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Abstract. Applying Model Based Diagnosis (MBD) techniques in the problems previously posed and to demonstrate the suitability of
medical domains reveals the need to use deep causal knowledge mdelizzy Temporal Constraints Network framewoKI(C' N) [2, 15]

elling frameworks as well as temporal management techniques téor temporal dimension representation.

capture the dynamic component of disease evolution (with the lat- The structure of the paper is as follows: the underlying temporal
ter being very important in other domains). Despite the intense reframework is laid out, in a concise manner, in section 2. In section 3,
search activity in the field of Temporal MBD, there are three issueghe temporal behavioral model is presented. The elements that con-
that have not been analysed in depth: (a) modelling complex interstitute the inputs for temporal MBD are introduced in section 4. The
action of contextual information, (b) evaluation of hypotheses posstructure conforming the solution as well as the definition of tempo-
sibility degrees and (c) the structure of explanations. Our aim is taal diagnosis explanation is described in section 5. In section 6, we
present a general framework for Temporal MBD which approachesketch the process for building a diagnostic explanation. Section 7 il-
these problems and to demonstrate the suitability of the Fuzzy Temustrates how the hypotheses possibility degree is evaluated. Finally,
poral Constraints Networks formalistA"{"C N) for representing the  we provide conclusions and future works.

domain temporal dimension.

1 Introduction 2 Temporal Framework

Since the beginnings of Al, the design of intelligent systems for med/n our proposal for Temporal MBD, the temporal dimension is mod-

ical diagnosis has been one of the most prolific areas. Recent, ré&lled by means of the so-call€dizzy Temporal Constraint Network

search in this area has paid increasing attention to the use of deéf7’CN) formalism [2, 15]. AFTCN is a pairN = (7, L) con-

causal models, especially if they are considered as integrated #Sting of a finite set of temporal variableg, = {70, T1, ..., Tn},

Model Based Diagnosis (MBD) techniques, which have proved thei@nd a finite set of binary temporal constrainfs= {Li;, 0 < i,j <

efficiency in the design of intelligent diagnosis systems [13, 17]. 7} defined on the variables Gf. A FT'C'N can be represented by
The use of MBD techniques in medical domains reveals the impormeans of a directed constraint graph where nodes represent temporal

tance of temporal component modelling to capture the dynamics ofariables, and arcs represent binary temporal constraints.

the systems under analysis [7, 14]. However, the inclusion of tempo- Each binary constraink;; on two temporal variable$; andT;

ral representation techniques in MBD has increased the complexiégjdeﬂned by means of a normalised and unimodal possibility distri-

of the diagnosis process. Different formalisms have been proposeditionmz;;, whose discourse universe4s and which restricts the

for representing time in MBD, ranging from totally qualitative ap- possible values of the time elapsed between both temporal variables.

proaches [12], based in Allen’s interval logic [1], to totally quan- In the absence of other constraints, the assignménts- ¢; and

titative approaches [8, 16]. A serious attempt to provide a generaf; = t; are possible ifrz;; (¢; — t:) > 0is satisfied.

framework for temporal MBD can be found in [3, 6], which present An n-tuplesS' = (i1, ....,tn) € 7" is ac-possible solutiorof a

a general characterization of temporal MBD at knowledge level. ~ FTCN network A if 75¥ = o, wherer®~ = min{mr,, (t; —
Despite the intense research activity in this area, there are three), 0 < 4,j < n}. The possible distribution®~ defines the fuzzy

questions that have still not been deeply analyzed: (a) the interagetSxs of the o-possible solutions of the network, with > 0. A

tion between contextual knowledge, that is, knowledge that playd”T'C' N network V" is consistentf and only if Sy is normalised.

the role of premises instead of consequences of some hypothesis,

(b) evaluation of hypotheses possibility degrees, and (c) the struc- .

ture of the explanation provided. In most MBD proposals, contextua® 1€mporal Behavioral Model

knowledge is integrated in deep causal models as observations (in-

puts to diagnostic process) [3, 6]. However, there are situations irl1n this proposal,.we opt for alTemp.oraI Behavior ModEl3 1/, an
abnormal behavioral model, in which only the causal and temporal

which modelling context knowledge in this way makes the design g . .
of a diagnostic system more complex. Although different ways forrelatlons between hypotheses (diseases) and abnormal observations

evaluating hypotheses possibility degrees have been proposed (s%%used, by them are reprTsented. These rleljttions are definétk-in a
for example [18]), they results, in practice, inefficient in domains"’lgnos;IC Fuazy 'Il;empor?bPztte_rns lKnO\(/jv@? ge B(dléé;TPlf(B).l
with a high number of observations per disease. Therefore, our airﬁ‘IOart rom the abnormal behavioral mod@l 3 includes knowl-

is to present of a general framework for Temporal MBD which solvesedge about how the context affects the temporal behavioral model,
referred to asContextual Meta-knowledge bag€’XT). Hence,

1 University of Murcia,Spain. emafljpalma,roqué@dif.um.es TBM = (DFTPKB,CXT).




DFTKB is composed of a sd@iagnostic Fuzzy Temporal Pat-
terns DFTKB = {DFTP;}. EachDFTP can be formally de-
fined by the tupleD FTP = (H, IM,IH, R¥* N) where:

e H is the diagnostic hypothesis described By"T P. Formally
speakingH = (~,t™), where~ is the diagnostic concept associ-
ated to the hypothesis anfl its corresponding temporal variable.
IM = {imglk = 1,...,nm}, is the set of abnormal manifes-
tations implied by the hypothesis Implied manifestations can
be formally defined by the tuplan, = (my, Vi, , ti™), where
my, represents the abnormal manifestations, is the set of ab-
normal values associated to the manifestation¢arits temporal
variable.

IH = {ihk|k = 1,...,n;,} is the set of hypotheses implied by
~ (in medical domainsihy, is a disease caused by. Implied hy-
potheses can be formally described by the tuple = (hx, ti"),
whereh,, represents a hypothesis witlf as associated temporal
variable.
Rt — (L%t XU js a consistent"T'C'N, where tem-
poral variables inX%*" are associated td, IM and IH,
XUe e, em, e ar -t} and the tempo-
ral constraints between them are definedZiff*?, L¥*? =
CH,em, -t il ).

N : IMUIH — [0,1], is a function that defines the neces-
sity degree associated to the causal relation betwesed its im-
plied manifestations and hypothes@&imhy) = N(~ — mhy)

(wheremhy, represents an implied manifestation or hypothesis).
In medical domains, this function is analogous to the sensibility.

measure used in Evidence Based Medicine.

The main function o€ontextual Meta-Knowledge Baissto mod-
ify DFT Ps definitions in order to adapt them to the contextual in-
formation. This interaction betweéRB M and contextual informa-

relation, thus updating thé/ function in the following way
N(mhie?) = N .

— remove_implication(DFT P, mh;), removes the implied
manifestation or hypothesiah; from D FT P definition.

For example, in an intensive care unit (ICU) it is very common
to increase patient’s blood pressure (when it is excessively low) by
means of the corresponding therapy. If, in this context, a rise in
blood pressure is detected, it is not to be considered as an abnormal
manifestation, since the rise is expected. Therefore, in order to se-
lect DF'T Ps in this context, the abnormal manifestatioigh blood
pressureshould be removed fromlv F'T Ps definition (if this mani-
festation is present) by means of thenove_implication function.

This approach for modelling context interaction allows more com-
plex relations betwee® BM and context to be modelled than those
described in classical temporal MBD models [6, 3]

Once contextual meta-knowledge is applied to a gieiT P, it
is referred to afontextualizedD FT P. This contextualization im-
plies modifications inD F'T' P definition (if any) by means of any of
the modifying functions and the determinations of its temporal lo-
calization, which is needed to test the temporal constraints stated in
the antecedents of contextual meta-knowledge rules (expression 1).
In the rest of the paper, when the tef¥'T P is used, it should be
considered as a reference to a contextuali2é¢dl" P.

4 Diagnostic Process Inputs

The temporal diagnosis model, described in this work, like classi-
cal diagnosis models, requires as inputs, the set of observations to
be explained, contextual information and temporal information. The
evaluation of the hypothesis possibility requires the definition of a
possibility measure over the observations set. Therefore, the input

tion is defined by means of a set of contexts rules, which can béor our temporal diagnosis model is composed of:

formally defined in the following way:

DFTP Acxto A --- A ety AC(1o, t1 158, - 157 —
mfo - Amfm
(1)

where:

DFTP is the diagnostic fuzzy temporal pattern on which context
interaction is defined.

e crto, -, cxt, are conditions defined on contextual elements.

o C(ro,t™,t5%, .-, t5*") is the set of temporal constraints
between temporal variables associated #0OFTP and
cxto, -, cxtn

mfo A--- Amf,, are functions describin® F'T' P modifications

which adapt it to contextual information. These modifications can

be accomplished by means of the following functions:

— modi fyvalues(DFTP,im;, V,?"), substitutes the set of
values which defines the abnormal manifestation by the
setV, .

— modify_necessity(DFTP, mh;, N;***), modifies the ne-
cessity degree associated to the implicattor~ mh;. This
function only affects the functio&V in DF'T P definition, up-
dating it in the following wayN (mh;) = N;**.

— add_implication(DFT P,mh}*", N***), adds an implied
manifestation or hypothesiahj'“* to DFT P definition and
assigns the necessity deg®g“" to the corresponding causal

e The set of observations to be explainéd/’T {evt;|i =
1,--+,nops}, given as a set of eventfVT = EVTT U
EVT~, where EVT~ contains abnormal events ardl/7+
normal ones. Each event can be defined by the tuple =

(M, Veut;, t5°*), Wherem; stands for the corresponding mani-
festation,v..+; represent the values associated to the event, and
¢ is the temporal variable associated. For example, a precordial
intense pain can be defined by the evepigin, precordial, t,)
and(pain, intense, tq).

e : EVT — [0,1] is a function indicating the possibility
degree associated to eventdHii T,

The set of contextual observatioff X T..: {cxt;|i
1,---,nest }, given as a set of contextual events. Each contextual
event can be defined by the tuplet; = (c;, vear,, t5°"), Wherec;

is a contextual observable which can be a concept belonging to the
patient’s clinical record (such as sex, age, clinical antecedents,..)
or therapies applied;..:, is the value associated to the contex-
tual observable (for example, male, 72, smoker,..) &fitis the
temporal variable associated.

Rinput — (xinput [inpuly g g consistent'T'C'N, where tem-
poral variables inX“"?** are associated to events V7T U
CXT,ps, and their corresponding temporal constraints are defined
in LimPut,

Elements introduced in this section and section 3 can be included
in the definition ofFuzzy Temporal Diagnosis Problem



Definition 1 Given a Temporal Behavioral Model'BM = we opt for an intermediate model in which an abductive component
(DFTPKB,CXT), asetofevemt&VT = EVTT UEVT™, a is applied to abnormal evenfSVT~, and the consistency compo-
set of contextual event& X T, and a consistenFTCN R"Put, nent is applied for both normal evenB/ T and temporal dimen-

a Fuzzy Temporal Diagnosis Probleroan be defined as the tuple sion. This intermediate interpretation of diagnosis explanation can be
FTDP = (TBM,EVT, CXT..t, RP** II), withII definingthe  formally stated as follows:

minimum possibility degree for hypotheses in diagnosis explanation

to be accepted.

Definition 2 (Fuzzy Temporal Diagnhosjs Given a Fuzzy Tem-
poral Diagnostic ProblemFTDP = (I'BM,EVT,CXTeyt,

The possibility degree thresholdlallows those hypotheses which &'"7"*,1I), EXP = (CNeap, R*", DFT Peap, BL, AB) is a

are not sufficiently supported by observed behavior to be prune©Ssible explanation foF "D P iff:

from the explanation generated. Hence, the main goal Bf & P 1. DFTP.,, S CXTovt SCXT EEVT,
is to find a set of hypotheses (represented by its respebxivé P) 2. DFTPg, EVT' =0.

which covers all the observations. A formal definition of diagnosisz, pirrut = pezr g consistent.

explanation will be given, in section 5. 4. YDFTP; € DFTPeyy, l.n(DFTP;) > 11

5 Diagnosis Explanation

In other words, the explanation generated must: (1) logically entail
the abnormal observations taking into account the contextual knowl-

In obtaining a solution foi"T'D P, we are interested not only in a €dge, (2) be consistent with the normal observations and (3) with
set of abducibles that explains the observations, as [12, 3], but in thé&€ temporal information observed, and (4) the hypotheses possibil-
causal network composed of all the elements considered in buildingy degree must be higher than a previous established threshold. This
the explanation: events, manifestations and hypotheses (implied élefinition of temporal diagnosis imposes some requirements on the
not), as well as temporal relations between these elements. Hence, #§sign of the diagnostic process in the sense that two sequential pro-
our model, a diagnosis explanation is defined as the tApteP? = cesses are necessary. The first process must abductively build the ex-
(CNezp, R, DFT Pyyp, BLewp, ABegp), Where: planation taking into account temporal information (in order to fulfill

condition (1)) and the second process must check hypothesis consis-
CNeap = (N, A, Il.n, Nep) is a graph representing a causal net- tency and its possibility degree (condition (2)). A CommonKADS
work where: Knowledge Model of a diagnosis task which meets the previous re-

— Nisthe set of nodes, in which each node is defined by the tupl@tirements can be found in [16].

(nq, t§™), wheren; is the node associated to either a manifesta- o )
tion or hypothesis, ang™ its corresponding temporal variable. 6 Building the Explanation

— Ais the set of arcs in which each arc is defined by the tupleLet us suppose that the diagnosis task has built part of a
(nj,nx), with n; y ni. being the arc source and target respec-diagnosis explantation which has been stored AP =
tively. (CNeap, R¥*P, DFT Peyp, BLexp, ABeap). Suppose that, at this

— I, : N — [0,1], is the function that defines the possibility stage, the diagnosits task_has to explain a new abnormal event
degree of the hypotheses associated to the nodésNnlfa €0t = (m, ”evdf’tev *), which can be explained bpFTP =
noden; € N is associated to an eveait, thenIle, (n;) = (i], M, IH,R_L“’,N) by means of the implied manifestation
Hobs (evtk). m = (m7 VW? tzm) 2'

— N¢pn @ A — [0, 1], is the function that indicates the necessity . In or_der to avoid a broad 'spread'of temporally close hypotheses
degree of causal arcs @N, information defined D F'T Ps in the flpal explanation, t.he dlagn05|s task flrsF tries to subsume new
through functionV’ ' event§ in some already mste_tntlateql h_ypothe_snEIﬁP. Therefore,

aparsimonious hypotheses instantiatisrapplied [16]. Let us sup-

R = (L*?, X*"P) isaF'TCN whereX“"" is the setof tem-  pose that a pattern explainirgt exists inE.X P and let this pattern

poral variables associated to node<IV, andL°"? is the set of  be DFTP. This implies that:

temporal constraints between those temporal variables. ) ] __

DFTP.,, is the set of contextualizeB FT P selected for expla- ® An event, associated to the hypothesis representet) by'P,

nation. must have been previously generated and the corresponding node

BL is a set of links between the hypotheses included in the 7 Musthave been insertedNe,.

causal network and their corresponding temporal patterns. There® A St of nodes associated to some evefitst,, cvt, .. ., evtn },

fore BL = {(ni, DFTP)|n; € N A DFTP, € DFT P} should exist in C'Ne.p,. Suppose that these events are ex-

AB is the set of abducibles generated by the diagnosis process. Plained by DFT'P by means of the implied manifestations

Obviously,AB C DFTP.,, {im1,ima,...,im,} € IM. Of course, arcs betwee F'T' P
and{evt1, evta, ..., evt, } are also present i@ Ne,p.

In MBD, different interpretations of temporal diagnosis explana-® ¢ (associated to) and t**"* (associated to eventsit;) must

tion have been proposed, ranging from totally consistency-based di- €xist in R***. Constraints between these temporal variables, and
agnosis [11, 13] to totally abduction-based diagnosis [5, 14]. The between them and the origin of time must also exist (constraints
same considerations can be made for the temporal dimension. Bru- are propagated throughoRf*?).

soni et al. [3] present a generic knowledge level model for tempo-
ral MBD in which the definition of explanation has been parameter-
ized. This parameterization allows the definition of explanation to be
moved along the continuous line defined between totally consistent

At this point, the diagnosis task must checkif can be subsumed
in DFTP. This process consists of determining the consistency of

Reape after inserting the constraints specified¥' 7" P. That is:

diagnosis and totally abductive diagnosis. Following this proposal? m = m Y vevt € Vi



1. The constraint€ (¢, ™) (i = 1,---,n) andC(t?,t")can ~ DFTP, N(~ — mh;) = N(mh;). A represents the causal im-
be determined from th® FT P definition. plication possibility degree and is always 1 since its necessity is dif-
2. As the previous constraints must be satisfied betwséhand  ferent from 0.5 represents the possibility degree associated to an
vt and between<’t andtH, the following constraints must be implied hypothesis or manifestation. In the case of manifestations,
inserted inR°*?: = Il.s(evty). As we are interested in determining hypotheses
possibility degree, there is no need to evaluate hypotheses neces-
sity degree, therefork is not necessary. However, there are several
O C(tﬁ, timl) timl) A C(tﬁ, timz) timz) A A sources that contribute to hypotheses possibility degree, their implied
— . — manifestations and hypotheses, so we need to combine them. For this
AT CE™, ) £ A (tH C(tH’tzm L) purpose, the different sources are considered as independent and an

3. If R®*? is consistent after inserting (and propagating) the con-UPPer bound will be used for the valuesafA, b and 5. The pre-

straints defined in expression@t can be subsumed D EFTP vious assumptions allow us to apply the Dubois and Prade [10] evi-
andC'N...,, must be accordingly updated dence combinations expressions, which can be stated as follows:
exp .

If evt cannot be subsumed MFT P, a new instance abD FT P N(~) = mI?X(Nk)§ I(~) = mkin(nk) 4)

must be created and insertedIX P (figure 1): Expressions (4) allows us to calculate hypothesis possibility de-

gree when several implied manifestations and hypotheses are con-

1. Nodes representing andevt, and an arc between them are in- 2.
sidered.

serted inCNgxp. The rest of the structures iBX P are also
updated to reflect this new situation.

2. Temporal information inR*“? is also updated by inserting the
temporal variable associated+pt” , and the constraint between
t7 andti™:

Definition 3 Given aDFTP = (H,IM,IH, R¥" N), a set of
implied manifestationd M’ = {im} with IM' C IM, asso-
ciated to the eventsvti™, and a set of implied hypothesé&l’ =

{ih} with IH' C IH with possibility degreél;; (ih;), the possi-
bility degree of the hypothesis representedblyT P, writtenII(~),

can be calculated by the expression:

tH C(tH, tm) tevt (3)

H(~) = min(im (=), Lin(~)) (5)

Wherell;,, (~) is the component of the possibility degree-qiro-
vided by implied manifestations, and can be calculated using the fol-
lowing the expression:

ILim(~) = max (1 — N(img), ops(evtr)) (6)
imy eI M/’
bommmee i - with evt), being the event associateddy, .
Figure 1. DFT P instantiation effects ifRe*? IL;x(~) is the component of the possibility degree~gprovided
by an implied hypothesis, and can be calculated using the following
expression:
_ An important advantage dfTC_]\_f fra_mework is_that, after insert- _ L (DFTP) = max (1— N(ih), in(ihi)) 7
ing the temporal constraint specified in expression 3, the constraint thy €TH

propagation algorithm will infer the constrai6t(ro, t) (thick dot-

ted line in figure 1). This constraint allow us to determine the tempo- As stat‘ed prevn.)usly,.thls evaluation of.hypothe5|s poss@ll!ty
. could be included in an incremental abductive process for building
ral location of theD F'T P.

the solution, as the one presented in [16].

7 Hypotheses Possibility Degree 8 Conclusions and Future Works

Evaluation hypotheses possibility degree makes hypothesis rankinphis paper describes a general framework for temporal MBD which

and ruling out (according to a previously established threshold) pos: . . .

: ] . . tackles the problems of modelling complex interaction between deep
sible. This evaluation can be accomplished by means of the DUbO'gausaI models and context knowledge, and those of evaluation of
and Prade Possibility Theory Modus Tollens [10], which can be ge

stated as follows: hypotheses possibility degree and structure of explanations (solu-
' tions) provided. The framework proposed demonstrates the suitabil-

N(~; — mh;) > a [(~; — mh;) > A ity of FTCNs for time management. Following the general frame-
N(mh;) <b H(mh;) < B work proposed in [3] our proposal can be characterized in the fol-
N(~i) < max(v(A <b),b)) 1(~) < maz(l - a, B) lowings terms: (a) the temporal phenomenon described in this pa-

per can be considered a temporal behavior one, in which the con-
where v(cond) is the boolean truth function;; is DFTP main  sequences of the fact that the system is in a given state (normal or
hypothesis, andmh; is an implied manifestation or hypothe- faulty) are observed after some time; (b) time is modelled by means
sis belonging toDFTP. In our proposal, givenDFTP = of a metric time-ontology, in which temporal information is repre-
(H,IM,IH, RY" N), a represents the necessity degree of causakented by Fuzzy Temporal Constraints Networks [2, 15]; and (c)
implication ~ — mh;, and can be obtained from functiaN in with regard to the definition of explanation chosen, we require that



the explanation provided logically entails all abnormal observationggrammar for defining temporal relations which will help us to reduce
and that is consistent with normal ones, and that its temporal inforthe semantic gap between the information acquired from experts and
mation is consistent with that observed. Therefore, we propose athe information stored in the Temporal Behavioral Model. The in-
abductive/consistency-based approach for observations, and a totatiggration of this temporal reasoner will facilitate the inclusion of a

consistent-based approach for temporal dimension.

temporal abstraction process for clinical data. To this purpose, we

The use of diagnostic temporal patterns proposed in this paper iare designing a framework for abductive temporal abstraction based
similar to those defined in [8, 9], however our proposal makes it poson FTCN.

sible to model causal relations between diagnostic patterns. Causal
relations between diagnostic patters allow us to define a causal n
work of diagnostic patterns by linking them through their implied
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[8] make use of a quantitative interval based approach.

One of the main differences between our approach and Brusoni eFﬁeferences

al. [3] is related to the way in which contextual knowledge is inte-
grated in the model. In Brusioni’s approach, contextual knowledge[1l
is defined as a set of maximal episodes that can be used in the arh]
tecedent of the logical formulae which conforms the temporal be-
havioral model. In our model, contextual knowledge is defined as

a set of logical formulae, which includes knowledge about tempo-[3]
ral relations between antecedents’ components, conforming a meta-
knowledge base which defines how the context knowledge affect 4]
diseases evolution definition. Thus, in our model contextual infor-
mation is orthogonal to temporal behavioral model, although both
approaches can coexist in a given domain.

Wainer and Sandri [18] presented a temporal diagnostic model,
which is also based on the FTCN formalism, which provides aframe-[e]
work for numerical evaluation of the hypothesis. However, its high
computational complexity makes implementation inefficient, espe-
cially in domains where the number of observations per disease id7]
high (as in the descriptions of diseases evolutions in an Intensive[B]
Care Unit). Another problem of the Wainer and Sandri approach
stems from the difficulties that arise in integrating this approach in
incremental abuductive algorithms, such as that presented in [16][9]
The framework presented in this paper solves the previous problems
and makes use of medical domain knowledge (in terms of Evidence
Based Medicine) for hypotheses evaluation. [10]

In most temporal diagnostic models [8, 12, 18], solutions gener-
ated are composed of a set of abducibles inferred by the diagnostic
process (according to the definition of explanation used) and the te L]
poral information regarding the temporal location of the abducibles.
This information is not sufficient when explanations generated by12]
diagnostic process are intended to be used in a decision making pro-
cess. It is in this case that complete information about the evolutior?]
of the system malfunction(s) (patient diseases in medical domains) '§4]
necessary. For this reason the output of our temporal diagnosis model
is composed not only of a set of abduciblésHT Ps) and some in-
formation about their temporal location, but also of the causal relaltdl]
tions between abducibles and between abducibles and observables.
For this information to be complete, it is necessary to include inforq; )
mation about the temporal relations between these elements (given
as a globalF"T'C'N) and the abducibles possibility degree.

Future works can be considered from a theoretical and practi-
cal perspective. On the theoretical side, the definition of hypothesim]
neesd to be extended to include an attribute indicating its severity.
Another theoretical extension includes the definition of the model
presented here in logical terms using Fuzzy Temporal Constraint8l
Logic (FTCL) [4], as underlying logical framework. On the prac-
tical side, a general temporal reasoner, which is basedTic' N
formalism, is being constructed. This temporal reasoner includes a
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