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Abstract. In the context of frequent pattern discovery, we present
a generality relation, calledθOI-subsumption, which is based on the
assumption of Object Identity in spaces of patterns to be intended as
existentially quantified conjunctive formulæ. The resulting general-
ity order¹OI seems appropriate for organizing efficiently the space of
DATALOG patterns over structured domains. Indeed we prove the ex-
istence of ideal refinement operators for¹OI-ordered spaces and the
monotonicity of¹OI with respect to pattern support. Features of such
spaces are illustrated by means of an example of frequent pattern
discovery in spatial data.

1 INTRODUCTION

The design of algorithms for frequent pattern discovery has turned
out to be a popular topic in data mining[8]. The blueprint for most
algorithms proposed in the literature is the levelwise method that is
based on a breadth-first search in the lattice spanned by a generality
order between patterns[16]. The space of patterns is searched one
level at a time, starting from the most general patterns and iterat-
ing between candidate generation and candidate evaluation phases.
Recently, an extension of the levelwise method to the discovery of
frequentDATALOG patterns has been presented[4]. It relies on tech-
niques of Inductive Logic Programming (ILP) in order to exploit the
common background with logical languages for databases such as
DATALOG [3].

The choice of the generalization model for a space ofDATALOG

patterns affects both its algebraic structure and, as a consequence,
the definition of refinement operators to work on it. Two main ap-
proaches to the problem of generalization have been followed in ILP
[13]: the logical approach and the graph matching approach. As to
the former, logical implication has proven particularly hard to handle
due to many negative results descending from its intrinsic complexity
and non-decidability[10]. Thus,θ-subsumptionis usually employed
in ILP since it turns out to be more tractable[17]. Yet, this relation-
ship is not fully satisfactory because of the complexity issues that
anyhow it yields[9]. Then, proposed solutions regard other forms of
subsumption which follow the latter approach[11].

In this paper, we propose to weaken further bothθ-subsumption
and implication by assuming theobject identitybias. The resulting
generality relations are calledθOI-subsumptionand OI-implication,
respectively. The paper extends results reported in[5, 6] to the case of
existentially quantified conjunctive formulæ. In particular, the gener-
ality order based onθOI-subsumption, denoted¹OI, seems appropriate
for organizing efficiently the space ofDATALOG patterns over struc-
tured domains. Indeed, we prove the existence of ideal refinement
operators for¹OI-ordered spaces and the monotonicity of¹OIwith re-
spect to pattern support. These properties may be of great interest to
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the data mining community since most research nowadays focuses
on methods for discovering frequent patterns in data that are char-
acterized by the presence of objects, properties of objects, and rela-
tions among objects. An example of such structured domains is spa-
tial data. See[15] for details about an ILP method for mining spatial
association rules.

The paper is organized as follows. Section 2 introduces the task
of discovering frequentDATALOG patterns. In Section 3, the object
identity bias is illustrated and applied to bothθ-subsumption and im-
plication. Section 4 is devoted to the presentation of the generality or-
der based onθOI-subsumption. An illustrative example is commented
in Section 5. Concluding remarks are given in Section 6.

2 DISCOVERING FREQUENT DATALOG
PATTERNS

LetA be a set ofDATALOG atoms. Conjunctions of atoms inA are
called atomsets. In our framework, the language of patternsL is the
set of well-formed atomsets generated onA. Well-formedness en-
compasses properties like linkedness[12] and safety [3] which guar-
antees the correct evaluation of patterns.

The core mechanism incandidate evaluationis pattern matching.
To this aim, patterns are to be intended as existentially quantified
conjunctive formulæ (orqueries) [11, 17] and data can be considered
as either (intensionally) a logic theory or (extensionally) an interpre-
tation.

Definition 2.1 Let R be a definite database. A queryQ matchesR iff
Q is true in the least Herbrand model ofR. The setanswerset(Q, R)
contains all the ground substitutionsθ such thatQθ matchesR.

This matching could be checked in polynomial time[17].
In the case of association patterns, the evaluation function deter-

mines the support of a candidate pattern given a certainK in A that
specifies what is being counted (calledkey atom). Thus we are inter-
ested in the number of different bindings for the variables occurring
in K. The setanswerset(Q, R)|K contains those substitutionsσ that
are obtained by restriction of substitutions inanswerset(Q, R) to the
atomK.

Definition 2.2 Let Q be a query with key atomK. Thesupport of
the queryQ w.r.t. R givenK is defined:

supp(Q, R, K) =
| answerset(Q, R)|K |
| answerset(K, R) |

Candidate patterns with support greater than a user-defined minimum
threshold (frequent patterns) are retained. Frequent patterns are com-
monly not considered useful for presentation to the user as such.
They can be efficiently post-processed into rules that exceed given



threshold values. In the case of association rules the measure of con-
fidence offer a natural way of pruning weak and rare rules[1].

Evaluation functions play a relevant role also incandidate gen-
eration. Indeed, this phase takes advantage of generality orders that
are monotonic with respect to the chosen evaluation function. The
monotonicity property allows us to specify pruning criteria. This is
the case ofθ-subsumption. In[4] it has been proven that:

Proposition 2.1 Given a definite databaseR and two queriesQ1

and Q2 that contain the key atomK, it holds: if Q1 ¹θ Q2 then
supp(Q1, R, K) ≤ supp(Q2, R, K).

Candidate generation consists of refinement steps followed by prun-
ing. The former applies a refinement operator underθ-subsumption
to patterns previously found frequent by preserving the properties
of linkedness and safety. Applying such operator usually consists of
adding to the pattern to be refined one or moreDATALOG atoms inA.
The pruning step usually involves verifying that candidate patterns
do notθ-subsumes infrequent patterns. This allows some infrequent
patterns to be detected and discarded prior to evaluation.

3 THE OBJECT IDENTITY BIAS

Our proposal relies essentially on the following bias that can be con-
sidered as an extension of Reiter’sunique namesassumption[19]:
[Object Identity]In a formula, terms denoted with different symbols
must be distinct, i.e. they represent different entities of the domain.
This assumption can be the starting point for the definition of both
an equational theory forDATALOG formulas and a quasi-ordering for
DATALOG spaces. As to the former option, it consists of the axioms
of Clark’s Equality Theory augmented with one rewriting rule that
adds atomss 6= t to anyP ∈ L for each pair(s, t) of distinct terms
occurring inP . The resulting language is a subset ofDATALOG 6=,
calledDATALOG OI [20]. For instance, theDATALOG pattern

P = c(X, a), r(X, Y ), c(Y, b), r(X, Z), c(Y, b)

stands for theDATALOG OI pattern

P OI = c(X, a), r(X, Y ), c(Y, b), r(X, Z), c(Y, b), X 6= Y ,
Y 6= Z, X 6= a, X 6= b, X 6= c, Y 6= a, Y 6= b, Y 6= c.

One major drawback of Object Identity aslanguage biasis the cost
of candidate evaluation. Indeed, it has been proved that conjunctive
queries with inequalities are in general intractable[14] (except some
cases mentioned later). Thus, we are more interested in Object Iden-
tity assearch bias.

The intuition underlying OI-compliant quasi-orderings forDAT-
ALOG spaces can be illustrated by means of the patternsP =
p(X, X) andQ = p(X, X), p(X, Y ), p(Y, Z), p(Z, X). Adopting
θ-subsumption as generalization model for the spaceL, P and Q
are equivalent. This is not so natural as it might appear, since more
elements of the domain may be involved inQ than inP (indeed in
our frameworkP is more general thanQ). The expressive power is
not diminished by this bias, since it is always possible to convey the
same meaning of a pattern, yet it might be necessary to employ more
patterns inL, e.g.P = p(X, Y ) is equivalent to the set of patterns
{P1 = p(X, X), P2 = p(X, Y )}.

From a syntactic viewpoint, since a substitution can be regarded
as a mapping from the variables to terms of a language, we require
these mappings to avoid the identification of terms:

Definition 3.1 A substitutionσ is an OI-substitutionw.r.t. a set of
termsT iff ∀t1, t2 ∈ T : t1 6= t2 yields thatt1σ 6= t2σ.

In order to cope with the object identity assumption, a relation-
ship has been derived[5] from the classicθ-subsumption. It can be
regarded as a structural relation of subgraph isomorphism[11].

Definition 3.2 Let P, Q ∈ L. P θOI-subsumesQ iff P ⊇ Qσ for
some OI-substitutionσ w.r.t. terms(Q).

Adopting the object identity bias over the interpretations, the se-
mantics of the language of patternsL can be defined as follows:

Definition 3.3 A pre-interpretationJ of the languageL on adomain
D assigns eachn-ary (n ≥ 0) function symbolf to a mapping from
Dn to D. An OI-interpretationI based onJ is a set of ground in-
stances of atoms with arguments inD throughJ . Given a ground
OI-substitutionγ mappingvars(L) toD, an instanceAγ of an atom
A is true in I iff Aγ ∈ I. A negative literal¬Aγ is true in I iff
Aγ 6∈ I. An OI-interpretationI is an OI-model for a patternP iff
there exists a ground OI-substitutionγ such that all literals inPγ
are true inI.

All the notions defined for standard semantics can be straightfor-
wardly transposed to this semantics. In particular, the form of impli-
cation that is compliant with object identity[6]:

Definition 3.4 Let P, Q ∈ L. P implies Q under object identity
(denotedP |=OI Q) iff all OI-models forP are OI-models forQ.

This relationship is decidable for the case of clauses[7]. Observed
that clauses can be obtained by negating patterns, the decidability of
OI-implication between patterns descends from the case mentioned
above by contradiction. OI-implication is a stronger relationship than
θOI-subsumption:

Proposition 3.1 LetP, Q ∈ L, if P θOI-subsumesQ thenP |=OI Q.
Proof: By definition,P θOI-subsumesQ yields∃σ Qσ ⊆ P . Now
let I be an OI-model forP . Then∀Lγ ∈ Pγ : Lγ ∈ I for some
ground substitutionγ. Consider the ground substitutionγ′ = σγ. By
constructionQγ′ ⊆ Pγ. Then∀L′ ∈ Q ∃L ∈ P Lγ = L′γ′ such
thatL′γ′ ∈ I, i.e.I is an OI-model forQ.

In clausal spaces, the proof-theory based on the notion of OI-
unifier (a unifying OI-substitution) can be given. Resolution and
derivation under object identity have been proven sound and a sub-
sumption theorem also holds, thus bridging the gap between model-
theory and proof-theory[6].

4 THE GENERALITY ORDER AND ITS
REFINEMENT OPERATORS

The goal is to define a generality order on patterns. From an exten-
sional point of view a patternQ is ”more general” than another pat-
ternP whenP |=OI Q. Also θOI-subsumption can be adopted to in-
duce a generality order over pattern spaces. In various cases the two
orders coincide[6].

Definition 4.1 Let P, Q ∈ L. P¹OIQ iff P θOI-subsumesQ, P≺OIQ
iff P¹OIQ andQ6¹OIP . Finally, P∼OIQ iff P¹OIQ andQ¹OIP .

It can be easily proven that¹OI is a quasi-order:

Proposition 4.1 Let P, Q ∈ L. If P∼OIQ thenP andQ are alpha-
betic variants.
Proof: In the hypotheses above∃θ1, θ2 : Qθ1 ⊆ P andPθ2 ⊆ Q.
Observed that OI-substitutions do not identify literals, we can write:
|Q| ≤ |P | and |P | ≤ |Q|. Then|P | = |Q| and the patterns must be
alphabetic variants.



Proposition 4.2 (L,¹OI) is a quasi-ordered set.
Proof:
[symmetry]Trivial, since∀P ∈ L : P θOI-subsumesP .
[transitivity] Let P1, P2, P3 ∈ L and P1¹OIP2 and P2¹OIP3. Then
∃σ2, σ3 : P2σ2 ⊆ P1 and P3σ3 ⊆ P2. For σ = σ3σ2 it holds
P3σ ⊆ P1 and henceP1 θOI-subsumesP3, that isP1¹OIP3.

The monotonicity of¹OI is now investigated with respect to the
evaluation function. To this aim, Definition2.1 and Proposition2.1
are extended to our framework.

Definition 4.2 Let R be a definite database. A queryQ matches
R iff Q is true in the least Herbrand OI-model ofR. The set
answerset(Q, R) contains all the ground OI-substitutionsθ such
thatQθ matchesR.

Proposition 4.3 Given a definite databaseR and two queriesQ1

and Q2 that contain the key atomK, it holds: if Q1¹OIQ2 then
supp(Q1, R, K) ≤ supp(Q2, R, K).
Proof: Observe thatQ1¹OIQ2 iff Q1 θOI-subsumesQ2. Then, by
Proposition 3.1, Q1 |=OI Q2. By Definition 4.2, if Q1 matches
R then Q2 matches R. Let θ be a ground OI-substitution in
answerset(Q1, R). It holds thatθ ∈ answerset(Q2, R). By restrict-
ing θ to K, we obtain a OI-substitutionσ in answerset(Q1, R)|K
that belongs also toanswerset(Q2, R)|K . From Definition 2.2,
supp(Q1, R, K) ≤ supp(Q2, R, K) follows.

The space resulting from the adoption of this generality order is
not a lattice like for the case ofθ-subsumption. Indeed, minimal gen-
eralizations and maximal specializations of patterns are not guaran-
teed to be unique. We need to investigate on refinement operators and
their properties in this pattern space[17, 5].

Definition 4.3 In a quasi-ordered set(L,¹), a downward(resp.
upward) refinement operatoris a mapping fromL to 2L such that
ρ(P ) ⊆ {Q ∈ L | Q ¹ P} (resp.δ(P ) ⊆ {Q ∈ L | P ¹ Q})
∀P ∈ L. Denoted withτ∗ thetransitive closureof operatorτ :
• τ is optimal iff ∀P, Q1, Q2 ∈ L it holdsP ∈ τ∗(Q1)∩ τ∗(Q2)

impliesQ1 ∈ τ∗(Q2) or Q2 ∈ τ∗(Q1);
• τ is locally finite iff ∀P ∈ L : τ(P ) is finite and computable;
• τ is properiff ∀P ∈ L∀Q ∈ τ(P ) : Q 6∼ P ;
• ρ (resp.δ) is completeiff ∀P, Q ∈ L if Q ≺ P then∃Q′ ∈

ρ∗(P ) : Q′ ∼ Q (resp. ifP ≺ Q then∃Q′ ∈ δ∗(P ) : Q′ ∼ Q).

A locally finite, proper and complete operator is definedideal. The
ideality of refinement operators has been recognized as particularly
important for the efficiency of search algorithms in spaces withdense
solutions. Conversely, for spaces withrare solutions, it is possible to
derive optimal operators from ideal ones, since the former are recog-
nized to be more suitable in this case[2]. Ideal operators have been
proven not to exist for clausal spaces ordered byθ-subsumption (or
logical implication) [17]. The proof is based on the non-existence of
complete covers for some clauses.

Definition 4.4 In a quasi-ordered set(L,¹), Q is a downward
(resp.upward) coverof P iff Q ≺ P and 6 ∃Q′ : Q ≺ Q′ ≺ P (resp.
P ≺ Q and 6 ∃Q′ : P ≺ Q′ ≺ Q). A downward(resp.upward) cover
setof P , dc(P ) (resp.uc(P )), is a maximal set of non-equivalent
downward (resp. upward) covers ofP . dc(P ) (resp.uc(P )) is com-
plete iff ∀Q ∈ L, Q ≺ P ∃P ′ ∈ dc(P ) : Q ¹ P ′ ≺ P (resp.
∀Q ∈ L, P ≺ Q ∃P ′ ∈ uc(P ) : P ≺ P ′ ¹ Q).

An optimal way to define efficient refinement operators would be
mapping each pattern to its cover set. This may be infeasible because
of the relationship¹ to be tested or because cover sets can be empty
even when a clause has infinitely many non-equivalent proper gener-
alizations or specializations. Indeed, it holds that:

Proposition 4.4 [17] Given an ideal downward (resp. upward) re-
finement operatorρ (resp.δ) for (L,¹). ∀P ∈ L : dc(P ) (resp.
uc(P )) is finite and complete, anddc(P ) ⊆ ρ(P ) (resp.uc(P ) ⊆
δ(P )).

Thus, if a pattern has an incomplete or infinite cover set in a quasi-
ordered space, then an ideal refinement operator cannot be defined.
In the space ordered byθ-subsumption(L,¹θ), consider the pat-
ternsP = p(X, X) andPn = {p(Xi, Xj) | i, j ∈ [1, n], i 6= j},
for n ≥ 2. Note thatP ≺θ Pn+1 ≺θ Pn and there is no downward
coverP ′ of P such thatP ≺θ P ′ ≺θ Pn for n ≥ 2, i.e.{Pn}n≥2

is an uncovered infinite descending chain. Analogously, the pattern
Q = p(X, Y ), p(Y, X) has no finite and complete downward cover
set. This holds also for function-free spaces such asDATALOG. Con-
versely, the existence of ideal refinement operators for clausal spaces
ordered byθOI-subsumption has been proven [5]. We transpose this
result to the case of patterns.

Definition 4.5 LetP be a pattern in(L,¹OI).
Then, a patternQ ∈ ρOI(P ) when one of these conditions hold:
[d.1] Q = Pθ, whereθ = {X/t}, X ∈ vars(P ), t 6∈ terms(P );
[d.2] Q = P ∪ {L}, whereL is a literal, such that:L 6∈ P .

Besides,Q ∈ δOI(P ) when one of these conditions hold:
[u.1] Q = Pσ, whereσ = {t/X}, t ∈ terms(P ), X 6∈ vars(P );
[u.2] Q = P \ {L}, whereL is a literal, such that:L ∈ P .

Now, in order to prove the completeness of these refinement oper-
ators, some lemmas are needed:

Lemma 4.1 Let P, Q ∈ L. If there exists an OI-substitutionθ such
thatPθ = Q thenQ ∈ ρ∗OI(P ) andP ∈ δ∗OI(Q).
Proof: ∃ Pθ = Q. Letn = |θ|, i.e.θ containsn bindings, hence we
can writeθ = ∪n

i=1θi. Eachθi represent a step[d.1] of the definition
of ρOI (renaming OI-substitutions are left out for brevity). LetP =
P0, . . . , Pn = Q be a chain such thatPi = Pi−1θi, ∀i ∈ [1, n],
Thus,Pi ∈ ρOI(Pi−1), ∀i ∈ [1, n], thenQ ∈ ρ∗OI(P ).
P ∈ δ∗OI(Q) usingσ = ∪n

i=1σi = ∪n
i=1θ

−1
i .

Lemma 4.2 Let P, Q ∈ L. If P ⊆ Q thenQ ∈ ρ∗OI(P ) andP ∈
δ∗OI(Q).
Proof: By induction onn = |Q \ P |.
If n = 0 thenP = Q, thusQ ∈ ρ0

OI(P ) ⊆ ρ∗OI(P ).
For n > 0, let Q \ P = {L1, . . . , Ln} and fork ≤ n, Pk = Q ∪
{L1, . . . , Lk}. Now letLk+1 ∈ Q \ Pk andPk+1 = Pk ∪ {Lk+1};
we prove the lemma forPk+1. SinceLk+1 ∈ Q \ Pk thenLk+1 6∈
Pk, so it can be used to refinePk with ρOI (case[d.2]), hence we
obtain: Pk+1 ∈ ρOI(Pk). By inductive hypothesis,Pk ∈ ρ∗OI(P ).
ThusPk+1 ∈ δ∗OI(P ). Similarly,Q = Pn ∈ δ∗OI(P ).

Theorem 4.1 In the pattern space(L,¹OI), the refinement operators
ρOI andδOI are ideal.
Proof: [local finiteness]Obvious, from Definition4.5.
[properness]SupposeP ∈ ρOI(Q). ThenP¹OIQ. If also Q¹OIP
thenP∼OIQ. Hence, the patterns would be alphabetic variants (see
Proposition4.1), which is not possible (Definition4.5 yields thatP
has a new term w.r.t.Q or it is longer thanQ). Analogously forρOI.



[completeness]Let P, Q ∈ L such thatP¹OIQ. Then∃θQθ ⊆ P .
Let Q′ = Qθ. For Lemma4.1,Q′ ∈ ρ∗OI(Q). SinceQ′ ⊆ P , by ap-
plying Lemma4.2, it holds thatP ∈ ρ∗OI(Q

′). ThusP ∈ ρ∗OI(Q), then
ρOI is complete (equivalent patterns are not considered since they
are alphabetic variants, by Proposition4.1). A similar proof demon-
strates the completeness ofδOI.

Though both refinement operators are ideal, the downward operator
ρOI is of greater help in the context of frequent pattern discovery. In-
deed, by Proposition4.3, it drives the search towards patterns with
decreasing support and enables the early detection of infrequent pat-
terns.

5 AN ILLUSTRATIVE EXAMPLE

As aforementioned,¹OI-ordered pattern spaces are suitable for deal-
ing with structured domains. In the following, features of such spaces
are illustrated by means of an example of frequent pattern discovery
in spatial data. From now on, patterns stand for association patterns.
Thus the chosen evaluation function issupp(Q, R, K).

The discovery of spatial patterns is a descriptive mining task that
aims at the detection of associations between reference objects and
task-relevant objects, the former being the main subject of the de-
scription while the latter being spatial objects that are relevant for
the task at hand and spatially related to the former. For instance, we
may be interested in describing a given area by finding associations
among large towns (reference objects) and spatial objects in the road
network and hydrography layers (task-relevant objects). Some kind
of taxonomic knowledge on task-relevant geographic layers may also
be taken into account to get descriptions at different concept levels
(multiple-level patterns). Also in spatial data mining, patterns can be
presented in the form of rules. We search for association rules with
large support and high confidence (strong association rules). For-
mally, the problemP is the following:

Given

• a spatial database
• a set of reference objectsS
• some task-relevant geographic layersRk, 1 ≤ k ≤ m, together

with spatial hierarchies defined on them,
• two thresholds for each levell in the spatial hierarchies,

minsup[l] andminconf [l]

Find strong multiple-level spatial association rules.

An instanceı(P) is the aforementioned discovery of associations be-
tween large towns (S) and spatial objects taken from the layers of
road network (R1) and hydrography (R2).

An ILP method for spatial association rule mining, called SPADA,
has been presented in[15]. It benefits from the available background
knowledge (such as spatial hierarchies, spatial constraints and rules
for spatial qualitative reasoning), systematically explores the hier-
archical structure of task-relevant geographic layers and deals with
numerical aspatial properties of spatial objects. Here, we refer to this
work by focusing our attention on frequent pattern discovery and as-
sumingı(P) as problem instance. Search follows the principles re-
ported in Section2.

Data and patterns are represented inDATALOG. From the view-
point of syntax, the language of patternsL can be generated by the
following grammar rule in Backus-Naur format:

〈S〉{〈attr(S)〉}0...n{〈rel(S, Rk)〉〈Rk〉{〈attr(Rk)〉}0...n}1...n

�
OI

false

true

P1

P0

P3P2

P4

Figure 1. Fragment of¹OI-ordered pattern space.

which emphasizes the property of linkedness that patterns must sat-
isfy. Generally speaking, given a setO of objects, the categories〈O〉,
〈attr(O)〉, and〈rel(O, )〉 refer to atoms that represent a classifi-
cation, an attributive feature, and a relational feature of any object
o ∈ O, respectively. The trivial pattern

P0 = is a(A, large town)

is the key atom supplied byS. From the viewpoint of seman-
tics, what distinguishes a spatial pattern is the presence of at
least one atom〈rel(S, Rk)〉 that expresses a spatial relation, e.g.
intersects(A, B), like in

P1 = is a(A, large town), intersects(A, B), is a(B, road)

which can be generated when solvingı(P) with respect to the alpha-
betA = {intersects(S, R1), adjacent to(S, R2)} for L. In order
to illustrateθOI-subsumption, let us consider the following pattern

P2 = is a(A, large town), intersects(A, B), is a(B, road),
intersects(A, C), is a(C, road)

that also belongs toL. It is straightforward to check thatP2 θOI-
subsumesP1 but not viceversa. SinceP2≺OIP1, P2 can be generated
by computingρOI(P1). Note that the patternsP1 andP2 are equiv-
alent underθ-subsumption, thus causing the generation of improper
refinements that yield redundancy in the result. This is not desirable
since more elements of the domain may be involved inP2 than in
P1. Indeed, by assuming a natural language interpretation,P1 and
P2 state that’a large town intersects a road’and’a large town inter-
sects two (distinct) roads’respectively. Another possible refinement
of P1 w.r.t.A is the following pattern

P3 = is a(A, large town), intersects(A, B), is a(B, road),
adjacent to(A, C), is a(C, water)

Let us suppose that the pattern

P4 = is a(A, large town), adjacent to(A, B), is a(B, water)



has been generated while refiningP0 and found infrequent. Since
P3¹OIP4, Proposition 4.3 holds and causesP3 to be pruned. The por-
tion of space that highlights the relations betweenP0, P1, P2, P3 and
P4 is reported in Figure 1.

In SPADA the assumption of Object Identity is currently imple-
mented as language bias. The system relies on a more sophisticated
rewriting rule that adds inequality atoms to candidate patterns any
time there is a need for distinguishing between multiple instances of
the same class of spatial objects (e.g.road). For instance, the pattern
P2 is rewritten as

P OI
2 = is a(A, large town), intersects(A, B), is a(B, road),

intersects(A, C), is a(C, road), C 6= B.

It is noteworthy that patterns of interest to SPADA are a tractable
case of conjunctive queries with inequalities. Let us consider the hy-
pergraph associated toP OI

2 and reported in Figure2. It shows that
P OI

2 is an acyclic conjunctive query with inequalities. Indeed, the in-
clusion of edges corresponding to inequality atoms (dashed hyper-
edges) destroys acyclicity ofP2. It has been proved that the class
of acyclic conjunctive queries with inequalities is fixed parameter
(f.p.) tractable, both with respect to the query size and the number
of variables as the parameter[18]. Furthermore, such queries can be
evaluated in f.p. polynomial time in the input and the output. Despite
f.p. tractability ofDATALOGOI patterns, we maintain that the perfor-
mance of SPADA can be further improved by implementing Object
Identity as search bias. Indeed, Definition3.1 suggests to embed the
evaluation of inequalities in the computation of the substitutions.

A

CB

Figure 2. Hypergraph of an acyclic conjunctive query with inequalities.

6 CONCLUSIONS

Many tasks of multi-relational data mining are not feasible or could
be tackled by consuming a huge amount of computational resources.
The discovery of frequentDATALOG patterns is among them. Nev-
ertheless, biases can help to solve these hard data mining problems
at least in some restricted and yet meaningful cases. This work is an
effort in this direction. The object identity assumption does not affect
the expressive power ofDATALOG, but reduces the complexity of re-
finement operators for searching spaces ofDATALOG patterns. In the
context of frequent pattern discovery, the generality order based on
θOI-subsumption seems to be promising. Indeed we have proven the
existence of ideal refinement operators for¹OI-ordered spaces and the
monotonicity of¹OI with respect to pattern support. Furthermore, this
ordering has turned out to be appropriate for organizing efficiently
the space ofDATALOG patterns over structured domains. Features of

such spaces have been illustrated by means of an example of frequent
pattern discovery in spatial data. We have made reference to an ILP
method for mining spatial association rules, called SPADA, which
currently implements object identity as language bias. For the future,
we plan to implement object identity in SPADA as search bias and
conduct experiments to evaluate the performance of the downward
refinement operatorρOI.

REFERENCES
[1] R. Agrawal and R. Srikant, ‘Fast Algorithms for Mining Association

Rules’, inProceedings of the 12th VLDB Conference, (1994).
[2] L Badea and M. Stanciu, ‘Refinement operators can be (weakly) per-

fect’, in Proceedings of the 9th International Workshop on Inductive
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