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Abstract. In the context of frequent pattern discovery, we presentthe data mining community since most research nowadays focuses
a generality relation, calle@,-subsumptionwhich is based on the on methods for discovering frequent patterns in data that are char-
assumption of Object Identity in spaces of patterns to be intended aacterized by the presence of objects, properties of objects, and rela-
existentially quantified conjunctive formulee. The resulting general-tions among objects. An example of such structured domains is spa-
ity order =, seems appropriate for organizing efficiently the space oftial data. Se¢15] for details about an ILP method for mining spatial
DATALOG patterns over structured domains. Indeed we prove the exassociation rules.

istence of ideal refinement operators feyi-ordered spaces and the  The paper is organized as follows. Section 2 introduces the task
monotonicity of=<,, with respect to pattern support. Features of suchof discovering frequenDATALOG patterns. In Section 3, the object
spaces are illustrated by means of an example of frequent patteidentity bias is illustrated and applied to bé#subsumption and im-
discovery in spatial data. plication. Section 4 is devoted to the presentation of the generality or-
der based of,-subsumption. An illustrative example is commented

in Section 5. Concluding remarks are given in Section 6.

1 INTRODUCTION

The design of algorithms for frequent pattern discovery has turne
out to be a popular topic in data minifi@]. The blueprint for most % DISCOVERING FREQUENT DATALOG

algorithms proposed in the literature is the levelwise method that is PATTERNS

based on a breadth-first search in the lattice spanned by a generali%t A be a set 0DATALOG atoms. Conjunctions of atoms i are
order between patterrj46]. The space of patterns is searched one.,jed atomsets. In our framework, the language of pattérissthe
level at a time, starting from the most general patterns and itera%et of well-formed atomsets generated dnWell-formedness en-

ing between candidate generation and candidate evaluation phas%mpasses properties like linkedngkg] and safety [3] which guar-
Recently, an extension of the levelwise method to the discovery of :aas the correct evaluation of patterns

frequentDATALOG patterns has been presenfdji It relies on tech- The core mechanism icandidate evaluatiors pattern matching.
niques of Inductive Logic Programming (ILP) in order to exploit the 4 his aim, patterns are to be intended as existentially quantified

common background with logical languages for databases such ¥Dnjunctive formulee (ogueried [11, 17] and data can be considered

DATALOG [3]. o as either (intensionally) a logic theory or (extensionally) an interpre-
The choice of the generalization model for a spac®afALOG tation.

patterns affects both its algebraic structure and, as a consequence,
the definition of refinement operators to work on it. Two main ap- Definition 2.1 LetR be a definite database. A quefymatchew iff
proaches to the problem of generalization have been followed in ILR) is true in the least Herbrand model gf The seunswerset(Q, R)
[13]: the logical approach and the graph matching approach. As teontains all the ground substitutioissuch thatQ9 matche.
the former, logical implication has proven particularly hard to handle
due to many negative results descending from its intrinsic complexityhis matching could be checked in polynomial tifd&].
and non-decidability10]. Thus,f-subsumptiois usually employed In the case of association patterns, the evaluation function deter-
in ILP since it turns out to be more tractalpler]. Yet, this relation-  mines the support of a candidate pattern given a cefain A that
ship is not fully satisfactory because of the complexity issues thaspecifies what is being counted (callezly aton). Thus we are inter-
anyhow it yieldg[9]. Then, proposed solutions regard other forms of ested in the number of different bindings for the variables occurring
subsumption which follow the latter approagdh]. in K. The setunswerset(Q, R)|x contains those substitutionsthat

In this paper, we propose to weaken further bétbubsumption  are obtained by restriction of substitutionsiinswerset(Q, R) to the
and implication by assuming thabject identitybias. The resulting atomk.
generality relations are calle,-subsumptiorand Ol-implication
respectively. The paper extends results report¢,i6] to the case of ~ Definition 2.2 Let @ be a query with key atorik’. Thesupport of
existentially quantified conjunctive formulze. In particular, the gener-the quernyQ w.r.t. R given K is defined:
ality order based of,-subsumption, denoteg,, seems appropriate
for organizing efficiently the space BfATALOG patterns over struc- supp(Q,R, K) =
tured domains. Indeed, we prove the existence of ideal refinement | answerset (K, R) |
operators for<-ordered spaces and the monotonicity<gfwith re-
spect to pattern support. These properties may be of great interest

_ | answerset(Q,R) | |

andidate patterns with support greater than a user-defined minimum
reshold frequent patternsare retained. Frequent patterns are com-
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threshold values. In the case of association rules the measure of con-In order to cope with the object identity assumption, a relation-

fidence offer a natural way of pruning weak and rare r{dgs ship has been derivg8] from the classi@-subsumption. It can be
Evaluation functions play a relevant role alsodandidate gen- regarded as a structural relation of subgraph isomorpffidin

eration Indeed, this phase takes advantage of generality orders that . .. .

are monotonic with respect to the chosen evaluation function. Thgef'n'tgln 3'5 tl'_tett'P’ Q et L. P fo-subsumes) iff P 2 Qo for

monotonicity property allows us to specify pruning criteria. This is SOM€ ©l-substitution w.r.t. terms(Q).

the case of-subsumption. I1f4] it has been proven that: Adopting the object identity bias over the interpretations, the se-

Proposition 2.1 Given a definite database and two queriesQ; mantics of the language of pattergscan be defined as follows:

and Q- that contain the key atonk, it holds: if Q1 <o Q2 then  Definition 3.3 A pre-interpretatiow of the language on adomain
supp(Q1, R, K) < supp(Q2, R, K). D assigns each-ary (n > 0) function symbo}f to a mapping from
Candidate generation consists of refinement steps followed by prur@ o D. An OI-|nter.pretat|onI based on/ is a seF of ground in-

stances of atoms with argumentsZhthrough J. Given a ground

ing. The former applies a refinement operator urideubsumption s,O| substitutiorry mapping (£) to D, an instanced of an atom
to patterns previously found frequent by preserving the properties; . . . vars e >yl e .
P previousty fou au y P ving propert ,fél is truein I iff Ay € I. A negative literal—A~ is truein I iff

of linkedness and safety. Applying such operator usually consists o . . : .
adding to the pattern to be refined one or mdrgALOG atoms inA. ?{Y ¢ I._Atn OI-mterzr((e)t?tlorl;Itl_? ::1_n Ol-mrc])ctiﬁlftor Ifl.Ft’attTm.PP'ﬁ
The pruning step usually involves verifying that candidate pattern§ ere exists a groun -substitutionsuch that afl iterals iy

do notf-subsumes infrequent patterns. This allows some infrequen"i1re truein/.

patterns to be detected and discarded prior to evaluation. All the notions defined for standard semantics can be straightfor-
wardly transposed to this semantics. In particular, the form of impli-

3 THE OBJECT IDENTITY BIAS cation that is compliant with object identifg]:

Our proposal relies essentially on the following bias that can be conDefinition 3.4 Let P,Q € L. P implies @ under object identity

sidered as an extension of Reitauisique nameassumptiorj19]: (denotedP” =0 Q) iff all Ol-models forP are Ol-models foQ.

[Object Identity]In a formula, terms denoted with different symbols This relationship is decidable for the case of clayggObserved

must be distinct, i.e. they represent different entities of the doma'%at clauses can be obtained by negating patterns, the decidability of

This asstympflt%n canf:])e the sta;tlng plomt f(()jr the dgflnlgoq OfbethOI-impIication between patterns descends from the case mentioned
an equational fheory IADATALOG Tormu'as and a quasi-orcering for - 5y, ¢ by contradiction. Ol-implication is a stronger relationship than
DATALOG spaces. As to the former option, it consists of the axioms

of Clark's Equality Theory augmented with one rewriting rule that f-subsumption:

adds atoms # t to any P € L for each pair(s, t) of distinct terms  Proposition 3.1 Let P, Q € L, if P &,-subsumeg) thenP =, Q.
occurring in P. The resulting language is a subsetfTALOG”, Proof: By definition,P &,-subsumes) yields3o Qo C P. Now
calledDATALOG © [20]. For instance, th®ATALOG pattern let I be an Ol-model forP. ThenVLy € Py: L~v € I for some
ground substitutiory. Consider the ground substitutiofi = oy. By

P=c(X,a).r(X,Y). c(Y,b), 7(X, Z), (Y, ]) construction@Q+’ C P~. ThenVL' € Q 3L € P Ly = L'+’ such

stands for thdATALOG © pattern thatL'+' € I, i.e.Iis an Ol-model forQ.
P =¢(X,a), r(X,Y), c(Y,b), r(X,Z), c(Y,b), X £, In clausal spaces, the proof-theory based on the notion of OlI-
Y4£Z, X4a,X#4bX+c¢Y#aY #£bY #£c unifier (a unifying Ol-substitution) can be given. Resolution and

derivation under object identity have been proven sound and a sub-
One major drawback of Object Identity Esiguage biass the cost  sumption theorem also holds, thus bridging the gap between model-
of candidate evaluation. Indeed, it has been proved that conjunctivgyeory and proof-theorf6].
gueries with inequalities are in general intractgdti4] (except some

cases mentioned later). Thus, we are more interested in Object Ideg{- THE GENERALITY ORDER AND ITS

tity assearch bias
The intuition underlying Ol-compliant quasi-orderings OAT- REFINEMENT OPERATORS

ALOG spaces can be illustrated by means of the pattétns= The goal is to define a generality order on patterns. From an exten-
p(X, X)andQ = p(X, X),p(X,Y),p(Y, Z),p(Z, X). Adopting sional point of view a patter) is "more general” than another pat-
f-subsumption as generalization model for the spdcd® and Q tern P when P =, Q. Also &,-subsumption can be adopted to in-
are equivalent. This is not so natural as it might appear, since morduce a generality order over pattern spaces. In various cases the two
elements of the domain may be involved@hthan in P (indeed in  orders coincidg6].

our frameworkP is more general tha®). The expressive power is
u worki ! 9 ) XPressive power | Definition 4.1 Let P, Q € L. P=oQ iff P fy-subsumes), P<oQ

not diminished by this bias, since it is always possible to convey th : .
same meaning of a pattern, yet it might be necessary to employ motd P=0Q andQZo P. Finally, P~o Q iff P=6Q andQ=oP.

patterns inZ, e.g. P = p(X,Y) is equivalent to the set of patterns |t can be easily proven that, is a quasi-order:
{Pl:p(X7X)7P2:p(X7Y)} .
From a syntactic viewpoint, since a substitution can be regarde§ToPosition 4.1 Let P, Q € L. If P~o/Q then P andQ are alpha-
as a mapping from the variables to terms of a language, we requirgetic variants.
these mappings to avoid the identification of terms: Proof: In the hypotheses abo##:,0.: Q¢ C P and Pd> C Q.
Observed that Ol-substitutions do not identify literals, we can write:

Definition 3.1 A substitutiono is an Ol-substitutionw.rt. a set of  |@Q| < |P|and|P| < |Q|. Then|P| = |Q| and the patterns must be
termsT iff Vi1, t € T': t1 # to yields thattio # t20. alphabetic variants.



Proposition 4.2 (£, <o) is a quasi-ordered set. An optimal way to define efficient refinement operators would be
Proof: mapping each pattern to its cover set. This may be infeasible because
[symmetry]Trivial, sinceVP € L: P 6y-subsumeg’. of the relationship< to be tested or because cover sets can be empty
[transitivity] Let P1, P2, Ps € £ and Pi= P> and P»=, P3. Then  even when a clause has infinitely many non-equivalent proper gener-
Jdos,05 : Pros C Py and Psos C P,. For o = o303 it holds  alizations or specializations. Indeed, it holds that:
P30 C P; and henceP; 6y-subsumes’;, that is Py <o, P5.
Proposition 4.4 [17] Given an ideal downward (resp. upward) re-

The monotonicity of<o, is now investigated with respect to the finement operatop (resp.d) for (£, <). VP € L: dc(P) (resp.
evaluation function. To this aim, Definitiod.1 and Propositio®.1  uc(P)) is finite and complete, andc(P) C p(P) (resp.uc(P) C
are extended to our framework. 5(P)).

Definition 4.2 Let R be a definite database. A que€y matches Thus, if a pattern has an incomplete or infinite cover set in a quasi-
R iff Q is true in the least Herbrand Ol-model of. The set ordered space, then an ideal refinement operator cannot be defined.
answerset(Q, R) contains all the ground Ol-substitutioréssuch N the space ordered b-subsumption(£, =), consider the pat-
that Q6 matche. ternsP = p(X, X) and P, = {p(Xi, X;) | 4,5 € [1,n],i # j},

for n > 2. Note thatP <y P,+1 <¢ P, and there is no downward
Proposition 4.3 Given a definite database and two queriesp, ~ COVerr” of Psuch that? <o P’ <o Py forn > 2,i.e.{Pu}n>2
and Q. that contain the key atonf, it holds: if Q1 <oQ2 then IS @n uncovered infinite descending chain. Analogously, the pattern
supp(Q1, R, K) < supp(Qa, R, K). ’ N Q = p(X,Y),p(Y, X) has no finite and complete downward cover
Proof: O’bs’erve_thatQﬁo.c’Qg’iff Q1 Gy-subsumes).. Then, by  Se€t: This holds also for function-free spaces such&s\L0G. Con-
Proposition 3.1, Q1 ':OI_ Q». By Definition 4.2, if Q1 mat(;hes versely, the existence of ideal refinement operators for clausal spaces
R then Q» matchesR. Let # be a ground Ol-substitution in ordered byf,-subsumption has been proven [5]. We transpose this

answerset(Q1, R). It holds thatd € answerset(Q2, R). By restrict- result to the case of patterns.
ing 6 to K, we obtain a Ol-substitution in answerset(Q1,R)|x
that belongs also toanswerset(Q2,R)|x. From Definition 2.2,
supp(Q1, R, K) < supp(Q2, R, K) follows.

Definition 4.5 Let P be a pattern in(L, <o).

Then, a patter® € po/(P) when one of these conditions hold:

[d.1] Q = PO, whered = {X/t}, X € vars(P), t & terms(P);

s[d.Q] Q = P U{L}, whereL is a literal, such that.L ¢ P.
Besides() € doi(P) when one of these conditions hold:

iu.l] Q = Po,whereo = {t/X},t € terms(P), X & vars(P),

The space resulting from the adoption of this generality order i
not a lattice like for the case éfsubsumption. Indeed, minimal gen-
eralizations and maximal specializations of patterns are not guara
teed to be unique. We need to investigate on refinement operators a
their properties in this pattern spadg, 5].

132] Q = P\ {L}, whereL is aliteral, such that:.L € P.

Now, in order to prove the completeness of these refinement oper-

_ . ators, some lemmas are needed:
Definition 4.3 In a quasi-ordered se{(, <), a downward(resp.

upwarg refinement operatds a mapping fromC to 2° such that | emma 4.1 Let P,Q € L. If there exists an Ol-substitutichsuch

pP) CHQEL|Q 2 PY(resp.d(P) C{Q € L| P =Q})  thatPo = Q thenQ € p5(P) and P € 65(Q).

VP € L. Denoted withr* thetransitive closur®f operatorr: Proof: 3 P9 = Q. Letn = 6], i.e.d containsn bindings, hence we
o 7isoptimaliff VP, Q1,Q2 € LitholdsP € 7(Q1) N7(Q2)  canwrited = U, 6;. Eachd; represent a stefal. 1] of the definition

implies@y € 7°(Q2) Or Q2 € T°(Q1); of por (renaming Ol-substitutions are left out for brevity). LBt=
o 7 islocally finiteiff VP € £ : 7(P) is finite and computable; Py,...,P, = Q be achain such thaP; = Pi_,6;, Vi € [1,n]
o 7 isproperiff VP € LVQ € 7(P): Q +# P; Thus,P; € po(Pi—1), Vi € [1,n], thenQ € p(P).

e p (resp.d) is completeiff VP, Q € L if Q < Pthen3Q’ € P € 65(Q) usingo = U} 0y = U, 0t

p*(P): Q' ~ Q (resp.ifP < Qthen3dQ’ € §*(P): Q' ~ Q). - o

Lemmad.2 LetP,Q € L. If P C Q then@ € p&(P)andP €
A locally finite, proper and complete operator is definggal. The 55(Q).
ideality of refinement operators has been recognized as particularigroof: By induction orn = |Q\ PI.
important for the efficiency of search algorithms in spaces datise | , — 0 thenP = Q, thusQ € p3,(P) C p& (P).
solutions Conversely, for spaces withre solutions, it is possible to  For n > 0, let Q \P={Ly,...,Ly}andfork < n, P, = QU
derive optimal operators from ideal ones, since the former are recogfL,, ..., Ly}. NowletLy 1 € Q\ Py andPyy1 = Py U {Lki1};
nized to be more suitable in this c2. Ideal operators have been we prove the lemma faP, ;1. SinceLi11 € Q \ P, thenLy,, ¢
proven not to exist for clausal spaces ordered{subsumption (or  p, . so it can be used to refinB, with por (case[d.2]), hence we
logical implication) [17]. The proof is based on the non-existence ofoptain: P,.; € pai(Py). By inductive hypothesis?, € pg,(P).
complete covers for some clauses. ThusPy11 € 65(P). Similarly,Q = P, € 6%(P).

Definition 4.4 In a quasi-ordered setl, <), @ is a downward  Theorem 4.1 In the pattern spacél, =), the refinement operators
(resp.upward coverof P iff Q < Pand AQ’: Q < Q' < P (resp. poi @anddg are ideal.

P<Qand AQ': P < Q' < Q). Adownward(resp.upward cover  Proof: [local finitenessbvious, from Definitiod.5.

setof P, dc(P) (resp.uc(P)), is a maximal set of non-equivalent [propernessjSupposeP € pu(Q). Then P=,Q. If also Q=uP
downward (resp. upward) covers Bt dc(P) (resp.uc(P))iscom-  then P~y Q. Hence, the patterns would be alphabetic variants (see
pleteiff vQ € £, Q < P3P’ € de(P): Q X P’ < P (resp.  Proposition4.1), which is not possible (Definitioh5 yields thatP

VQ e L, P<Q3IP €uc(P): P<P =<Q). has a new term w.r.Q or it is longer than@). Analogously fopo,.



[completenesslet P, Q € L such thatP=, Q. Then30Q6 C P.
LetQ' = Q6. For Lemmad.1,Q’" € p5(Q). SinceQ’ C P, by ap- true
plying Lemmat.2, it holds thatP € pg,(Q"). ThusP € pg(Q), then

por is complete (equivalent patterns are not considered since they
are alphabetic variants, by Propositiah1). A similar proof demon-
strates the completenessdf. Po

Though both refinement operators are ideal, the downward operator
poi is Of greater help in the context of frequent pattern discovery. In-
deed, by Propositiod.3, it drives the search towards patterns with P, P,
decreasing support and enables the early detection of infrequent pat-
terns.

5 AN ILLUSTRATIVE EXAMPLE P% ?3

As aforementionedzg-ordered pattern spaces are suitable for deal-
ing with structured domains. In the following, features of such spaces poi
are illustrated by means of an example of frequent pattern discovery v
in spatial data. From now on, patterns stand for association patterns.
Thus the chosen evaluation functionsispp(Q, R, K).

The discovery of spatial patterns is a descriptive mining task that
aims at the detection of associations between reference objects and
task-relevant objects, the former being the main subject of the de-
scription while the latter being spatial objects that are relevant for
the task at hand and spatially related to the former. For instance, wethich emphasizes the property of linkedness that patterns must sat-
may be interested in describing a given area by finding associatiorisfy. Generally speaking, given a setof objects, the categorig®),
among large towngéference objec)sand spatial objects in the road (attr(O)), and(rel(O, -)) refer to atoms that represent a classifi-
network and hydrography layertaék-relevant objecjsSome kind  cation, an attributive feature, and a relational feature of any object
of taxonomic knowledge on task-relevant geographic layers may also € O, respectively. The trivial pattern
be taken into account to get descriptions at different concept levels
(multiple-level patterns Also in spatial data mining, patterns can be 1o = is-a(A, large_town)
presented in the form of rules. We search for association rules with

large support and high confidencgtrbng association rulgs For- IS the key a.‘of“ sgpphed by From the wgwpomt of seman-
mally, the problen? is the following: tics, what distinguishes a spatial pattern is the presence of at

least one atom{rel(S, Ry)) that expresses a spatial relation, e.g.
Given intersects(A, B), like in

Figure 1. Fragment of<p-ordered pattern space.

e aspatial database Py =is_a(A,large_town), intersects(A, B), is_a(B, road)

e a set of reference objects

e some task-relevant geographic layéts, 1 < k < m, together  which can be generated when solviri@) with respect to the alpha-
with spatial hierarchies defined on them, bet A = {intersects(S, R1), adjacent_to(S, R2)} for L. In order

e two thresholds for each level in the spatial hierarchies, to illustratef,-subsumption, let us consider the following pattern

minsup[l] andminconf[l]
P, =is_a(A,large_town), intersects(A, B), is_a(B, road),

Find strong multiple-level spatial association rules. intersects(A, C), is_.a(C, road)

An instance(P) is the aforementioned discovery of associations benat also belongs tc. It is straightforward to check thal, 6b-
tween large townsq) and spatial objects taken from the layers of subsumes”, but not viceversa. SincB, < P1, P» can be generated
road network {21) and hydrographyXz). . by computingpo(P1). Note that the pattern®, and P, are equiv-

An ILP method for spatial association rule mining, called SPADA, 4jent undes-subsumption, thus causing the generation of improper
has been presented|ibb). !t be_neflts fr_om the a_lvallable background refinements that yield redundancy in the result. This is not desirable
knowledge (such as spatial hierarchies, spatial constraints and rulg,ce more elements of the domain may be involvedPirthan in
for spatial qualitative reasoning), systematically explores the hierpll Indeed, by assuming a natural language interpretafiorand
archical structure of task-relevant geographic layers and deals with, giate thata large town intersects a roadind’a large town inter-

numerical aspatial properties of spatial objects. Here, we refer to thige s two (distinct) roadsespectively. Another possible refinement
work by focusing our attention on frequent pattern discovery and asg¢ Py w.rt. Ais the following pattern

suming+(P) as problem instance. Search follows the principles re-

ported in Sectior2. Ps =is_a(A,large_town), intersects(A, B), is-a(B, road),
Data and patterns are represented#rALOG. From the view- adjacent_to(A, C), is_a(C, water)

point of syntax, the language of patterisan be generated by the

following grammar rule in Backus-Naur format: Let us suppose that the pattern

(SY{{attr(S)) Yo..n{(rel(S, Rx)){Ri){{attr(Rk))}o..n}1...n P, =is_a(A,large_town), adjacent_to(A, B), is_a(B, water)



has been generated while refinidy and found infrequent. Since
P5=, Py, Proposition 4.3 holds and caus@sto be pruned. The por-
tion of space that highlights the relations betwé®dnP;, P>, Ps and
Py is reported in Figure 1.

such spaces have been illustrated by means of an example of frequent
pattern discovery in spatial data. We have made reference to an ILP
method for mining spatial association rules, called SPADA, which
currently implements object identity as language bias. For the future,

In SPADA the assumption of Object Identity is currently imple- we plan to implement object identity in SPADA as search bias and
mented as language bias. The system relies on a more sophisticateshduct experiments to evaluate the performance of the downward
rewriting rule that adds inequality atoms to candidate patterns anyefinement operatagso,.

time there is a need for distinguishing between multiple instances of
the same class of spatial objects (egnd). For instance, the pattern
P; is rewritten as

(1]
P =is_a(A,large_town), intersects(A, B), is_a(B,road),
(2]

intersects(A, C), is.a(C,road), C # B.

It is noteworthy that patterns of interest to SPADA are a tractable
case of conjunctive queries with inequalities. Let us consider the hy-[3]
pergraph associated 8 and reported in Figuré. It shows that
PY'is an acyclic conjunctive query with inequalities. Indeed, the in- [4]
clusion of edges corresponding to inequality atoms (dashed hyper-
edges) destroys acyclicity d®. It has been proved that the class 5]
of acyclic conjunctive queries with inequalities is fixed parameter
(f.p.) tractable, both with respect to the query size and the numbeli[6]
of variables as the paramef{@8]. Furthermore, such queries can be
evaluated in f.p. polynomial time in the input and the output. Despite
f.p. tractability of DATALOG® patterns, we maintain that the perfor- 7]
mance of SPADA can be further improved by implementing Object
Identity as search bias. Indeed, Definiti®i suggests to embed the
evaluation of inequalities in the computation of the substitutions.

(8]
(9]
[10]
[11]

(12]

[13]

Figure 2. Hypergraph of an acyclic conjunctive query with inequalities. [14]

(15]

6 CONCLUSIONS

Many tasks of multi-relational data mining are not feasible or could[161
be tackled by consuming a huge amount of computational resources.
The discovery of frequerDATALOG patterns is among them. Nev- [17]
ertheless, biases can help to solve these hard data mining proble gl
at least in some restricted and yet meaningful cases. This work is an
effort in this direction. The object identity assumption does not affect
the expressive power @ATALOG, but reduces the complexity of re-
finement operators for searching spaceBafALOG patterns. In the [19]
context of frequent pattern discovery, the generality order based %o
&,-subsumption seems to be promising. Indeed we have proven the
existence of ideal refinement operatorsfgr-ordered spaces and the
monotonicity of<, with respect to pattern support. Furthermore, this
ordering has turned out to be appropriate for organizing efficiently
the space oDATALOG patterns over structured domains. Features of
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