (12.59) 49.09
Mushroom Sim 400 (14.72) 278 (15.06) 30.50

Diss 400 (17.69) 284 (14.54) 29.00

Rand 1506 (17.17) 1418 (10.89) 3.18
DNA Sim 1520 (16.05) 1452 (13.04) 4.47

Diss 1594 (12.19) 1458 (13.76) 8.53

4.2 Quality of the recovered structures

In Figure 1, we show the behavior of our heuristic along the learning
process where the algorithm is fed with chunks of 100 data instances,
and using a random data order. We compare the structures obtained
with our incremental proposal against the ones obtained with the CL
batch algorithm. In the figure, there is a graphic of the data sets,
Alarm, Mushroom and DNA. We do not show graphics of Nursery
and Chess because of the lack of space.

Each graphic presents three curves. The first curve, shows the first
arch which is not in decreasing cost order. When the number shown
coincides with the number of attributes, it means that all arches are
in decreasing cost order and consequently the structure is not up-
dated. This curve gives an idea of when our heuristic detects that the
structure must be updated. The second, shows the number of differ-
ent arches between the structures learnt by the batch algorithm and

the ones learnt by our incremental proposal. This curve gives us an
idea of how well our incremental approach approximates the best so-
lution. Finally, the third curve, shows the number of arches that are
different between the former and the current tree structure learnt with
the batch algorithm. This curve gives an idea of the degree in which
the new 100 data instances make the current structure to change.

Looking at the figure, we discover that our incremental algorithm
approximates very well the best solution. It is able to detect when
the structure should be updated and is updated correctly even when
the arch found to be incorrectly ordered is one of the last ones in the
order.

The third curve shows that, at the early stages of the learning pro-
cess, when few data instances have already been processed, the struc-
ture changes quite a lot and that the number of changed arches tend
to decrease as more data is processed. This is very well seen at the
graphic of the DNA dataset, which has few data instances. Even in
this case the incremental algorithm learns structures very close to the
best one. If we look back to Table 1, we can see that the incremen-
tal algorithm saves, in this case, little time as it must trigger the CL
algorithm very often at firsts arches, building almost the entire tree.

We also want to note that the quality,
P

n

i=1
I(Xmi

;Xmj(i)
), of

the final network structures obtained with the batch and the incre-
mental algorithm is almost the same. See Table 2. This is easily ex-
plained as the final structures are almost the same as shown in Figure
1. In the experiments, the last n mod 100 data instances in the order
were not processed.

Table 2. Quality,
P

n

i=1
I(Xmi

;Xmj(i)
), of final network structures

Batch Incremental
Rand 7.248(0.009) 7.248(0.008)

Alarm Sim 7.266(0.001) 7.266(0.001)
Diss 7.232(0.003) 7.232(0.003)

Rand 0.894(0.004) 0.896(0.000)
Nursery Sim 0.896(0.002) 0.896(0.002)

Diss 0.896(0.005) 0.896(0.005)

Rand 0.775(0.051) 0.786(0.000)
Chess Sim 0.786(0.000) 0.786(0.000)

Diss 0.787(0.004) 0.787(0.004)

Rand 7.910(0.026) 7.915(0.003)
Mushroom Sim 7.921(0.000) 7.921(0.000)

Diss 7.887(0.028) 7.887(0.028)

Rand 3.571(0.015) 3.571(0.015)
DNA Diss 3.527(0.010) 3.527(0.010)

Sim 3.505(0.011) 3.505(0.011)

4.3 Learning curves

In this section we study the leaning curve of the incremental algo-
rithm when data is presented in different orders. In Figure 2, we can
see the learning cost of the tree structures for the Mushroom data set
presented in three different orders. In the first order data instances
are presented randomly, in the second similar instances are presented
consecutively and, in the third dissimilar instances are presented con-
secutively.

The graphic (a) shows the quality of the trees calculated with the
data explored so far, while the graphic (b) shows the quality of the
tree calculated using the whole data set. This last graphic shows how
well the discovered Bayesian Networks approximate the distribution
of the whole dataset.

0

2

4

6

8

10

12

0 4000 8000 12000 16000 20000

Num of data

(a) Alarm

Batch-Incremental
Batch: previous-current

0 4000 8000 12000 16000 20000
0

5

10

15

20

25

30

35

40

Num of data

(a) Alarm

Unordered arch

0

1

2

3

4

5

6

7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Num of data

(b) Mushroom

Batch-Incremental
Batch: previous-current

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5

10

15

20

25

30

Num of data

(b) Mushroom

Unordered arch

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500

Num of data

(c) DNA

Batch-Incremental
Batch: Previous-current

0 500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

50

60

70

Num of data

(c) DNA

Unordered arch

Figure 1. Quality of recovered structures. Each graphic presents three
curves; the first (Unordered arch), shows the first arch which is not in

decreasing cost order. When the number shown coincides with the number of
attributes, it means that all arches are in decreasing cost order. The second

(Batch-Incremental) shows the number of different arches between the trees
learnt by the batch algorithm and the ones learnt with the ACO heuristic.
The third curve (Batch: Previous-current), shows the number of different

arches between the former and the current trees learnt by the batch
algorithm. Note that the y axis of the first curve is on the right while the y

axis of the second and third curves is on the left.

Both graphics, clearly show that when data is presented in ran-
dom order the intermediate tree structures obtained rapidly tend to
the maximum quality obtained when all data is processed. On the
contrary, presenting similar instances consecutively intermediate re-
sults are the poorest. In between, there are the results obtained when
dissimilar data instances are presented consecutively.

Figure 2. Learning curve, quality:
P

n

i=1
I(Xmi

;Xmj(i)
)

0

2

4

6

8

10

12

0 2000 4000 6000 8000

Num. of data

(a) Mushroom, partial dataset

Random
Similar

Dissimilar

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

0 2000 4000 6000 8000

Num. of data

(b) Mushroom, whole dataset

Random
Similar

Dissimilar

5 Discussion and Final Conclusions

Previous work on incremental learning of Bayesian Network have
focused on learning general network structures, namely, directed
acyclic graphs (DAGs). In these works the authors assume that the
size of the sufficient statistics necessary to recover any possible DAG
of the search space is very large and thereof it is not feasible to store
them in main memory.

The work proposed by Buntine [2], by Friedman and Goldszmidt
[6] and by Lam and Bacchus [8] are similar in the sense that they
store the sufficient statistics of those structures close to the current
one. Friedman and Goldszmidt’s system is able to learn networks
out of that sufficient statistics. In consequence different parts of a
Bayesian Network may be learnt with different data instances. Lam
and Bacchus’ approach is able to incrementally learn a subset of the
variables of the network structure.

We presented in this paper an extension of the CL algorithm in or-
der to incrementally learn tree-shaped Bayesian Networks. We pro-
posed the ACO heuristic that guesses when and which part of the
structure should be updated. We claim that our algorithm is very re-
active, that is, it is able to quickly detect changes in new data and
to correctly update the structure. In Figure 1, we could see that the
heuristic is sound in the sense that it triggers the updating process
only when changes are actually needed. We also noted, that the ACO
heuristic does not ensure to provide the same tree as if it was learned

with the batch CL algorithm. Even thought, we saw that the learned
trees are very close to those obtained with the batch CL algorithm,
as seen in Section 4.

The major benefit of our incremental proposition is that it saves
computing time. Even when the tree must be updated the number of
calculations and the number of comparisons required is very much
reduced each time a branch is checked as correctly ordered. The
number of comparisons the CL algorithm must perform to order the
arches is (n2)+

P
n

i=2
i(n�i), while in our proposition when the first

branch is checked as correct the number of comparisons is reduced
by (n2) and the number of calculations of mutual information is re-
duced from (2n) to a maximum of (n�12). And when the k-th branch is
checked as correct, being 1 < k < n, the number of comparisons is
reduced by k(n� k) and the number of tests is reduced from (n�k2)

to a maximum of (n�k�12). As seen at Figure 1 the tree is not up-
dated most of the times and in very few occasions the first branch is
not correctly ordered.

We also want to stress that the learned structures are not biased by
the initial ones as we could see in Table 2. There, we observed that
the final results are very similar in all the three data instance orders.

ACKNOWLEDGEMENTS

We would like to thank Joan Jou, Ramon Sangüesa and Luis Talavera
for a thorough reading of this paper, and to the anonymous referees
for many interesting comments.

REFERENCES
[1] I. Beinlinch, G. Suermoundt, R. Chavez, and G. Cooper, ‘The ALARM

monitoring system’, in European Conference on AI and medicine,
(1989).

[2] W. Buntine, ‘Theory refinement on Bayesian networks’, in Proceedings
of the Seventh Conference on Uncertainty in Artificial Intelligence, eds.,
B.D. D’Ambrosio, P. Smets, and P.P. Bonisone, pp. 52–60, (1991).

[3] W. Buntine, ‘A guide to the literature on learning probabilistic networks
from data’, IEEE Trans. On Knowledge And Data Engineering, 8, 195–
210, (1996).

[4] C.K. Chow and C.N. Liu, ‘Approximating discrete probability distribu-
tions with dependence trees’, IEEE Transactions on Information Teory,
14, 462–467, (1968).

[5] D.H. Fisher, L. Xu, and N. Zard, ‘Ordering effects in clustering’, in
Ninth International Conference on Machine Learning, pp. 163–168,
(1992).

[6] N. Friedman and M. Goldszmidt, ‘Sequential update of Bayesian net-
work structure’, in Proceedings of the Thirteenth Conference on Uncer-
tainty in Artificial Intelligence, (1997).

[7] D. Heckerman, ‘A tutorial on learning Bayesian networks’, Technical
Report MSR-TR-95-6, Microsoft Research, Advanced Technology Di-
vision, (1995).

[8] W. Lam and F. Bacchus, ‘Using new data to refine Bayesian networks’,
in Proceedings of the Tenth Conference on Uncertainty in Artificial
Intelligence, eds., R. López de Mantaras and D. Poole, pp. 383–390,
(1994).

[9] P. Langley, ‘Order effects in incremental learning’, in Learning in hu-
mans and machines: Towards an Interdisciplinary Learning Science,
eds., P. Reimann and H. Spada, Pergamon, (1995).

[10] Andrew W. Moore and Mary S. Lee, ‘Cached sufficient statistics for
efficient machine learning with large datasets’, Journal of Artificial In-
telligence Research, 8, 67–91, (1998).

[11] P.M. Murphy and D.W. Aha. UCI repository of machine learning
databases. http://www.ics.uci.edu/ mlearn/MLRepository.html., 1994.
Irvine, CA: University of California, Department of Information and
Computer Science.

[12] J. M. Peña, J. A. Lozano, P. Larrañaga, and I. Inza, ‘Dimensional-
ity reduction in unsupervised learning of conditional gaussian net-
works.’, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 6(23), 590–603, (2001).

