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Abstract. Applying Model Based Diagnosis (MBD) techniques in
medical domains reveals the need to use deep causal knowledge mod-
elling frameworks as well as temporal management techniques to
capture the dynamic component of disease evolution (with the lat-
ter being very important in other domains). Despite the intense re-
search activity in the field of Temporal MBD, there are three issues
that have not been analysed in depth: (a) modelling complex inter-
action of contextual information, (b) evaluation of hypotheses pos-
sibility degrees and (c) the structure of explanations. Our aim is to
present a general framework for Temporal MBD which approaches
these problems and to demonstrate the suitability of the Fuzzy Tem-
poral Constraints Networks formalism (FTCN ) for representing the
domain temporal dimension.

1 Introduction

Since the beginnings of AI, the design of intelligent systems for med-
ical diagnosis has been one of the most prolific areas. Recent, re-
search in this area has paid increasing attention to the use of deep
causal models, especially if they are considered as integrated in
Model Based Diagnosis (MBD) techniques, which have proved their
efficiency in the design of intelligent diagnosis systems [13, 17].

The use of MBD techniques in medical domains reveals the impor-
tance of temporal component modelling to capture the dynamics of
the systems under analysis [7, 14]. However, the inclusion of tempo-
ral representation techniques in MBD has increased the complexity
of the diagnosis process. Different formalisms have been proposed
for representing time in MBD, ranging from totally qualitative ap-
proaches [12], based in Allen’s interval logic [1], to totally quan-
titative approaches [8, 16]. A serious attempt to provide a general
framework for temporal MBD can be found in [3, 6], which present
a general characterization of temporal MBD at knowledge level.

Despite the intense research activity in this area, there are three
questions that have still not been deeply analyzed: (a) the interac-
tion between contextual knowledge, that is, knowledge that plays
the role of premises instead of consequences of some hypothesis,
(b) evaluation of hypotheses possibility degrees, and (c) the struc-
ture of the explanation provided. In most MBD proposals, contextual
knowledge is integrated in deep causal models as observations (in-
puts to diagnostic process) [3, 6]. However, there are situations in
which modelling context knowledge in this way makes the design
of a diagnostic system more complex. Although different ways for
evaluating hypotheses possibility degrees have been proposed (see
for example [18]), they results, in practice, inefficient in domains
with a high number of observations per disease. Therefore, our aim
is to present of a general framework for Temporal MBD which solves
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the problems previously posed and to demonstrate the suitability of
Fuzzy Temporal Constraints Network framework (FTCN ) [2, 15]
for temporal dimension representation.

The structure of the paper is as follows: the underlying temporal
framework is laid out, in a concise manner, in section 2. In section 3,
the temporal behavioral model is presented. The elements that con-
stitute the inputs for temporal MBD are introduced in section 4. The
structure conforming the solution as well as the definition of tempo-
ral diagnosis explanation is described in section 5. In section 6, we
sketch the process for building a diagnostic explanation. Section 7 il-
lustrates how the hypotheses possibility degree is evaluated. Finally,
we provide conclusions and future works.

2 Temporal Framework

In our proposal for Temporal MBD, the temporal dimension is mod-
elled by means of the so-calledFuzzy Temporal Constraint Network
(FTCN ) formalism [2, 15]. AFTCN is a pairN = 〈T ,L〉 con-
sisting of a finite set of temporal variables,T = {T0, T1, ..., Tn},
and a finite set of binary temporal constraints,L = {Lij , 0 ≤ i, j ≤
n} defined on the variables ofT . A FTCN can be represented by
means of a directed constraint graph where nodes represent temporal
variables, and arcs represent binary temporal constraints.

Each binary constraintLij on two temporal variablesTi andTj

is defined by means of a normalised and unimodal possibility distri-
butionπLij , whose discourse universe isZ, and which restricts the
possible values of the time elapsed between both temporal variables.
In the absence of other constraints, the assignmentsTi = ti and
Tj = tj are possible ifπLij (tj − ti) > 0 is satisfied.

An n-tupleS = (t1, ..., tn) ∈ τn is a σ-possible solutionof a
FTCN networkN if πSN = σ, whereπSN = min{πLij (tj −
ti), 0 ≤ i, j ≤ n}. The possible distributionπSN defines the fuzzy
setSN of the σ-possible solutions of the network, withσ ≥ 0. A
FTCN networkN is consistentif and only if SN is normalised.

3 Temporal Behavioral Model

In this proposal, we opt for a Temporal Behavior Model,TBM , an
abnormal behavioral model, in which only the causal and temporal
relations between hypotheses (diseases) and abnormal observations
caused by them are represented. These relations are defined in aDi-
agnostic Fuzzy Temporal Patterns Knowledge Base(DFTPKB).
Apart from the abnormal behavioral model,TBM includes knowl-
edge about how the context affects the temporal behavioral model,
referred to asContextual Meta-knowledge base(CXT ). Hence,
TBM = 〈DFTPKB, CXT 〉.



DFTKB is composed of a setDiagnostic Fuzzy Temporal Pat-
terns, DFTKB = {DFTPk}. EachDFTP can be formally de-
fined by the tupleDFTP = 〈H, IM, IH, Rdftp, N〉 where:

• H is the diagnostic hypothesis described byDFTP . Formally
speaking,H = 〈~, tH〉, where~ is the diagnostic concept associ-
ated to the hypothesis andtH its corresponding temporal variable.

• IM = {imk|k = 1, . . . , nim}, is the set of abnormal manifes-
tations implied by the hypothesis~. Implied manifestations can
be formally defined by the tupleimk = (mk, Vmk , tim

k ), where
mk represents the abnormal manifestations,Vmk is the set of ab-
normal values associated to the manifestation andtk its temporal
variable.

• IH = {ihk|k = 1, . . . , nih} is the set of hypotheses implied by
~ (in medical domains,ihk is a disease caused by~). Implied hy-
potheses can be formally described by the tupleihk = (hk, tih

k ),
wherehk represents a hypothesis withtih

k as associated temporal
variable.

• Rdftp = 〈Ldftp, Xdftp〉 is a consistentFTCN , where tem-
poral variables inXdftp are associated toH, IM and IH,
Xdftp = {tH , tim

1 , · · · , tim
nim

, tih
1 , · · · , tih

nih
} and the tempo-

ral constraints between them are defined inLdftp, Ldftp =
C(tH , tim

1 , · · · , tim
nim

, tih
1 , · · · , tih

nih
).

• N : IM ∪ IH → [0, 1], is a function that defines the neces-
sity degree associated to the causal relation between~ and its im-
plied manifestations and hypotheses,N(mhk) = N(~ → mhk)
(wheremhk represents an implied manifestation or hypothesis).
In medical domains, this function is analogous to the sensibility
measure used in Evidence Based Medicine.

The main function ofContextual Meta-Knowledge Baseis to mod-
ify DFTPs definitions in order to adapt them to the contextual in-
formation. This interaction betweenTBM and contextual informa-
tion is defined by means of a set of contexts rules, which can be
formally defined in the following way:

DFTP ∧ cxt0 ∧ · · · ∧ cxtn ∧ C(τ0, t
H
k , tcxt

0 , · · · , tcxt
n ) →

mf0 ∧ · · · ∧mfm

(1)
where:

• DFTP is the diagnostic fuzzy temporal pattern on which context
interaction is defined.

• cxt0, · · · , cxtn are conditions defined on contextual elements.
• C(τ0, t

H , tcxt
0 , · · · , tcxt

n ) is the set of temporal constraints
between temporal variables associated toDFTP and
cxt0, · · · , cxtn

• mf0 ∧ · · · ∧mfm are functions describingDFTP modifications
which adapt it to contextual information. These modifications can
be accomplished by means of the following functions:

– modify values(DFTP, imi, V
new

mi
), substitutes the set of

values which defines the abnormal manifestationimi by the
setV new

mi .

– modify necessity(DFTP, mhi, N
new
i ), modifies the ne-

cessity degree associated to the implication~ → mhi. This
function only affects the functionN in DFTP definition, up-
dating it in the following wayN(mhi) = Nnew

i .

– add implication(DFTP, mhnew
i , Nnew

i ), adds an implied
manifestation or hypothesismhnew

i to DFTP definition and
assigns the necessity degreeNnew

i to the corresponding causal

relation, thus updating theN function in the following way
N(mhnew

i ) = Nnew
i .

– remove implication(DFTP, mhi), removes the implied
manifestation or hypothesismhi from DFTP definition.

For example, in an intensive care unit (ICU) it is very common
to increase patient’s blood pressure (when it is excessively low) by
means of the corresponding therapy. If, in this context, a rise in
blood pressure is detected, it is not to be considered as an abnormal
manifestation, since the rise is expected. Therefore, in order to se-
lectDFTPs in this context, the abnormal manifestationhigh blood
pressureshould be removed fromDFTPs definition (if this mani-
festation is present) by means of theremove implication function.
This approach for modelling context interaction allows more com-
plex relations betweenTBM and context to be modelled than those
described in classical temporal MBD models [6, 3]

Once contextual meta-knowledge is applied to a givenDFTP , it
is referred to asContextualizedDFTP . This contextualization im-
plies modifications inDFTP definition (if any) by means of any of
the modifying functions and the determinations of its temporal lo-
calization, which is needed to test the temporal constraints stated in
the antecedents of contextual meta-knowledge rules (expression 1).
In the rest of the paper, when the termDFTP is used, it should be
considered as a reference to a contextualizedDFTP .

4 Diagnostic Process Inputs

The temporal diagnosis model, described in this work, like classi-
cal diagnosis models, requires as inputs, the set of observations to
be explained, contextual information and temporal information. The
evaluation of the hypothesis possibility requires the definition of a
possibility measure over the observations set. Therefore, the input
for our temporal diagnosis model is composed of:

• The set of observations to be explainedEV T = {evti|i =
1, · · · , nobs}, given as a set of events,EV T = EV T+ ∪
EV T−, where EV T− contains abnormal events andEV T+

normal ones. Each event can be defined by the tupleevti =
(mi, vevti , t

evt
i ), wheremi stands for the corresponding mani-

festation,vevti represent the values associated to the event, and
tevt
i is the temporal variable associated. For example, a precordial

intense pain can be defined by the events(pain, precordial, ta)
and(pain, intense, ta).

• Πevt : EV T → [0, 1] is a function indicating the possibility
degree associated to events inEV T .

• The set of contextual observationCXTevt = {cxti|i =
1, · · · , ncxt}, given as a set of contextual events. Each contextual
event can be defined by the tuplecxti = (ci, vcxti , t

cxt
i ), whereci

is a contextual observable which can be a concept belonging to the
patient’s clinical record (such as sex, age, clinical antecedents,..)
or therapies applied,vcxti is the value associated to the contex-
tual observable (for example, male, 72, smoker,..) andtcxt

i is the
temporal variable associated.

• Rinput = 〈Xinput, Linput〉 is a consistentFTCN , where tem-
poral variables inXinput are associated to events inEV T ∪
CXTobs, and their corresponding temporal constraints are defined
in Linput.

Elements introduced in this section and section 3 can be included
in the definition ofFuzzy Temporal Diagnosis Problem:



Definition 1 Given a Temporal Behavioral ModelTBM =
〈DFTPKB, CXT 〉, a set of eventsEV T = EV T+ ∪ EV T−, a
set of contextual eventsCXTevt, and a consistentFTCN Rinput,
a Fuzzy Temporal Diagnosis Problemcan be defined as the tuple
FTDP = 〈TBM, EV T, CXTevt, R

input, Π〉, withΠ defining the
minimum possibility degree for hypotheses in diagnosis explanation
to be accepted.

The possibility degree thresholdΠ allows those hypotheses which
are not sufficiently supported by observed behavior to be pruned
from the explanation generated. Hence, the main goal of aFTDP
is to find a set of hypotheses (represented by its respectiveDFTP )
which covers all the observations. A formal definition of diagnosis
explanation will be given, in section 5.

5 Diagnosis Explanation

In obtaining a solution forFTDP , we are interested not only in a
set of abducibles that explains the observations, as [12, 3], but in the
causal network composed of all the elements considered in building
the explanation: events, manifestations and hypotheses (implied or
not), as well as temporal relations between these elements. Hence, in
our model, a diagnosis explanation is defined as the tupleEXP =
〈CNexp, Rexp, DFTPexp, BLexp, ABexp〉, where:

• CNexp = 〈N, A, Πcn, Ncn〉 is a graph representing a causal net-
work where:

– N is the set of nodes, in which each node is defined by the tuple
〈ni, t

cn
i 〉, whereni is the node associated to either a manifesta-

tion or hypothesis, andtcn
i its corresponding temporal variable.

– A is the set of arcs in which each arc is defined by the tuple
〈nj , nk〉, with nj y nk being the arc source and target respec-
tively.

– Πcn : N → [0, 1], is the function that defines the possibility
degree of the hypotheses associated to the nodes inCN . If a
nodeni ∈ N is associated to an eventevtk, thenΠcn(ni) =
Πobs(evtk).

– Ncn : A → [0, 1], is the function that indicates the necessity
degree of causal arcs inCN , information defined inDFTPs
through functionN

• Rexp = 〈Lexp, Xexp〉 is aFTCN whereXexp is the set of tem-
poral variables associated to nodes inCN , andLexp is the set of
temporal constraints between those temporal variables.

• DFTPexp is the set of contextualizedDFTP selected for expla-
nation.

• BL is a set of links between the hypotheses included in the
causal network and their corresponding temporal patterns. There-
foreBL = {〈ni, DFTPi〉|ni ∈ N ∧ DFTPi ∈ DFTPexp}.

• AB is the set of abducibles generated by the diagnosis process.
Obviously,AB ⊂ DFTPexp

In MBD, different interpretations of temporal diagnosis explana-
tion have been proposed, ranging from totally consistency-based di-
agnosis [11, 13] to totally abduction-based diagnosis [5, 14]. The
same considerations can be made for the temporal dimension. Bru-
soni et al. [3] present a generic knowledge level model for tempo-
ral MBD in which the definition of explanation has been parameter-
ized. This parameterization allows the definition of explanation to be
moved along the continuous line defined between totally consistent
diagnosis and totally abductive diagnosis. Following this proposal,

we opt for an intermediate model in which an abductive component
is applied to abnormal eventsEV T−, and the consistency compo-
nent is applied for both normal eventsEV T+ and temporal dimen-
sion. This intermediate interpretation of diagnosis explanation can be
formally stated as follows:

Definition 2 (Fuzzy Temporal Diagnosis). Given a Fuzzy Tem-
poral Diagnostic ProblemFTDP = 〈TBM, EV T, CXTevt,
Rinput, Π〉, EXP = 〈CNexp, Rexp, DFTPexp, BL, AB〉 is a
possible explanation forFTDP iff:

1. DFTPexp

S
CXTevt

S
CXT |= EV T−,

2. DFTPexp

V
EV T+ = ∅.

3. RinputSRexp is consistent.
4. ∀DFTPi ∈ DFTPexp, Πcn(DFTPi) ≥ Π

In other words, the explanation generated must: (1) logically entail
the abnormal observations taking into account the contextual knowl-
edge, (2) be consistent with the normal observations and (3) with
the temporal information observed, and (4) the hypotheses possibil-
ity degree must be higher than a previous established threshold. This
definition of temporal diagnosis imposes some requirements on the
design of the diagnostic process in the sense that two sequential pro-
cesses are necessary. The first process must abductively build the ex-
planation taking into account temporal information (in order to fulfill
condition (1)) and the second process must check hypothesis consis-
tency and its possibility degree (condition (2)). A CommonKADS
Knowledge Model of a diagnosis task which meets the previous re-
quirements can be found in [16].

6 Building the Explanation

Let us suppose that the diagnosis task has built part of a
diagnosis explantation which has been stored inEXP =
〈CNexp, Rexp, DFTPexp, BLexp, ABexp〉. Suppose that, at this
stage, the diagnosis task has to explain a new abnormal event
evt = (m, vevt, t

evti), which can be explained byDFTP =
〈H, IM, IH, Rdftp, N〉 by means of the implied manifestation
im = (m, Vm, tim) 2.

In order to avoid a broad spread of temporally close hypotheses
in the final explanation, the diagnosis task first tries to subsume new
events in some already instantiated hypothesis inEXP . Therefore,
a parsimonious hypotheses instantiationis applied [16]. Let us sup-
pose that a pattern explainingevt exists inEXP and let this pattern
beDFTP . This implies that:

• An event, associated to the hypothesis represented byDFTP ,
must have been previously generated and the corresponding node
n~ must have been inserted inCNexp.

• A set of nodes associated to some events,{evt1, evt2, . . . , evtn},
should exist in CNexp. Suppose that these events are ex-
plained by DFTP by means of the implied manifestations
{im1, im2, . . . , imn} ∈ IM . Of course, arcs betweenDFTP
and{evt1, evt2, . . . , evtn} are also present inCNexp.

• tH (associated to~) and tevti (associated to eventsevti) must
exist inRexp. Constraints between these temporal variables, and
between them and the origin of timeτ0 must also exist (constraints
are propagated throughoutRexp).

At this point, the diagnosis task must check ifevt can be subsumed
in DFTP . This process consists of determining the consistency of
Rexpe after inserting the constraints specified inDFTP . That is:

2 m = m y vevt ∈ Vm



1. The constraintsC(tim, timi) (i = 1, · · · , n) andC(tH , tim) can
be determined from theDFTP definition.

2. As the previous constraints must be satisfied betweentevt and

tevti and betweentevt andt
H

, the following constraints must be
inserted inRexp:

(tevt C(tim, tim1) tim1) ∧ (tevt C(tim, tim2) tim2) ∧ . . . ∧
∧(tevt C(tim, timn) timn) ∧ (tH C(tH , tim ) tevt (2)

3. If Rexp is consistent after inserting (and propagating) the con-
straints defined in expression 2,evt can be subsumed inDFTP
andCNexp must be accordingly updated.

If evt cannot be subsumed inDFTP , a new instance ofDFTP
must be created and inserted inEXP (figure 1):

1. Nodes representing~ andevt, and an arc between them are in-
serted inCNEXP . The rest of the structures inEXP are also
updated to reflect this new situation.

2. Temporal information inRexp is also updated by inserting the
temporal variable associated to~, tH , and the constraint between
tH andtim:

tH C(tH , tim) tevt (3)

C(τ0, tH )
tH

DFTP

C(tH , tim)

τ0
C(τ0, tevt)

C(tH , tim)

Rexp
tevt

im

~

Figure 1. DFTP instantiation effects inRexp

An important advantage ofFTCN framework is that, after insert-
ing the temporal constraint specified in expression 3 , the constraint
propagation algorithm will infer the constraintC(τ0, t

H) (thick dot-
ted line in figure 1). This constraint allow us to determine the tempo-
ral location of theDFTP .

7 Hypotheses Possibility Degree

Evaluation hypotheses possibility degree makes hypothesis ranking
and ruling out (according to a previously established threshold) pos-
sible. This evaluation can be accomplished by means of the Dubois
and Prade Possibility Theory Modus Tollens [10], which can be
stated as follows:

N(~i → mhj) ≥ a Π(~i → mhj) ≥ A
N(mhj) ≤ b Π(mhj) ≤ B
N(~i) ≤ max(v(A ≤ b), b)) Π(~i) ≤ max(1− a, B)

wherev(cond) is the boolean truth function,~i is DFTP main
hypothesis, andmhj is an implied manifestation or hypothe-
sis belonging toDFTP . In our proposal, givenDFTP =
〈H, IM, IH, Rdftp, N〉, a represents the necessity degree of causal
implication ~ → mhj , and can be obtained from functionN in

DFTP , N(~ → mhj) = N(mhj). A represents the causal im-
plication possibility degree and is always 1 since its necessity is dif-
ferent from 0.B represents the possibility degree associated to an
implied hypothesis or manifestation. In the case of manifestations,
B = Πobs(evtk). As we are interested in determining hypotheses
possibility degree, there is no need to evaluate hypotheses neces-
sity degree, thereforeb is not necessary. However, there are several
sources that contribute to hypotheses possibility degree, their implied
manifestations and hypotheses, so we need to combine them. For this
purpose, the different sources are considered as independent and an
upper bound will be used for the values ofa, A, b andB. The pre-
vious assumptions allow us to apply the Dubois and Prade [10] evi-
dence combinations expressions, which can be stated as follows:

N(~) = max
k

(Nk); Π(~) = min
k

(Πk) (4)

Expressions (4) allows us to calculate hypothesis possibility de-
gree when several implied manifestations and hypotheses are con-
sidered.

Definition 3 Given aDFTP = 〈H, IM, IH, Rdftp, N〉, a set of
implied manifestationsIM ′ = {imk} with IM ′ ⊂ IM , asso-
ciated to the eventsevtim

k , and a set of implied hypothesesIH ′ =
{ihl} with IH ′ ⊂ IH with possibility degreeΠih(ihl), the possi-
bility degree of the hypothesis represented byDFTP , writtenΠ(~),
can be calculated by the expression:

Π(~) = min(Πim(~), Πih(~)) (5)

WhereΠim(~) is the component of the possibility degree of~ pro-
vided by implied manifestations, and can be calculated using the fol-
lowing the expression:

Πim(~) = max
imk∈IM′

(1−N(imk), Πobs(evtk)) (6)

with evtk being the event associated toimk.
Πih(~) is the component of the possibility degree of~ provided

by an implied hypothesis, and can be calculated using the following
expression:

Πih(DFTP ) = max
ihl∈IH′

(1−N(ihl), Πih(ihl)) (7)

As stated previously, this evaluation of hypothesis possibility
could be included in an incremental abductive process for building
the solution, as the one presented in [16].

8 Conclusions and Future Works

This paper describes a general framework for temporal MBD which
tackles the problems of modelling complex interaction between deep
causal models and context knowledge, and those of evaluation of
hypotheses possibility degree and structure of explanations (solu-
tions) provided. The framework proposed demonstrates the suitabil-
ity of FTCNs for time management. Following the general frame-
work proposed in [3] our proposal can be characterized in the fol-
lowings terms: (a) the temporal phenomenon described in this pa-
per can be considered a temporal behavior one, in which the con-
sequences of the fact that the system is in a given state (normal or
faulty) are observed after some time; (b) time is modelled by means
of a metric time-ontology, in which temporal information is repre-
sented by Fuzzy Temporal Constraints Networks [2, 15]; and (c)
with regard to the definition of explanation chosen, we require that



the explanation provided logically entails all abnormal observations
and that is consistent with normal ones, and that its temporal infor-
mation is consistent with that observed. Therefore, we propose an
abductive/consistency-based approach for observations, and a totally
consistent-based approach for temporal dimension.

The use of diagnostic temporal patterns proposed in this paper is
similar to those defined in [8, 9], however our proposal makes it pos-
sible to model causal relations between diagnostic patterns. Causal
relations between diagnostic patters allow us to define a causal net-
work of diagnostic patterns by linking them through their implied
hypotheses. Another difference lies in the temporal representation
framework, since we use the Fuzzy Temporal Constraints Network
formalism proposed in [2, 15] while diagnostic patterns defined in
[8] make use of a quantitative interval based approach.

One of the main differences between our approach and Brusoni et
al. [3] is related to the way in which contextual knowledge is inte-
grated in the model. In Brusioni’s approach, contextual knowledge
is defined as a set of maximal episodes that can be used in the an-
tecedent of the logical formulae which conforms the temporal be-
havioral model. In our model, contextual knowledge is defined as
a set of logical formulae, which includes knowledge about tempo-
ral relations between antecedents’ components, conforming a meta-
knowledge base which defines how the context knowledge affects
diseases evolution definition. Thus, in our model contextual infor-
mation is orthogonal to temporal behavioral model, although both
approaches can coexist in a given domain.

Wainer and Sandri [18] presented a temporal diagnostic model,
which is also based on the FTCN formalism, which provides a frame-
work for numerical evaluation of the hypothesis. However, its high
computational complexity makes implementation inefficient, espe-
cially in domains where the number of observations per disease is
high (as in the descriptions of diseases evolutions in an Intensive
Care Unit). Another problem of the Wainer and Sandri approach
stems from the difficulties that arise in integrating this approach in
incremental abuductive algorithms, such as that presented in [16].
The framework presented in this paper solves the previous problems
and makes use of medical domain knowledge (in terms of Evidence
Based Medicine) for hypotheses evaluation.

In most temporal diagnostic models [8, 12, 18], solutions gener-
ated are composed of a set of abducibles inferred by the diagnostic
process (according to the definition of explanation used) and the tem-
poral information regarding the temporal location of the abducibles.
This information is not sufficient when explanations generated by
diagnostic process are intended to be used in a decision making pro-
cess. It is in this case that complete information about the evolution
of the system malfunction(s) (patient diseases in medical domains) is
necessary. For this reason the output of our temporal diagnosis model
is composed not only of a set of abducibles (DFTPs) and some in-
formation about their temporal location, but also of the causal rela-
tions between abducibles and between abducibles and observables.
For this information to be complete, it is necessary to include infor-
mation about the temporal relations between these elements (given
as a globalFTCN ) and the abducibles possibility degree.

Future works can be considered from a theoretical and practi-
cal perspective. On the theoretical side, the definition of hypothesis
neesd to be extended to include an attribute indicating its severity.
Another theoretical extension includes the definition of the model
presented here in logical terms using Fuzzy Temporal Constraint
Logic (FTCL) [4], as underlying logical framework. On the prac-
tical side, a general temporal reasoner, which is based inFTCN
formalism, is being constructed. This temporal reasoner includes a

grammar for defining temporal relations which will help us to reduce
the semantic gap between the information acquired from experts and
the information stored in the Temporal Behavioral Model. The in-
tegration of this temporal reasoner will facilitate the inclusion of a
temporal abstraction process for clinical data. To this purpose, we
are designing a framework for abductive temporal abstraction based
onFTCN .
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