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Abstract. In instance-based learning the classification of a novel in-
stance relies upon experience given in the form of similar instances
whose labels are already known. Each of these instances can hence be
seen as an individual piece of evidence. In this paper, we elaborate on
issues concerning the representation and combination of such pieces
of evidence. Particularly, we argue that the information provided by
similar instances must not be considered as independent. We propose
a new inference principle that derives an evidence function speci-
fying the available evidence in favor of each potential label. This
principle, which is built upon a probabilistic (random field) model,
takes interdependencies between stored instances into account and
suggests a generalization of weighted nearest neighbor estimation.

1 INTRODUCTION

The name instance-based learning (IBL) stands for a family of
machine learning algorithms, including well-known variants such
as memory-based learning, exemplar-based learning and case-based
reasoning. As the term suggests, in instance-based algorithms special
importance is attached to the concept of an instance [2]. An instance,
also called a case, an observation or an example, can be thought of
as a single experience, such as a pattern (along with its classifica-
tion) in pattern recognition or a problem (along with a solution) in
case-based reasoning.

As opposed to inductive, model-based machine learning methods,
IBL provides a simple means for realizing transductive inference
[16], that is inference “from specific to specific”:2 Rather than in-
ducing a general model (theory) from the data and using this model
for further reasoning, the data itself is simply stored. The process-
ing of the data is deferred until a prediction (or some other type of
query) is actually requested, a property which qualifies IBL as a lazy
learning method [1]. Predictions are then derived by combining the
information provided by the stored examples, especially by those ob-
jects which are similar to the new query.

In fact, the concept of similarity plays a central role in IBL. The
major assumption underlying IBL has already been expressed by the
philosopher DAVID HUME:3 “In reality, all arguments from experi-
ence are founded on the similarity, which we discover among natural
objects, and by which we are induced to expect effects similar to
those, which we have found to follow from such objects. ... From
causes, which appear similar, we expect similar effects. This is the
sum of all our experimental conclusions.” We shall base our further
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2 Though IBL yields complete concept descriptions when being applied to
all elements of an instance space.

3 See e.g. [9], page 116.

discussion on the (quite general) classification framework where the
above assumption translates into the assertion that “similar objects
have similar class labels”.

This assertion, which we shall occasionally call the “IBL assump-
tion”, is apparently of heuristic nature: It is a rule of thumb that works
in most situations but is not guaranteed to do so in every case. This
clearly reveals the necessity of taking the aspect of uncertainty in
IBL into account [7]. Especially, this is true for sensitive applica-
tions such as medical diagnosis or legal reasoning and all the more
if decisions (classifications) must be made on the basis of sparse ex-
perience. Roughly speaking, similar cases should be considered as
nothing more than pieces of evidence, and the less similar a case,
the smaller the associated evidence. Questions concerning the repre-
sentation and the combination of such pieces of evidence are major
topics of this paper.

By way of background, Section 2 gives a concise review of the
NEAREST NEIGHBOR principle, which constitutes the core of the
family of IBL algorithms. In Sections 3 and 4 we discuss, respec-
tively, alternative approaches to uncertainty (evidence) representa-
tion and the problem of interdependence between different pieces
of evidence in IBL. In Section 5, an instance-based estimation pro-
cedure is introduced, which takes this type of interdependence into
account. Rather than simply suggesting a class label for a new in-
stance, this method yields a complete uncertainty measure specifying
the available evidence in favor of each potential label.

2 NEAREST NEIGHBOR CLASSIFICATION

Throughout the paper we proceed from the following setting: X de-
notes the instance space, where an instance corresponds to the de-
scription x of an object (usually in attribute–value form). X is en-
dowed with a reflexive and symmetric similarity measure σX . L is
a set of labels, and 〈x, λx〉 ∈ X × L is called a labeled instance
(or a case). In classification, which is the focus of most IBL imple-
mentations, L is a finite (usually small) set comprised of m classes
{λ1, . . . , λm}. S denotes a sample that consists of n labeled in-
stances 〈xı, λxı〉, 1 ≤ ı ≤ n. Finally, a novel instance x0 ∈ X
(a query) is given, whose label λx0 is to be estimated.

The NEAREST NEIGHBOR (NN) principle, which originated in
the field of pattern recognition [3], prescribes to estimate the label of
the yet unclassified query x0 by the label of the nearest (most similar)
sample instance. The k-NEAREST NEIGHBOR (k-NN) approach is a
slight generalization, which takes the k ≥ 1 nearest neighbors of x0

into account. That is, an estimation λest
x0 of λx0 is derived from the

set Nk(x0) of the k nearest neighbors of x0, usually by means of a



majority vote:

λest
x0 = arg max

λ∈L
card{x ∈ Nk(x0) |λx = λ}. (1)

Several conceptual modifications and extensions of the (k)NN
principle have been devised, such as distance weighting [6]:

λest
x0 = arg max

λ∈L

∑
x∈Nk(x0):λx=λ

ωx, (2)

where ωx is the weight of the instance x. The latter is usually an
increasing function of σX (x, x0). Note that ωx can be 0, and that
(1) is a special case of (2). When proceeding from (2) – as we shall
subsequently do – one can therefore assume k = n without loss of
generality.

3 EVIDENCE REPRESENTATION IN IBL

The NN principle merely provides a point-estimation or, say, a deci-
sion rule. In order to represent the uncertainty related to a decision,
one possibility is to derive a probability distribution over L. In fact,
this is a quite obvious idea since NN techniques have originally been
employed in the context of non-parametric density estimation [11].
Using this type of estimation, which assumes a related statistical set-
ting of the classification problem (with continuous instance space),
the following probability distribution can be deduced:

px0 : λ �→ k−1 · card {
x ∈ Nk(x0) |λx = λ

}
. (3)

As can be seen, the label estimated by the (majority vote) k-NN rule
is just the one of maximal (posterior) probability. Still, one should
be cautious with the distribution (3). Particularly, it is not clear how
reliable the estimated probabilities px0(λ) actually are. It is possible
to construct corresponding confidence intervals, but these are only
asymptotically valid. In fact, k is generally small and, hence, (3) not
very confident.4 Apart from that, the underlying NN (density) esti-
mation techniques suffer from some further difficulties.5

3.1 Representation of Ignorance

At least two different types of uncertainty can occur in IBL, namely
ambiguity and ignorance. To illustrate, Fig. 1 shows two classifica-
tion problems (similarity is inversely related to Euclidean distance).
The novel instance x0 is represented by a cross, and black and light
circles correspond to instances of two different classes, respectively.
In both cases, the k-NN rule (1) with k = 5 suggests black as a la-
bel for x0. As can be seen, however, this classification is everything
but reliable: In the above setting, the proportion of black and light
examples is almost balanced (apart from that, the closest points are
light). This is a situation of ambiguity. The setting below illustrates a
problem of ignorance: It is true that all neighbors are black, but even
the closest among them are actually quite distant.

The probabilistic approach (3) can handle the problem of ambi-
guity. However, a probability measure is not really able to repre-
sent ignorance, due to the fact that probability degrees always add
up to 1. In the second situation in Fig. 1, for instance, (3) yields
px0(black) = 1 and px0(light) = 0. In other words, the derived
probability distribution suggests that the unknown label is black

4 An estimated probability is always a multiplicity of 1/k. Particularly,
px0(λ) ∈ {0, 1} in the special case k = 1, i.e. for the 1-NN rule.

5 For example, the estimation of a density function is generally not normal-
ized.

Figure 1. Two situations of uncertainty in connection with the basic k-NN
rule, caused by the existence of more than one frequent class label among

the nearest neighbors (above) and the absence of any near neighbor (below).

with certainty! More generally, this prediction merely reveals that
all objects observed so far do have black labels. Still, it provides nei-
ther an indication of the actual number of observed objects, nor of
the resemblance of these objects to x0.

Needless to say, the ability to represent ignorance is quite impor-
tant from a knowledge representational point of view. In probability
theory, the uniform measure is often advocated as a model of com-
plete ignorance, justified by a so-called principle of insufficient rea-
son. However, since that measure does only display the relative but
not the absolute amount of available information, this solution ap-
pears rather questionable. For example, telling a patient that your
experience does not allow any statement concerning his prospect of
survival is very different from telling him that his chance is 1/2.

3.2 Evidence Theory

The above problems motivate the use of alternative, more expressive
uncertainty frameworks, such as models based on belief functions
[13].6 Belief functions or, equivalently, the dual concept of plausi-
bility functions, can be introduced in a simple and intelligible way
through the concept of a basic belief assignment, also called a mass
function.

Let Ω be a finite set and let ω0 ∈ Ω be unknown. Partial knowledge
about ω0 can then be modeled by means of a basic belief assignment
m : 2Ω → [0, 1], where m(∅) = 0 and

∑
A⊆Ω m(A) = 1. The

subsets A ⊆ Ω with m(A) > 0 are called focal sets. The value
m(A) corresponds to the specific support that can be assigned to A
(i.e. to the event ω0 ∈ A) on the basis of the given evidence, but not
to any proper subset B � A.

A situation of complete ignorance is adequately captured by the
mass function m with m(Ω) = 1 and m(A) = 0 for all A � Ω.
Perfect knowledge corresponds to the case where m({ω}) = 1 for
some ω ∈ Ω and m(A) = 0 for all A 
= {ω}. If all focal sets are
singletons, then m is actually equivalent to a probability distribution.

A belief function Bel : 2Ω → [0, 1] is a normalized, non-additive
uncertainty measure. An underlying mass function m induces the
belief function A �→ ∑

B⊆A m(B). The related plausibility function

Pl : 2Ω → [0, 1] is defined as A �→ ∑
B∩A�=∅ m(B). Bel(A) is

the mass necessarily covered by A, i.e. the guaranteed support of
A. Pl(A) is the potential support, namely the mass that would be
covered by A if the masses in all sets B with B∩A 
= ∅ were shifted
to B ∩ A (on the basis of more specific information). The belief
and plausibility function are related through the following equation:
Pl(A) = 1− Bel(Ω \ A). That is, a set A is plausible in so far as its
complement is not guaranteed.

3.3 Evidence Theory in IBL

The application of evidence theory in instance-based learning has
been advocated in [4] and [8]. In both approaches, the basic idea is

6 Indeed, several frameworks based on belief functions do coexist.



to model “instance-based” evidence by means of a plausibility (be-
lief) function defined over the set L of labels: Let x0 be a query and
let 〈xı, λxı〉 be an observed case. In [4], the evidence that comes
from this case (in favor of label λxı ) is modeled by the basic belief
assignment mx0 : 2L → [0, 1] with

mx0({λxı}) = 1 − δ, mx0(Ω) = δ, (4)

where δ ∈ [0, 1] is inversely related to the similarity between x0 and
xı: The larger σX (x0, xı), the stronger the label λxı is supported.
For the induced plausibility function one has

Plx0({λ}) =

{
1 if λ = λxı

δ if λ 
= λxı

. (5)

That is, λxı is fully plausible as a label for x0. Still, all other la-
bels remain plausible to a certain extent as well, depending on the
similarity between xı and x0. In fact, δ specifies the degree of igno-
rance expressed by (5). Complete ignorance corresponds to δ = 1
(xı is not at all similar to x0). Note that the plausibility function (5)
reflects absolute evidence, which depends on the absolute similar-
ity between x0 and its neighbors, whereas a probability distribution
models relative evidence. For example, a probability distribution re-
mains unchanged when doubling the similarities between x0 and all
of its neighbors.

Since the focal sets in (4) are nested, the plausiblity function
(5) is actually equivalent to a possibility distribution [5]. Again, a
possibility distribution is a more flexible concept than a probabil-
ity distribution, not restricted by a normalization constraint. In fact,
the important point in this section is not the specific definition of
the measure (5), but rather the insight that specifying experience in
the form of a measure of absolute evidence appears to be particu-
larly reasonable in IBL, where evidence does not only depend on
the frequency of observed cases but also on their closeness to the
query x0. By an evidence function we here simply mean a measure
ηx0 : L → [0, 1] such that ηx0(λ) represents the absolute evidence
in favor of λx0 = λ. Particularly, ηx0(λ) = 0 means that no such
evidence is available, whereas ηx0(λ) = 1 suggests that enough evi-
dence has been accumulated so as to regard λ as fully possible.

An evidence function can be taken as a point of departure for de-
ciding on the further line of action. For example, on the basis of
ηx0(·) one might decide whether or not further information should
be gathered in order to reduce ambiguity or uncertainty. If not, the
maximally supported label might be chosen as an estimation of a
class label or, in a problem solving context (where labels correspond
to solutions), several well-supported alternatives might be pursued as
promising solutions.

4 DEPENDENCE OF EVIDENCE

Some instance-based approaches completely rely on the (suppos-
edly) most relevant piece of evidence, namely the most similar obser-
vation. In case-based reasoning, for example, it is common practice
to retrieve just the most similar among the stored cases. The repre-
sentation of evidence is then rather simple and might be realized, for
example, by means of a single plausibility function (5).

Ignoring all but the most similar observation is computationally
efficient but comes along with a loss of information. If several obser-
vations are retrieved, an important question arises: How should the
different pieces of evidence be combined? In [4], it is proposed to
combine the belief (plausibility) functions induced by different ob-
servations by means of DEMPSTER’s rule of combination. This yields

a new belief function, regarded as a representation of the overall ev-
idence. In [8], this approach has been criticized, since the different
pieces of information cannot be assumed to be distinct in the sense
of [14], as required by DEMPSTER’s rule.

Indeed, the independence of instance-based evidence must not
be taken for granted! On the contrary, the interdependence between
pieces of evidence that come from different cases is actually a conse-
quence of the IBL assumption itself: If it is true that similar objects
have similar labels, then one should not be surprised to retrieve two
objects having a similar label if these objects are similar by them-
selves.

x1 x3

x2

x0

x1

x3

x2

x0

Figure 2. Different configurations of locations in two-dimensional space.

To illustrate this aspect consider the example shown in Fig. 2.
Suppose that the instances xı correspond to locations and that L =
{rainy, sunny}. Moreover, suppose λx1 = λx2 = λx3 = rainy.
What about the weather in x0? Clearly, the given information pro-
vides evidence for rainy weather in x0. The important point to notice
is that the evidence appears to be larger in the first situation (left),
even though the individual similarities σX (x0, xı) are the same in
both situations. This is due to the different arrangement of the neigh-
bors [17]. More generally, it is the similarity among the observed
cases themselves which has to be taken into account.7 For exam-
ple, consider again Fig. 2 (right) and suppose that we know about
the weather in x1. Since x2 is very close to x1, the information
λx2 = rainy is then not astonishing. On the contrary, relying upon
the IBL assumption, λx1 = λx2 was to be expected! Consequently,
the case 〈x2, λx2〉 does hardly provide new evidence. Rather, the first
and the second case might even be considered as one single piece of
information. The situation is completely different in the left picture,
where x1 and x2 are very dissimilar.

It should be noticed that the above type of interdependence might
disappear under certain (additional) statistical assumptions, and is
often negligible in asymptotic analyses of NN principles. Still, the
example shows that it is of great practical importance for standard
IBL applications.

5 A NEW EVIDENCE MODEL

5.1 Random Fields

The mutual dependence between (random) variables in probabilis-
tic models is completely determined by their joint probability distri-
bution, but is also (partially) characterized through statistics of that
distribution. Important information is provided by the covariance be-
tween two random variables X and Y :

Cov[X, Y ] = E
[
(X − E[X])(Y − E[Y ])

]
, (6)

where E[·] denotes the expected value operator. If X and Y are in-
dependent, then Cov[X, Y ] = 0. If Cov[X, Y ] > 0, then X and

7 Reasoning on the basis of the arrangement of neighbors is more involved,
especially if X is a non-metric space.



Y are positively correlated: Roughly speaking, X and Y have a ten-
dency to deviate from their expected values in the same direction. A
corresponding (reverse) statement holds for Cov[X, Y ] < 0.

Expressing the dependence between variables by means of their
covariance is a central idea of so-called random field models [15]. A
random field is an indexed class {X(t)}t∈T of random variables. An
index t is also called a location and the value X(t) the state of the
random field at that location. The index set T is generally endowed
with a metric. In homogeneous isotropic random fields, the covari-
ance between two random variables X(t1) and X(t2) is assumed to
be a (decreasing) function of the distance between t1 and t2:

Cov[X(t1), X(t2)]
.
= γ

(
∆(t1, t2)

)
. (7)

Random fields are apparently very interesting for IBL, especially in
connection with the above mentioned problem of evidence combi-
nation. In fact, an obvious idea is to interpret t1 and t2 in (7) as in-
stances and the related random quantities X(t1) and X(t2) as labels.
Still, this approach leads to some technical difficulties, especially due
to the mathematical structure of a random field. For example, the set
L of labels is generally not a metric space. Consequently, the covari-
ance between two (random) labels is not well-defined. Apart from
that, a probabilistic model again suffers from the inability to repre-
sent ignorance. In order to avoid these problems, we are now going
to employ the random field model in a slightly different way.

5.2 Evidence Estimation

Recall the basic setting introduced at the beginning of Section 2.
Particularly, let S be a sample comprised of n labeled instances
〈xı, λxı〉 and let x0 ∈ X be a query whose label λx0 is to be es-
timated. For all instances x ∈ X , let

θx
.
=

{
1 if λx = λ
0 if λx 
= λ

, (8)

where λ ∈ L is a fixed label. On the basis of the “auxiliary” labeling
(8), the set X is partitioned into two new classes: Those instances
with label λ and those instances with a different label. Note that the
set L′ = {0, 1} of auxiliary labels has a trivial metric structure,
determined by the distance function ∆ with ∆(0, 1) = ∆(1, 0) = 1
and ∆(1, 1) = ∆(0, 0) = 0. This is in agreement with the usual
classification framework, where L is a nominal scale.

The IBL assumption is now expressed in terms of the covariance
function: For all x, x′ ∈ X , we postulate the equality

Cov[θx, θx′ ] = γ
(
σX (x, x′)

)
, (9)

where γ is a non-decreasing function [0, 1] → R. That is, {θx}x∈X
is considered as a special type of random field, namely a binary ran-
dom field, also called a random partition of space. More specifically,
γ should satisfy γ(0) = 0, thereby expressing that labels of com-
pletely dissimilar instances are unrelated.

The theory of random fields offers a large repertoire of statisti-
cal prediction methods. Within our context, these methods can be
used for estimating a label θx0 , given the labels θxı of the sample in-
stances xı [10]. Here, we restrict ourselves to the simplest approach,
namely linear estimation theory. A linear estimator of θx0 is a func-
tion which is linear in the observations θx1 , . . . , θxn . It can be shown
that the following estimator is optimal among all linear estimators in
the sense that it minimizes the mean squared error E[(θest

x0 − θx0)2]:

θest
x0 = E(θx0) +

n∑
ı=1

αı θxı , (10)

where the vector α = (α1, . . . , αn)� of coefficients is defined as
α = C−1 · c. Here, C is the n × n covariance matrix with entries8

Cı = Cov[θxı , θx ] = γ
(
σX (xı, x)

)
, (11)

and c = (c1, . . . , cn)� is an n × 1 vector with

cı = Cov[θx0 , θxı ] = γ
(
σX (x0, xı)

)
. (12)

The term E(θx0) in (10) corresponds to the prior probability of
θx0 = 1, whereas θest

x0 is an estimation of the posterior probability
[12].

Now, we are not interested in an estimation of the probability of
θx0 = 1, but rather in a quantification of the available evidence in fa-
vor of the label λ. To this end, we modify the estimation (10) in two
ways. Firstly, the term E(θx0) will be used for representing “prior
evidence” rather than prior probability. If no prior information is
available, this means that E(θx0) = 0 rather than 1/m. This way,
it becomes possible to represent ignorance.

Secondly, we derive an estimation for λ not on the basis of the
complete sample S, but rather on the basis of the subset Sλ

.
=

{〈x, λx〉 ∈ S |λx = λ, σX (x, x0) > 0}. This way, the absolute
rather than the relative evidence is measured, and we arrive at the
following evidence function ηx0 : L → [0, 1]:

ηx0(λ) = ηx0(λ |S)
.
=

|Sλ|∑
ı=1

αı (13)

for each label λ ∈ L, where α = C−1
λ · cλ. Here, Cλ and cλ de-

note, respectively, the matrix (11) and the vector (12) restricted to
the observations in Sλ. By definition, ηx0(λ)

.
= 0 if Sλ = ∅.

A comparison with (2) shows that (13) can be considered as a
weighted NN estimation. Now, however, the weight αı of an instance
xı is not determined by the similarities σX (x0, x) alone. Rather, this
weight also takes the similarities among the individual pieces of ev-
idence into account. A simple distance-weighted scheme is obtained
for the special case where these pieces are completely independent
(Cλ is the unit matrix). We call the decision function

(S, x0) �→ arg max
λ∈L

ηx0(λ |S) (14)

the DNN (DEPENDENT NEAREST NEIGHBOR) classifier. The k-
DNN classifier is defined by replacing the set S on the right-hand
side of (14) by the set Nk(x0) of x0’s k nearest neighbors.

To illustrate, let S contain three instances, x1, x2, x3, with label
λ. Let

Cλ =


1 α 0

α 1 0
0 0 1


 , cλ =


β

β
β




with 0 ≤ α, β < 1. That is, x1 and x2 are similar to some extent, but
x3 resembles neither x1 nor x2. Moreover, all three instances resem-
ble the query x0 to the same degree. According to (13), x3 supports
λ to the degree β, whereas the corresponding supports through x1

and x2 are discounted by 1 + α:

ηx0(λ) =
β

1 + α
+

β

1 + α
+ β.

Particularly, ηx0(λ) = 3β for α = 0 and ηx0(λ) → 2β for α → 1
(compare with the two situations shown in Fig. 2).

8 The definition of γ must guarantee that the matrix C is positive definite.



5.3 Alternative Estimation Methods

The linear estimator (10) is a simple yet efficient estimation proce-
dure with nice statistical properties. However, as one drawback of
(10) let us mention that θest

x0 can fall outside the scope of the ob-
served values θx1 , . . . , θxn . In our case, this means that ηx0(λ) ≤ 1
is not guaranteed for the evidence measure (13). A “practical” step
is to simply truncate the corresponding value whenever ηx0(λ) > 1.
This step can be seen as a “rough” approximation to a saturation ef-
fect anyway induced by the probabilistic model: The more evidence
has already been accumulated, the smaller the absolute increase in
evidence due to the observation of a new case will be. (Besides, it
should be noticed that ηx0(λ) ≤ 1 is actually not required in (14).)

Without going into detail, let us mention that the above defect can
also be overcome by more sophisticated models or estimation proce-
dures. For example, a main reason for the aforementioned problem is
that {θx}x∈X is a binary random field. For such fields, not all covari-
ance functions are actually feasible. Therefore, one might work with
an underlying real random field {Yx}x∈X , where the Yx are, for ex-
ample, Gaussian random variables. The binary values θx can then be
derived from these variables by means of a threshold function. This
approach allows for a direct calculation of (posterior) probability de-
grees and, hence, guarantees ηx0(λ) ≤ 1.

Apart from the fact that (13) is a measure of absolute uncertainty,
the separate treatment of labels has further advantages in IBL. For
example, consider two similar instances xı and x with different la-
bels λxı and λx . The original probabilistic model would simply “av-
erage” between these labels: Roughly speaking, the two cases would
wipe out each other, a solution that may lead to undesirable effects
and counterintuitive results. For a thorough analysis of formal prop-
erties of the uncertainty measure (13), refer to an extended version
of this paper.

5.4 Experimental Results

In order to validate our extension of the NN principle, we have
performed a large number of experimental studies, using data sets
from the UCI repository.It has to be mentioned, however, that these
data sets are not optimally suited for our purpose. Firstly, many data
sets are large and random sampling leads most probably to more or
less “balanced” situations where the neglect of dependence is not as
harmful. Secondly, an important aspect of our approach is the faith-
ful representation of the available evidence in favor of the different
labels. But this aspect is completely neglected if – as in experimen-
tal studies – only the correctness of the final decision (classification
accuracy) counts. In fact, the consideration of dependence will often
change the distribution (13) but not necessarily the decision (14).

Anyway, all in all the experiments show that – on average – k-
DNN even leads to slightly improved classification performance.
The following table shows the (average) percentage of correct classi-
fications for some well-known data sets when using, respectively, one
half of the cases as training and one half as test cases. Here, we com-
pared k-DNN (with γ(x) ≡ x) to a simple weighted k-NN scheme
and the original (majority vote) k-NN classifier (with k = 5):

data set k-DNN weighted k-NN k-NN
GLASS 64,67 64,01 62,80
WINE 72,58 71,91 72,35
ABALONE 85,27 84,66 84,05
IRIS 96,53 96,53 96,40
PIMA DIABETES 72,10 71,95 71,86
BALANCE SCALE 85,90 85,32 85,10

Many other data sets yield qualitatively similar results. Due to lack
of space, however, we refrain from a detailed exposition.

6 Concluding Remarks

We have emphasized two points as important aspects of instance-
based learning: Firstly, an estimation should reflect the available ev-
idence supporting the different labels, rather than simply return the
final decision in the form of the apparently most probable label. Par-
ticularly, we have argued in favor of a measure of absolute evidence
that is able to represent (partial) ignorance. Secondly, observed cases
in IBL must not be considered as independent pieces of evidence.
In fact, the necessity of taking the mutual dependencies between ob-
served cases into account is a consequence of the underlying IBL
principle itself.

These considerations have given birth to a new inference scheme
which is built upon a probabilistic random field model. Our estima-
tion procedure can be seen as an extension of weighted NN estima-
tion. Roughly speaking, it shows how to discount the information
provided by neighbored and, hence, non-independent cases so as to
modulate their influence on the new estimation in a proper way.

The covariance model (9) captures the essence of the basic IBL
assumption: The more similar two instances, the more likely they
have similar labels. The function γ “parameterizes” this principle.
Our experiments have shown that estimations are quite robust toward
variations of this function. Still, the problem of how to specify (or
learn) γ so as to achieve optimal performance for the application at
hand leads to an interesting technical question. Apart from that, a
main challange for future work is to integrate our inference scheme
into real-world IBL and CBR systems.
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