Event-L earning with a Non-Mar kovian Controller

Istvan Szita!

Abstract. Recently a novel reinforcement learning algorithm called
event-learning or E-learning was introduced. The algorithm based
on events, which are defined as ordered pairs of states. In this set-
ting, the agent optimizes the selection of desired sub-goals by a
traditional value-policy function iteration, and utilizes a separated
algorithm called the controller to achieve these goals. The advan-
tage of event-learning lies in its potential in non-stationary environ-
ments, where the near-optimality of the value iteration is guaranteed
by the generalized s-stationary MDP model. Using a particular non-
Markovian controller, the SDS controller, an e-MDP problem arises
in E-learning. We illustrate the properties of E-learning augmented
by the SDS controller by computer simulations.

1 Introduction

In a common formulation of the Reinforcement Learning (RL) prob-
lem an agent improves its behavior by observing the outcomes of its
own interactions with the environment. In the 1980’s, Markovian De-
cision Problems (MDPs) were proposed as the model for the analysis
of RL (for an overview, see [12] and references therein), and since
then a mathematically well-founded theory has been constructed for
a large class of RL algorithms [20, 21, 6].

RL algorithms typically consider stationary environments. To pro-
vide a principled framework for RL in fast changing environments,
we introduce a model called e-MDP which are generalizations of
e-stationary MDPs [7]. In e-MDPs the environment is allowed to
change over time. In particular, transition probabilities may vary as a
function of time. The only requirement is that the change is asymp-
totically small (it is bounded by a small number). We cannot expect
to find an optimal policy, it may not even exist for this case. Never-
theless, the following important result can be proven: if an algorithm
converges to the optimal value function in an MDP, then in the corre-
sponding e-MDP the asymptotic distance of the optimal value func-
tion and its approximation is bounded, and the bound is proportional
to e under the same conditions.

The concept of e-MDPs can be applied to a novel reinforcement
learning algorithm called event-learning [8]. Event-learning differs
from typical RL formulations where the agent learns an optimal pol-
icy that prescribes the optimal action in a given state. This kind of
policy has much the same advantages and drawbacks as conditioned
reflexes: it can solve difficult tasks, but it may be sensitive to minor
changes in the environment, furthermore, in a new problem setting
the learning must be started over from the beginning. Event-learning,
instead, optimizes a policy which selects desired successor states in-
stead of selecting actions. Consequently, instead of state-action val-
ues, the values of state-state pairs (events) are learned. The task of

1 Eétvds Lorand University, Budapest, Pazmany Péter sétany 1/C H-1117
2 Corresponding author

and Balint Takacs!

and Andras Lorinczh 2

bringing the agent to the desired successor state is passed to a lower-
level controller. Event-learning with a particular non-Markovian con-
troller, the SDS controller [17], corresponds to an e-MDP under
certain conditions[19]. We illustrate the properties of event-learning
augmented by the SDS controller using a two-link pendulum com-
puter simulation, and we discuss its advantages in changing environ-
ments and with coarse discretizations. Finally, some possible exten-
sions are presented.

2 Generalized e-Stationary MDPs

Markovian Decision Problems are commonly used constructions for
formulating reinforcement learning tasks. Recently, a more general
model called generalized MDP was introduced[16]. A generalized
MDP is defined by the tuple (X, A, R, @, X)), where X, A, R are
defined as above; @ : (X x Ax X - R) - (X x A = R)
is an “expected value-type” operator and ® : (X x A — R) —
(X — R) is a “maximization-type” operator. For example, by
setting (D5S)(z,a) = 32, P(z,a,9)S(z,a,) and (RQ)(x) =
max, Q(z,a) (Where S: (X x Ax X) —-RandQ : (X x A) —
R), the well-known expected-reward MDP model is recovered.

In the generalized framework, the agent’s task is to find a value
function V' satisfying the abstract Bellman equations:

Vi(z) = QB (R(x,a,y) +7V"(y)),

The optimal value function can be interpreted as the total reward re-
ceived by an agent behaving optimally in a non-deterministic envi-
ronment. The operator € describes the effect of the environment,
i.e. how the value of taking action « in state = depends on the
(non-deterministic) successor state y. The operator (X describes the
action-selection of an optimal agent.

When 0 < v < 1, and both € and) are non-expansions, the
optimal solution V* of the abstract Bellman equations exists and it
is unique.

As shown by Szepesvari and Littman, the analogue of the Q-
learning algorithm [21] can be defined in generalized MDPs as well
[16]. Furthermore, convergence results for this general algorithm can
also be established. In Q-learning, the values of state-action pairs (the
values of taking a given action in a given state) are learned instead
of state values, which enables model-free learning [20]. The corre-
sponding X x A — R value function is usually denoted by Q. For
the optimal state-action value function Q*, Q* = (R + V")
holds. The Q-learning algorithm uses the following update rule:

forallz € X. (1)

Qet1(ze, ar) = (1 — cu(2r, a1)) Qe (e, ar)
+ (@, a) (re +7(QQ:) (y)), (2)

where x; is the current state, a. is the selected action, y. is the re-
sulting state, r; is the gained reward, and a.(x,a) is the learning

rate at time ¢. y, is selected according to the probability distribution
P(x¢,ay,.) and Qy is the actual estimate of Q*.

The great advantage of the generalized MDP model is that a wide
range of models can be discussed in this unified framework. For de-
tails, see [16].

Another extension of the MDP concept, where we do not require
the transition probabilities to remain constant: they are allowed to
vary with time. However, without restrictions, such model would be
too general to establish useful theorems. Therefore we restrict our-
selves to cases when the change over time remains small. We say
that the distance of two transition functions P and P’ is e-small
(e > 0), if |P(z,a,.) — P'(z,a,.)||z, < e forall (z,a), ie.
>, 1Pz a,y) — P'(z,a,y)| < e forall (z,a). (Note that for a
given state = and action a, P(z,a,y) is a probability distribution
overy € X.)

MDPs with varying transition probabilities can also be formulated
as generalized MDPs. Given a prescribed ¢ > 0, a generalized e-
stationary MDP is defined by the tuple (X, A, R, {D,}, {®,}),
with@, : (XxAxX - R) - (XxA—-R)andQ), : (XxA —
R) — (X — R), ¢t =1,2,3,..., if there exists a generalized MDP
(X,A,R,@,®) such that limsup,_ . |Q,PD, - RPB| < e
The resulting model inherits the advantages of both the generaliza-
tion and the e-property: a broad scale of decision problems can be
discussed simultaneously, while the underlying environment is al-
lowed to change over time as well. This family of MDPs will be
called generalized e-stationary MDPs or e-MDPs for short.

We present here a generalized form of the convergence theorem of
Szepesvari & Littman’s[16], applicable to algorithms in e-MDPs. Let
X be an arbitrary state space and denote by B(X) the set of X — R
value functions. Let T : B(X) — B(X) be an arbitrary contraction
mapping with unique fixed point V*, and let 7} : B(X) x B(X) —
B(X) be a sequence of stochastic operators.

Defnition 2.1 A seriesof value functions V; x-approximates V" with
k> 0,iflimsup,_, . ||V: — V| < & with probability one.

Defnition 2.2 We say that T x-approximatesT" at V' over X, if for
any Vp and for Vii1 = Ty(V4, V), Vi k-approximates TV over X
with probability one.

Theorem 2.3 Let T be an arbitrary mapping with fixed point V'*,
and let T, x-approximate T' at V* over X. Let 1, be an arbitrary
valuefunction, and define Vi1 = T (V4, V4). If there exist functions
0 < Fi(z) < land 0 < G¢(z) < 1 satisfying the conditions below
with probability one, then V; «’-approximates V* over X, where

r_
K = 1=K

1. fOfa“U1,U2 eVandaJIxeX,

T (U, V") () = To(Uz, V') (2)| < Gi(2)|Ur(x) — Us(z)|
2 forall U,V e vandall z € X,

|T.(U,V*)(z) = T.(U,V)(z)| < Fi(x) sup |V*(a) = V(2]

3. forall k > 0, [];_, G¢(x) convergesto zero uniformly in z asn
increases; and,
4. thereexists 0 < v < 1 such that for all z € X and sufficiently
larget,
Fi(z) < 7(1 - Gi(x)) wpdl.

By applying Theorem 2.3 it can be shown that the generalized Q-
learning algorithm still finds an asymptotically near-optimal value
function.

Theorem 2.4 Let Q™ bethe optimal value function of the base MDP
of thee-MDP, and let M = maxs,q Q" (z, a) — ming o Q*(z, a). If

1.) isanon-expansion,

2. (X doesnot dependon R or P,

3. r; hasafinitevarianceand E(r¢|z:, ar) = R(z¢, ar),

4. thelearning rates satisfy Y ;>) x(z: =, ar = a)ou(x,a) = o0
and 302 x(ze =z, a:=a)a(x,a)* < oo uniformly wp.1,

then limsup, _, . |Q: — Q*[| < t25vMe wp.1, i.e the sequence
Q: +'-approximates the optimal value function with =" = 2=y Me.

For the proofs and other mathematical details, see [19].

3 The Event-Learning Algorithm

Most reinforcement algorithms maintain and use some kind of value
function for developing an optimal policy. The event-learning algo-
rithm [8] uses the event value function £ : X x X — R, and the
pairs of (x, y) states are called events. For a given initial state z and
a desired goal state y¢, E(x, y?) is the value of trying to get from =
to ¢ in one step. This value may be different from the expected dis-
counted total reward of eventually getting from z to y<. We use the
former definition, since we want to use the event-value function for
finding an optimal successor state. To this end, the event-selection
policy 7% : X x X — [0,1] is introduced. =% (z,y?) gives the
probability of selecting desired state y¢ in state . However, the sys-
tem usually cannot be controlled by “wishes” (desired new states),
decisions have to be expressed in actions. This is done by the action-
selection policy (or controller policy) 74 : X x X x A — [0,1],
where 7(z, y?, u) gives the probability that the agent selects action
w to realize the transition z — y¢ >.

An important property of event-learning is the following: only the
event-selection policy is learned (through the event value function)
and the learning problem of controller policy is separated from this
event-learning. From the viewpoint of event-learning, the controller
policy is part of the environment, just like the transition probabilities.

The event value function corresponding to a given policy can be
expressed by the state value function:

E. e (xvyd) = Z WA(x’ ydvu) Z P(mv U, y)

: (R(a; y) + w(y)), (€))

and conversely:

V(z) =) 7" (2,y")Epe (z,y"). @
yd
This relation implies the following definition:

DeEnition 3.1 For afixed controller policy =, an event-value func-
tion isoptimal if it satisfies

Epa(w,y’) =Y 7 (@,y"u)) Plx,u,y)
u Y

. (R(:E, y) +Via (y)), where V.4 (z) = max Efa(y, 2.

3 Note that £(z, y®) depends on both 7 and 7. When no ambiguity may
arise we will not explicitly show these dependencies.

Itis easy to see that max, 4 V"4 (x) = V™ (z). A controller policy
72 is optimal, if it maximizes the 1.h.s. expression. An optimal event-
value function with respect to an optimal controller policy will be
noted by E*.

In most applications we cannot assume that a time-independent
optimal controller policy exists. To the contrary, we may have to al-
low the controller policy to adapt over time. In this case, we may
try to require asymptotic near-optimality. This is a more realistic re-
quirement: in many cases it can be fulfilled, e.g., by learning an ap-
proximate inverse dynamics [4] in parallel with event-learning. Or
alternatively, the controller policy itself may be subject to reinforce-
ment learning (with a finer state space resolution), thus defining a
modular hierarchy. Another attractive solution is the application of a
robust controller like the SDS controller [17], which is proven to be
asymptotically near-optimal, furthermore it may have a short adapta-
tion time, and is robust against perturbations of the environment.

As a consequence of the varying environment (recall that from
the viewpoint of event-learning, the controller policy is the part of
the environment), we cannot prove convergence any more. But we
may apply Theorem 2.3 to show that an iteration exists which still
finds a near-optimal event value function. To this end, we have to re-
formulate event-learning in the e-MDP framework. Since an action
of the learning agent is selecting a new desired state, the set of ac-
tions A is equal to X in the new e-MDP. Because of this assignment,
the generalized Q-value function of this model will be exactly the
event value function E. Let (Q,E)(z) = max,a E(z,y?), inde-

pendently of ¢, and let (,.5)(x, y*) = >=, pe(ylz, y*)S(z, v, y),
where p;(y|z,y?) = 3, 7 (2, y?, u)P(z, u,y). Finally, we as-
sign the operators @ and Q) as (Q E)(z) = max,q E(z, yd) and
(B9 (z,y") =3, >, 7 (z, y", w)P(z,u,y)S(z, y", y).

The generalized Q-learning algorithm of this model uses the iter-
ation

Eiy1(st, 5?+1) =(1- Oét(5t75?+1))Et(8t7 5g+1)

+ (50, 5741) (Tt +7m3XEt(8t+1,Sd)>)

This is identical to the iteration defined in [8].

Theorem 3.2 If the sequence of controller policies 7' conver-
ges to a neighborhood of 7, i.e limsup, . _ |77 (z,y%,.) —
7 (z,y%,)| < e for al (z,y%) wp.1 uniformly, then the above
defined model isindeed an e-MDP.

For the proof see [19]. We can apply Theorem 2.4 now to prove
the following statement:

Corollary 3.3 Let limsup,_, . ||[7{' (z,3%,.) — 7 (2, %%, .)|| < ¢
andlet M = max, 4 Er4 (z,y*) — min, yd B Az, yd). If

1. r, hasafinitevarianceand E(r¢|z¢, y¢) = R(ze,yt),
2. thelearning rates satisfy "7, x(z¢ = =, yf = y*)au (2, y?) =
oo and 3% x(we = z,yf = yHae(z,y?)? < oo uniformly

w.p.1,
then the sequence E; satisfieslimsup,_, ||E: — E 4] <
%vMs w.p.1.

Naturally, if 74 = 72" then the approximated value function will

be E*.

3.1 Event-Learning with the SDS Controller

The Static and Dynamic State (SDS) Feedback controller proposed
by Lérincz et al. [15, 17] gives a solution to a specific control prob-
lem, the speed field tracking® problem (SFT) in continuous dynam-
ical systems [5, 4, 18]. The problem is the following. Assume that a
state space X and a velocity field v? : X — X are given. At time
t, the system is in state x(¢) with velocity v(t). We are looking for
a control action that modifies the actual velocity to v¢(z(t)). Stud-
ies on SDS showed that it is robust, i.e. capable of solving the SFT
problem with a bounded, prescribed tracking error. [4, 15, 17, 14].
Moreover, it has been shown to be robust also against the perturba-
tion of the dynamics of the system and the discretization of the state
space [8].

The SDS controller applies an approximate inverse dynamics &,
which is then corrected by a feedback term:

ot
w(ze,vl) = Oz, 0l) + A/ wrdT, where
=0

Wy = @(mﬁ vg) — @(mT, vr))

is the correction term, and A > 0 is the gain of the feedback. It was
shown that under appropriate conditions, the eventual tracking error
of the controller is bounded by const/A. The assumptions on the
approximate inverse dynamics are quite mild: only sign-properness is
required®. Generally, such an approximate inverse dynamics is easy
to construct either by explicit formulae or by observing the dynamics
of system during learning.

The above described controller cannot be applied directly to event-
learning, because continuous time and state descriptions are used.
Discretization of space is needed, and this discretization should sat-
isfy the condition on ‘sign-properness’. If time is discrete, then pre-
scribing desired velocity v is equivalent to prescribing a desired suc-
cessor state y? [8]. Therefore the controller takes the form

¢
w(ze,yd) = O(x,yd) + AZwT - At, where
7=0
wr = (i)(‘r7'7yﬁ) - (i)(xﬂyﬂ'))v

and At denotes the size of the time steps.

Note that z, and y, (therefore w.) change at discretization
boundaries only, i.e. when an event was observed. Therefore, event-
learning with the SDS controller may have much relaxed conditions
on update rate compared to other reinforcement learning methods
[8].

The above defined controller can be directly inserted into event-
learning by setting

1 ifa= ut(xt,yf),
0 otherwise.

W?(xtvyg7a) = { (6)

Corollary 3.4 Let be a prescribed number. For sufficiently large
A and sufficiently small time step, the controller described in Eq. 6
satisfies the conditions of Theorem 3.2, therefore the environment
and the SDScontroller form an e-MDP. Consequently, Corollary 3.3
isapplicable.

4 The term, “velocity field tracking’, may represent the underlying objective
of speed field tracking better, which term is used in the literature.

5 The inverse dynamics is sign-proper if the result of its action is better than
the result of the opposite action.

4 Computational Demonstrations

For the computer simulations the two-segment pendulum problem
[1] was used. The pendulum is shown in Fig. 1. It has two links, a
horizontal one (horizontal angle is «:1), a coupled vertical one (ver-
tical angle is a2) and a motor that is able to rotate both directions.
The state of the pendulum is given by a1, a2, &1 and és. For the
equations of the dynamics see, e.g. [8].

The task of the learning agent was to bring up the second link
into its unstable equilibrium state and balance it there. To this end,
the agent could effort torque on the pendulum by using the motor.
The agent could finish one episode by (1) reaching the goal state and
stay in it for a given time interval (2) reaching a time limit without
success (3) violating predefined speed limits. When the agent was in
the goal state, 0 reward was applied, otherwise it suffered -1 penalty.
An optimistic evaluation was used: 0 value was given for every new
state-state transition.

State variables were discretized by an uneven ‘ad hoc’ partition-
ing of the state space. The controller had two base actions. First the
agent learned the inverse dynamics by experience: a random base
action was selected then the system was periodically restarted in 10
second intervals from random positions. The inverse dynamics for an
event was given by the most likely action when the event occured. To
accelerate learning, eligibility traces were used.

The applied inverse dynamics had no guarantees: it may have even
violated the sign-properness condition in small sub-portions of the
discretization domains. Still, the rate of successful episodes usually
stabilized after 200000-300000 seconds of simulation time and the
agent learned its task. See [19, 8] for the effectively used parameters.

link 1

1
Nl */(:{L/
Teg “a '#

Figurel. The Two-link Pendulum
Upper subfigure: the pendulum; lower subfigures: a successful episode
shown in three consecutive series.

4.1 Experiments
411 Comparisonswith SARSA

The performance of event-learning augmented by the SDS controller
was compared to the performance of SARSA (a well-known and
effective RL-algorithm). The same parameters (learning rate, res-
olution of discretization, reward, eligibility decay, discount factor)
were used for both algorithms. The parameters were taken from [1],
and can be considered (near) optimal for the SARSA implementa-
tion (which was also taken from here). In this experiments, the SDS
controller used an even more simplified inverse dynamics, which ac-
celerates learning but results in a less accurate tracking ability and
increases noise (see [8]).

We examined the histogram of the task completing times ob-
tained during learning. Results show that event-learning with SDS

50 T

E-learning o
SDS (1.0) SARSA

40

30

201

Percentage

E-learning

1oL _SDS (20)

10 TS = et 10 gy
Time of Finishing Task

Figure2. TimeHistogram
Event-learning with SDS has a significantly smaller variance in task
completion time than the SARSA method. Result depends on the feedback
gain parameter (A) heavily, which is shown in brackets in the figure.
A = 1.0 not only performs better on average than SARSA, but also results
in the smallest variance. Even at A = 2.0, extremely long task completion
times were less frequent than with SARSA.

has a significantly smaller variance in task completion time than the
SARSA method (Fig. 2).

Changing the mass does not effect sign-properness of the inverse
dynamics. In turn, we suppose that event-learning using SDS is ro-
bust against mass perturbations, a property rarely met by other RL
methods. To examine this, after switching learning off the smaller
mass parameter was perturbed, which modified the dynamics of the
system (Fig. 3). The result shows that the changing environment does
not spoil the optimized value function.

350

300
250
SARSA

200+

150 -

. » »
R AL I S S

Change of Time of Finishing Task [%)]

100 g .* e 4
ot E-learning
o SDS (1.0) |
0
-0.1 0 0.1 0.2 0.3 0.4 05
Am (kg)

Figure3. SARSA vs. E-learningin a changing environment
In this experiment we perturbed the environment by changing the mass of
the smaller link. The figure shows the average task completion time for the
two methods as a function of the mass change. The original mass was 0.43
kg. IN SARSA, beyond about 0.1 kg mass increase sharp deterioration takes
place and performance of the state-action policy drops suddenly. In contrast,
event-learning with SDS starts to deteriorate only at around doubled mass.

4.1.2 Optimal feedback value for the SDS controller

By Corollary 3.4, we can expect that the time needed for convergence
decreases by increasing the gain factor A. Indeed, Fig. 4 shows that
an optimal A exists: without SDS (A = 0) a significantly slower
learning can be achieved. At higher gain factors, the discretization
introduces instabilities: The SDS “overshoots” within discretization
domains. Therefore performance quickly deteriorates for large A
values. Finer discretization and/or more frequent observations are

needed to improve performance: for larger A values the update rate
needs to be increased. However, in experiments with coarser dis-
cretizations, RL was able to learn the task only for non-zero A values.

x10

N
2 w
T
x X
x 4
x
X X
L

N
T
20
x
x
L

Number of Succesful
Episodes in 500000 sec
I
— 5
T *
. .

o
o
T
L

L Xy % n

3 4 5 6 7
SDS Feedback Gain ()

o
L
L

o
-

Figure4. Choosing an Optimal Feedback Gain.

The figure demonstrates that an optimal feedback gain exists for SDS.
Because of the stochastic nature of the process, the result depends on
random factors. Therefore we calculated every result for lower A values 3
times with different random seeds.

5 Conclusions

We have introduced a new model called e-MDP, in which the tran-
sition probabilities may change over time as long as the change re-
mains small (e-small). e-MDPs has the following property: if an al-
gorithm converges to the optimal value function in an MDP, then
in the corresponding e-MDP the asymptotic distance of the optimal
value function and its approximation is bounded, and the bound is
proportional to € under the same conditions.

The theoretical framework of the e-MDP model was used to treat
a novel RL algorithm, event-learning [8]. We have shown that under
mild assumptions, event-learning finds a near-optimal value func-
tion: if the uncertainty of the underlying controller policy is asymp-
totically bounded by €, then the uncertainty of the resulting value
function is at most C' - ¢, where C'is a constant depending on the
learning problem and the learning parameters. As a consequence of
this result, we showed that event-learning augmented with an adapt-
ing controller converges to a near-optimal solution. If the policy of
the controller is optimal, then the result of event-learning is also op-
timal. The concepts and theorems of e-MDPs, which were designed
for event-learning, provide mathematically attractive framework for
RL in a variety of changing environments as well.

Event-learning can be seen as one solution to the problem orig-
inally addressed by modular reinforcement learning [9, 2, 10, 7, 3]
and by the formulation of options within a semi-Markov Decision
Process framework [11, 13].

The computer simulations, which were used to illustrate the the-
ory, did not satisfy the time discretization requirements of the the-
orems. It thus seems that further generalizations could be possible.
Additionally, learning the values of state-state transitions is more
than optimization of conditioned reflexes or habits, because it con-
cerns desired next states and thus enables direct planning. This issue
is under investigation at present.

6 Acknowledgements

Thanks are due to Csaba Szepesvari for helpful comments on the
mathematical derivation of this paper. This material is based upon

work supported by the European Office of Aerospace Research and
Development, Air Force Office of Scientific Research, Air Force Re-
search Laboratory, under Contract No. F61775-00-WEQ065 and by by
the Hungarian National Science Foundation, under Grant No. OTKA
32487. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not nec-
essarily reflect the views of the European Office of Aerospace Re-
search and Development, Air Force Office of Scientific Research,
Air Force Research Laboratory.

REFERENCES
[1]] T. M. Aamodt, Intelligent Control via Reinforcement
Learning, Basc thesis, University of Toronto, 1997.

http://www.eecg.utoronto.ca/~aamodt/.

[2] P. Dayan and G. E. Hinton, ‘Feudal reinforcement learning’, volume 5
of Advances in Neural Information Processing Systems, pp. 271-278,
San Mateo, CA, (1993). Morgan Kaufmann.

[3] T.G. Dietterich, ‘Hierarchical reinforcement learning with the maxq
value function decomposition’, Journal of Arti£cial Intelligence Re-
search, (2000).

[4] T. Fomin, T. Rozgonyi, Cs. Szepesvéri, and A. Ldrincz, ‘Self-
organizing multi-resolution grid for motion planning and control’, In-
ternational Journal of Neural Systems, 7, 757-776, (1997).

[5] Y. K. Hwang and N. Ahuja, ‘Gross motion planning — a survey’, ACM
Computing Surveys, 24(3), 219-291, (1992).

[6] T. Jaakkola, M. I. Jordan, and S. P. Singh, ‘On the convergence of
stochastic iterative dynamic programming algorithms’, Neural Compu-
tation, 6(6), 1185-1201, (November 1994).

[71 Z. Kalmar, Cs. Szepesvari, and A. Lorincz, ‘Module-based reinforce-
ment learning: Experiments with a real robot’, Machine Learning, 31,
55-85, (1998).

[8] A. Ldrincz, I. Polik, and I. Szita, ‘Event-learning and robust policy
heuristics’, Cognitive Systems Research, (2001). Accepted.

[9] S. Mahadevan and J. Connell, ‘Automatic programming of behavior-
based robots using reinforcement learning’, Artif£cial Intelligence, 55,
311-365, (1992).

[10] M.J. Mataric, ‘Behavior-based control: Examples from navigation,
learning, and group behavior’, J. of Experimental and Theoretical Arti-
£cial Intelligence, 9, 2-3, (1997).

[11] D. Precup and R. Sutton, ‘Multi-time models for temporally abstract
planning’, Advances in Neural Information Processing Systems, 10,
1050-1056, (1998).

[12] R. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
MIT Press, Cambridge, 1998.

[13] R. Sutton, D. Precup, and S. Singh, ‘Between mdps and semi-mdps:
Learning, planning and representing knowledge at multiple temporal
scales’, Journal of Arti£cial Intelligence Research, 1, 1-39, (1998).

[14] Cs. Szepesvari, Static and dynamic aspects of optimal sequential deci-
sion making, Ph.d. thesis, Attila Jozsef University, Bolyai Institute of
Mathematics, 1998.

[15] Cs. Szepesvari, Sz. Cimmer, and A. Ldrincz, ‘Neurocontroller using
dynamic state feedback for compensatory control’, Neural Networks,
10 (9), 1691-1708, (1997).

[16] Cs. Szepesvari and M. L. Littman, ‘Generalized markov decision
processes: Dynamic-programming and reinforcement-learning algo-
rithms’, Proceedings of International Conference of Machine Learning
’96, Bari, (1996).

[17] Cs. Szepesvari and A. Lérincz, ‘Approximate inverse-dynamics based
robust control using static and dynamic feedback’, volume 11 of Appli-
cations of Neural Adaptive Control Theory, pp. 151-179. World Scien-
tifc, Singapore, (1997).

[18] Cs. Szepesvari and A. Lorincz, ‘An integrated architecture for motion-
control and path-planning’, Journal of Robotic Systems, 15, 1-15,
(1998).

[19] 1. Szita, B. Takacs, and A. Lorincz, ‘Generalized e-mdps’, Techni-
cal Report NIPG-ELU-08-05-2002, E6tvos Lorand University, (2002).
http://people.inf.elte.hu/lorincz/Files/INIPG-ELU-08-05-2002.pdf.

[20] C. J. C. H. Watkins, Learning from Delayed Rewards, Ph.d. thesis,
King’s College, Cambridge, UK, 1989.

[21] C. J. C. H. Watkins and P. Dayan, ‘Q-learning’, Technical report,
(1992).

