
Can AI help to improve debugging substantially?
Debugging Experiences with Value-Based Models

�

Wolfgang Mayer � and Markus Stumptner � and Dominik Wieland � and Franz Wotawa �����

Abstract. Finding and fixing faults in programs is usually an expen-
sive and tedious task. Consequently the development of intelligent
debugging tools that aid the programmer in this task is a topic of
major industrial interest. This work describes two representations for
applying model-based diagnosis to Java programs, a technique that
permits locating (and partly correcting) faults without requiring a for-
mal specification of the desired program behavior, since interaction
can be limited to test cases and observations of variable correctness.
One of the models uses a special transformation to provide more ac-
curate diagnoses on programs with loops and this is borne out by
the experiments. The presented results on actual debugging perfor-
mance show clearly superior accuracy to classical debugging tech-
niques, and better discrimination than dependency-based programs
models. We discuss the results in terms of the properties of the two
models and the various example programs and present avenues for
further improvement.

1 INTRODUCTION

Debugging, i.e., to find a faulty behavior, to locate the causing fault
within a program, and to fix the fault by means of changing the pro-
gram, has been of interest for the last decades. Many papers have
been published so far in the domain of finding faults in software,
e.g., testing or formal verification [1], and locating them, e.g., pro-
gram slicing [13] and automatic program debugging [11, 7]. More
recently model-based diagnosis [10] has been used for locating faults
in software by several researchers [2, 6, 4, 12]. [2] shows the relation-
ship between automatic program debugging and the model-based ap-
proach. In [16] the author discusses the relationship between slicing
and model-based debugging.

In this paper we rely on previous research in model-based diagno-
sis for locating bugs in Java programs. The idea behind the model-
based debugging approach is (1) to compile a program to its log-
ical model or to a constraint satisfaction problem, (2) to use the
model together with test cases and a model-based diagnosis engine
for computing the diagnosis candidates, and (3) to map back the
candidates to their corresponding locations within the original pro-
	

This work was partially supported by the Austrian Science Fund project
P12344-INF.

University of South Australia, School of Computer and Information Sci-
ence, Mawson Lakes Boulevard 1, 5092 Mawson Lakes SA, Australia,
email: mayer@cs.unisa.edu.au�
University of South Australia, School of Computer and Information Sci-
ence, Mawson Lakes Boulevard 1, 5092 Mawson Lakes SA, Australia,
email: mst@cs.unisa.edu.au�
Vienna University of Technology, Institute for Information Systems,
Database and Artificial Intelligence Group, Favoritenstrasse 9-11, A-1040
Vienna, Austria, email: wieland@dbai.tuwien.ac.at

Graz University of Technology, Institute for Software Technology, Inf-
feldgasse 16b/II, A-8010 Graz, Austria, email: wotawa@ist.tu-graz.ac.at�
Authors are listed in alphabetical order

gram. The selection of diagnosis components, e.g., statements, ex-
pressions, or other program entities, influences the diagnosis gran-
ularity. Another important issue is the selection of the model. In
the past two categories of models developed in the Jade project
were published which represent two end points of the spectrum:
dependency-based [8] and value-based models [9].

Several models from both categories have been implemented and
tested in the Jade project. The tests consist of small- up to medium-
sized Java programs together with their faulty variants and given test
cases. This test collection was used to carry out the model evaluation.
We present the results obtained for two different value-based models
which are also described. Starting from the results we discuss some
strengths and weaknesses of the current models. From the results and
the discussion we show that model-based diagnosis indeed improves
the debugging results, and we show on examples how modeling de-
cisions influence not only the runtime but also the debugging results
substantially, although at the price of a major performance hit com-
pared to dependency-based models. Further improvements include
the possibility of writing special models for different purposes. For
example, it makes sense to write a model to locate bugs which are
due to wrongly used variables in the code or to write models that
specially treat the aliasing problem in object-oriented software.

The paper is organized as follows: In Section 2 two value-based
models of Java programs are described. Both models closely follow
the execution semantics of Java. Section 3 presents some results that
are obtained from the implementation. This section is followed by
an in-depth discussion of advantages and disadvantages of the mod-
els. Finally, we conclude the paper and describe avenues of further
research.

2 MODELING FOR DEBUGGING

To apply MBD approaches to software debugging, a model repre-
senting the program under consideration has to be built. This section
focuses on two models that closely simulate the execution semantics
of the Java language. The models are currently limited to a subset of
Java.

Given a program’s source code, the simple value-based model
(VBM) [9] is derived by transforming each element of the program
into a set of components and connections between them. Statements
and expressions are represented as components, where the connec-
tions between them correspond to the used and modified variables,
respectively. For example, constants are represented as a single com-
ponent with one output port that corresponds to the value of the
constant. Whereas simple elements of the programming language
are represented as single components, more complex structures such
as conditional statements, loops or method calls have to be repre-
sented differently. Conditional statements are represented as com-
ponents that forward the results of one of its branches to its out-
puts, depending on the evaluation of its condition, which is provided

abstract class Shape{
abstract void rotate90();
static void main(String[] args){
Shape[] shapes = new Shape[5];
shapes[0] = new Rect(1,1,3,5);
shapes[1] = new Circle(4,0,1);
for(int i = 0; i < shapes.length; ++i){

if (shapes[i] != null)
shapes[i].rotate90(); }}}

class Point{
float x,y;
Point(float x,float y){
this.x = x;
this.y = y; }

void rotate90(){
float t = x; x = -y; y = t; }}

class Rect extends Shape{
Point ll,ur;
Rect(float x0,float y0,float x1,float y1){
ll = new Point(x0,y0);
ur = new Point(x1,y1); }

void rotate90(){
float x0 = ll.x;
float y0 = ll.y;
float x1 = ur.x;
float y1 = ur.y;
ll.x = y1; //-y1
ll.y = x0;
ur.x = -y0;
ur.y = x1; }}

class Circle extends Shape{
Point center;
float r;
Circle(float x,float y,float r){
this.center = new Point(x,y);
this.r = r; }

void rotate90(){
center.rotate90(); }}

Figure 1. Example Program

through an additional input connection. The statements belonging to
the branches of the conditional are represented as separate compo-
nents and connections, where the output connections of the then- and
the else-branch are used as inputs for the component representing
the conditional. The connections used as input values for the models
of the two branches are chosen such that the last connection repre-
senting the used variable before the execution of the conditional is
used. The conditional’s output connections represent the values that
are computed for the represented variables after the execution of the
conditional.

The VBM represents loops and method calls as hierarchic compo-
nents, where the input- and output-ports are derived from the loop’s
condition and the loop body or the called method’s body, respec-
tively. For polymorphic method calls, the component contains not
just a single model fragment, but models of all method bodies that
could possibly be invoked by the statement. This is necessary, as it
cannot be determined at compile-time which method is called. The
selection is done during the model’s execution, when the actual type
of the receiver is known.

Representing Objects To avoid similar problems regarding object
references, objects and their instance variables are not directly rep-
resented as connections. Instead they are accessed indirectly through
object identifiers (OIDs). The OIDs are assigned when an object is
created and are used to uniquely identify an object throughout the
model’s execution. The values of the instance variables are stored in
object environments (OEs) and are accessed using the OID of the cor-
responding object. Whenever an assignment to an instance variable
is modeled, a new version of the OE has to be created that reflects the
changes. The unchanged parts of the environment are copied from the
OE that is valid before the execution of the assignment expression.
To avoid copying the whole Java heap every time an instance variable

is modified, the OEs is sliced such that for each instance variable of
a class a separate OE is created that holds the values of the variable
for the class’ instances. In addition, a heap structure analysis [3] is
performed to separate OEs associated with references for which it is
known at compile time that they refer to different objects. Therefore,
the OEs are formed according to may-alias relations between the ref-
erence variables accessing them and the copying overhead is kept at
a minimum.

The modeling of the OEs can be formalized as follows: Each ex-
pression

�
of the program (i.e., constants, operators, etc.) can be

described as a function �������	� ��
���
���
����
that transforms

the environment
��
��

valid before the execution of the expression
into an environment

��
����
valid after the expression, which reflects

the changes caused by the expression. Here, each environment is
separated into two parts: One part, SVAR, contains the information
about the local and the static variables, whereas the second part, � � ,
is responsible for the OE. Therefore, each

��
��
is a pair � SVAR,

� � 	���������� � ����� , where � � 	 to � ��� are partitions of � � , accord-
ing to a preceding heap structure analysis. In our modeling approach,
each variable in SVAR and each � �� in � � is modeled by a sepa-
rate connection. Therefore, the behavior of each expression is given
by ������� , where the input is restricted to the subset of SVAR and the
set of � �� that contains all the relevant information to simulate the
specification of

�
. Parts of

��
�� �
that are not affected by the expres-

sion are not modeled through ������� . For these parts of
��
����

, the
connections representing the corresponding part in

��
��
are reused

during the modeling process. In our representation, each � � is a
collection consisting of tuples of the form � OID,VNAME,IDX,VAL

�
,

where ��!#" denotes the identifier of the object the tuple corresponds
to, and VNAME denotes the field name. !#"%$ is optional and is used
to distinguish values for different array indexes of an array. Finally,
VAL denotes the value from � � that is referred to by the first three
elements of the tuple.

Due to space limitations, the aspects of the model dealing with
class instance creations and arrays are not described in this work, but
they are straight forward extensions of the approach presented here.

Model Structure To illustrate the model building process, the
model of the loop body of method main() in Figure 1 is depicted
in Figure 2. First, the model of the condition of the if statement is
built. The array access expression is modeled as three components,
representing the access to the object reference shapes, the array in-
dex i, and the array access operator [], respectively. The slice of the
OE holding the values of the array is passed as an input connection
to the component representing the array access. Here it is assumed
that the array has been associated with an abstract location L1 dur-
ing the heap structure analysis. Next, the model of the conditional’s
then-branch is built. The modeling of the array access expression,
which forms the receiver of the method call, is modeled exactly as
the condition. The method call itself is modeled by first building the
models of the methods Rect.rotate90 and Circle.rotate90 (the two
possibly called methods) and then combining the models into a sin-
gle hierarchically structured component. The object the method is
invoked on and the required instance variables for both method mod-
els are passed as input parameters. Here it is assumed that the three
instances of class Point belonging to the rectangle (location L2) and
the circle (location L5) are associated with the abstract locations L3,
L4, and L6, respectively. The output connections of the method call
correspond to the instance variables that are modified by any of the
methods. Once the model of the then-branch of the conditional has
been obtained, modeling finishes with the introduction of the com-
ponent representing the if statement. The input connections associ-
ated with the then-branch of the conditional are connected to the out-
put connections of the model of the then-branch. As no else branch
is present, the connections associated with the else-branch are con-

shapes

.rotate90()

i

if

i

!=

null

shapesshapes

shapes[i] shapes[i]

L1 i

�
L3,L4,L6 � .x

�
L3,L4,L6 � .x

L5.center

�
L3,L4,L6 � .y

�
L3,L4,L6 � .yL2.

�
ll,ur �

Figure 2. Model of loop body

nected to the connections that were valid before the execution of the
conditional statement. The output connections correspond to the val-
ues of variables after the execution of the conditional statement.

Model Behavior Whereas the structure of the model is determined
by the analyzed program, the behavioral description of the compo-
nents is given by the Java Language Specification (JLS). The behav-
ior ����� � of each component is described as sentences in predicate
logic and simulates the behavior of the corresponding language ele-
ment

�
from the JLS. For the sake of brevity, the discussion here is

restricted to a few examples. Most of the remaining components are
simple and their behavior is straightforward to obtain. Further details
can be found in [9].

A component
�

representing a constant expression � introduces
the constant into

��
���� 7: �����
	 ����
�� � ��������	 ����� � . In a similar
way, components representing an access to a variable ����� � � �
is modeled as follows: �����
	 ���!
"� � ��������	 ���
�$#&% 	 ��� , where#&% 	 ��� corresponds to the value of a connection representing the
value of �
� ��
�� . For accesses to variables from � � , the accessed
object and the relevant � � must be provided as input. We write��
!' � � for the name of the variable that is accessed and (�)	 ��� for
the value of the connection corresponding to � �� :�����
	 ���+* (#&, 	 ���.-� /0* 	2143�5 6 �7(#&, 	 ���98 ��
:' ��� 87;<8 � � �(��)	 ���=��
>� � �������?	 ����� � .
Here,

/
represents the fact that no value is known for the connection.

If the variable references an array, an additional input connection#&,)@ 	 ��� is required, which corresponds to the index of the accessed
array element and replaces the auxiliary variable

;
from above. Com-

ponents representing assignments to variables are modeled similarly,
with the addition of further output connections that represent the new
versions of the OE partitions � � � that are possibly modified by the
assignment. In this case, rules for the tuples inserted into � ��� , as
well as rules dealing with the tuples copied from � � have to be
specified.

As mentioned above, a correct conditional statement forwards the
values computed by one of its branches to its outputs. The branch to
be selected is determined by the value of the condition. The (simpli-
fied) behavior can be expressed as follows (

�
is a component rep-

resenting a conditional statement; A�(%B, , �=C � %ED 	 ��� , �F� ��� D 	 ��� and(G�H� D 	 ��� denote the input and output ports of
�

;
�

represents a vari-
able modified in one of the branches):
I D ���J�!	 ���B* A�(%B, 	 ����� � � � �
 (G�H� D 	 ����� �=C � % D 	 ���I D ���J�!	 ����* A�(%B, 	 ������K ' � ���
 (L�M� D 	 ����� �F� ��� D 	 ���

A call to a method N is modeled such that each sentenceO
In the following description it is assumed that P�Q�R9SUTWVYX7Z\[E]_^J`_a � repre-
sents an auxiliary variable corresponding to the result of the expression.

���J�!	 � � �b*dce
gf
of the model of N is replaced by �����
	 ���b*�ihLj �)	7(#&, 	 ���=� �kA ' �l� � � �ihLj � �Lm -�n/�*oc �
pf �

, where
c �

and
f �

are derived from
c

and
f

, respectively, by replacing all connections
of the model of N by connections of the component

�
modeling

the call. �ihGj �q	 � represents a function that retrieves the actual type
of the object corresponding to (#&, 	 ��� . A ' �l� � � �rhLj � � m represents the
set of all types for which N is defined but not overridden by another
method.

Loop Free Model As will be demonstrated in the following sec-
tions, the diagnostic accuracy of the VBM is not sufficient when deal-
ing with loops. Therefore, we developed a variant of the VBM where
loops are expanded into nested conditional statements, resulting in
improved backward reasoning capabilities and independent fault as-
sumptions for statements inside the loop. This model is called (un-
surprisingly) the loop-free model (LFM). The number of conditional
statements that each loop is expanded into is derived from the num-
ber of iterations the loop executes during the initial execution of the
faulty program using a test case.

In addition to the expansion of loops, the behavior of components
representing conditional statements is modified such that the selec-
tion of the branch is independent of the evaluation of the condition.
Instead, a default mode (comparable to the ���J� -mode in the pre-
vious model) is replaced by a mode sJC � % 	 ��� or

� � ���)	 ��� , which
selects the corresponding branch of the conditional, depending on
the initial execution. The �J�!	 ��� mode is replaced by the remaining
mode. This can be formalized as follows (the

, � K ' �M���?	 � predicate is
necessary to avoid undesirable effects when setting the value of the
condition):
I D sJC � % 	 ���B*0t<ulv�wGxUy{z 	7sJC � % 	 ���=��

(L�M� D 	 ����� �YC � %ED 	 ���|* A?(%|, 	 ����� � � � �I D � � ���q	 ���B*0t<ulv�wGxUy{z 	 � � ���)	 ���=��

(L�M� D 	 ����� �F� ��� D 	 ���B* A�(%B, 	 �����}K ' � ���I D sJC � % 	 ���B* � t)ulv?wGxUy{z 	7sJC � % 	 ���=��
 (G�H� D 	 ����� �=C � %bD 	 ���I D � � ���q	 ���B* � t)ulv?wGxUy{z 	 � � ���)	 ���=��
 (L�M� D 	 ���~� �F� ��� D 	 ���

Replacing the modes �J� and ����� with the modes from above,
backward reasoning through conditionals is possible even though the
value of the corresponding condition is unknown. Therefore, con-
flicts can be generated more often, which results in fewer diagnoses.

3 EMPIRICAL RESULTS

This section describes the results obtained by applying the models
described in the previous section to a set of test programs and com-
pares the models with respect to their diagnostic capabilities.

To evaluate the debugging accuracy of the models, a set of ex-
ample programs has been created which is used to investigate the
specific advantages and disadvantages of the model variants. Most
of the example programs implement well-known algorithms which
could be part of larger programs, each of them including a seeded
fault. For example, programs executing a binary search procedure,
computing the Huffman encoding of an array of characters, or ap-
plying Gauss elimination are part of the test suite. Throughout this
work, we assume that the faulty program is a close variant of the cor-
rect program. We do not deal with wrong choice of algorithms, data
structures or similar major design defects.

The diagnostic experiments were performed by specifying the in-
puts of the program together with the expected results as observa-
tions. A summary report of the obtained results for each example
program is depicted in Table 1. Several aspects of the examples are
listed: ��� � denotes the number of statements in the program,

�
rep-

resents the number of components in the generated model. " stands

for the number of diagnoses of minimal cardinality that are obtained
and
�

represents the number of diagnoses from " that actually in-
clude the seeded fault. � denotes the cardinality at which the diag-
nostic process was stopped because the seeded fault was located. Fi-
nally, the %-column lists the percentage of the statements that have
to be examined in the worst case until the seeded fault is found. Here
it is assumed that the diagnoses are presented with increasing car-
dinality. Note that these numbers can further be improved by suit-
able heuristics, which present the diagnoses according to their ’like-
lihood’ to explain the faults. For the VBM, the columns

�
and �

are omitted because their value is always equal to one. Numbers in
parentheses denote cases where the faults could not be located be-
cause the maximum time allowed for diagnosis was exceeded. In
these cases the numbers are lower bounds to the actual results that
would be obtained when continuing the diagnostic process to its com-
pletion.

Program Stm VBM LFM
C D % C D H S %

BinSearch 27 16 6 63 43 1 1 2 8
Binomial 76 26 9 42 255 24 1 1 32
BoundedSum 16 14 4 38 19 1 0 2 38
BubbleSort 15 10 6 93 34 7 1 1 47
FindPair 5 4 4 100 10 1 0 2 80
FindPositive2 17 13 3 41 20 2 1 1 12
FindPositive3 17 13 3 41 20 2 1 1 12
Hamming 27 19 11 70 95 9 1 1 33
Huffman 64 22 9 80 161 9 0 (2) (25)
Huffman 64 22 6 59 164 12 1 1 19
Intersection 95 31 12 84 155 8 1 1 5
Library 24 21 6 38 36 5 0 2 34
Matrix 71 21 21 100 127 37 1 1 52
MaxSearch2 21 16 3 38 37 2 0 2 19
MultLoops 21 12 2 19 27 4 2 3 24
MultiSet 97 55 8 28 283 1 0 (2) (11)
Permutation 24 17 14 96 29 3 1 1 13
Permutation0 26 19 12 69 33 1 1 1 4
Permutation1 26 19 12 69 32 8 0 3 100
Permutation2 26 19 15 85 33 9 1 1 35
Permutation3 24 19 12 67 33 2 0 3 50
Polynom 120 64 14 24 189 26 0 (3) (13)
SearchTree 84 41 41 100 140 45 0 (1) (54)
SkipEqual 5 4 4 100 11 2 1 1 40
Stat 23 17 3 39 42 2 0 4 48
Sum 5 4 3 80 10 3 1 1 40
SumPowers 21 12 8 81 36 5 1 1 24
average 39 20 9 65 77 8 0.6 (1.6) (32)

Table 1. Summary of the example programs and results

4 DISCUSSION

VBM Analyzing the results obtained with the VBM, it can be seen
that the amount of code that has to be analyzed in order to locate a
fault can be reduced significantly. In most cases, only between 40 and
80 percent of all statements have to be checked, with the average be-
ing at 65 percent. Comparing these numbers to results obtained with
other approaches for program analysis, it can be seen that the VBM
is able to locate faults more accurately than previous approaches. In
particular, when comparing our approach to slicing [13], our results
are much better8. This can be explained by the different levels of ab-
straction the two approaches apply. Our approach is somewhat closer
to the actual execution semantics of the program than with program
slicing, which only considers program dependencies. Consequently,
we are able to reason about concrete values and are thus able to de-
tect conflicts more often than approaches operating on a higher level
�

For most of the example programs in this section, static slicing is not able
to eliminate any statement.

of abstraction. This does not only include data flow in the direction
of program execution, but also includes backward computation, i.e.
reasoning from the observed output values towards the input values.
Another improvement with respect to slicing is that we can provide
more information to the user in case a loop has to be executed a dif-
ferent number of times to explain a fault. Those examples where no
statements of the program could be eliminated are programs that are
either very short (consisting of only an initialization statement and
a loop) or are programs where almost every part of the program de-
pends on every other part (for example a binary search tree, where
the program execution depends on the values that were inserted pre-
viously).

The VBM usually provides good results for programs without
loops but fails to compute satisfying diagnoses for programs that con-
sist of large loop statements. This is due to the fact that the loop state-
ments are modeled hierarchically and discrimination between state-
ments inside the loops is not possible. Hence, either the entire loop is
considered correct or incorrect, which often results in inaccurate di-
agnoses. Further, backward reasoning through loops generally is not
possible (unless the number of iterations is known), which causes the
model to include larger parts of the program.

LFM To overcome these problems, the LFM has been devel-
oped. Loops are expanded into a set of nested conditional statements,
with separate assumption variables for each statement. Therefore, the
model is able to reason about the loop’s statements independently,
without considering the whole loop as an entity. This provides a finer-
grained resolution, which avoids the problem of large diagnosis enti-
ties mentioned above.

As can be seen in Table 1, switching from the VBM to the LFM
leads to much better results. In particular, the percentage of state-
ments that has to be considered until the fault is located is reduced
to 32-439 percent on average, which is quite low compared to the
percentage of statements that was computed by the VBM. These im-
provements are mainly caused by the improved backward reason-
ing mechanisms and the strong behavioral modes of the conditional
statements.

The LFM causes some undesirable side effects. In particular, the
size of the diagnostic problem increases due to the changed represen-
tation of loops and the separate fault assumptions for the conditional
statements. However, this is usually not a severe problem because for
programs without deeply nested loops the number of conditionals to-
gether with the number of loop iterations usually is relatively small
compared to the total number of statements in the program.

For the LFM it is no longer the case that every faulty statement is
included in a diagnosis of cardinality one (as with the VBM). There-
fore, the cardinality up to which diagnoses have to be computed is
likely to be ��� , depending on the type of fault and the program
structure. For most example programs the diagnosis cardinality re-
quired to locate a fault is ��� , which is usually computationally fea-
sible when considering small- to medium-sized programs.

For programs where multiple loops or conditional statements ex-
hibit faulty behavior, the required diagnosis cardinality increases fur-
ther. This causes the search space to increase considerably and also
diminishes diagnostic performance, as diagnoses of larger cardinal-
ity often include unnecessary statements. These problems can be ad-
dressed by multi-model reasoning and by suitable ranking of diag-
noses, as will be discussed later on.

Another aspect of the LFM that keeps the model from being
blindly applicable is the fact that the strong fault modes of the con-
ditional statements decouple the selection of the conditional branch
�

43% is obtained when assuming the whole program has to be examined for
the examples where no exact solution was found. Better estimates (37%)
are obtained when taking the percentages obtained with the VBM as upper
bounds.

to be executed from the evaluation of the selection condition. There-
fore, faults in the condition cannot be located using the LFM. Here,
again, multiple models have to be combined to locate such faults effi-
ciently. Fortunately, such faults can in many cases be found with the
VBM alone and do not require the LFM to be applied (e.g., examples
MultLoops, Permutation1 and Stat).

5 SOLUTIONS AND OPEN ISSUES

When considering the solution quality of the two models beyond the
context of a single diagnosis run as we have done in the previous
section, the applicability actually increases, as experience with the
much less discriminatory (but much faster) dependency-based mod-
els has shown that even these models can very quickly home in on a
fault by suggesting measurement points and having the user provide
interactive “observations” on the correctness of particular variable
values [14].

However, the limitations of the models that were discussed pre-
viously can also be attacked directly, by applying several possible
extensions. Most of the ideas presented here are subject to further
research and should only provide an idea on how to extend the mod-
els, apart from the obvious issue of covering the nonsequential Java
language features which are still excluded from modeling: exception
handling, threads, synchronization and reflection.

First, as no single model is accurate to diagnose all types of faults
in a program, several specialized models have to be applied con-
currently, each specialized to detect a specific class of faults. This
multi-model-reasoning approach is not only applicable to the two
types of value-based models discussed here, but can also be applied
using multiple levels of abstraction or types of models. For example,
a dependency-based model (such as slicing [13] or the dependency-
based models from [14]) can be used to narrow the possible locations
to a part of the program with manageable size and then apply com-
binations of the VBM and the LFM to exactly locate the fault. Also,
models dealing with structural faults [5, 15] could be incorporated in
such a framework.

For this approach to be applicable, suitable strategies to decide
under which conditions to apply certain kinds of models have to
be developed and evaluated. Based on these criteria, the most effi-
cient model can be selected based on the program structure, the test
cases and the diagnoses computed so far. This approach overcomes
the drawbacks of both models, as well as reduces the computational
complexity of the diagnostic process, because more detailed models
are only instantiated when needed.

To select candidates for further inspection, suitable criteria for
ranking diagnoses according to their likelihood to explain the fault
have to be developed. As a consequence, unlikely diagnoses, i.e. di-
agnoses that are not expected to be of much value to the user, are
eliminated by assigning them low preference values. However, de-
veloping generally applicable criteria to rate diagnoses is an open
research issue.

Besides presenting diagnoses with decreasing likelihood, provid-
ing more specific information about the types of faults and possible
corrections can help to eliminate faults more quickly. As described
in [12], after a single diagnosis has been selected for further inves-
tigation, possible replacement expressions for the faulty expression
can be inferred and presented as corrections. This also is an important
step towards an intelligent, (semi-)automatic debugging and program
correction tool.

Finally, a limitation of the current models is given by their high
computational effort required to execute them. Although this is to a
large part caused by the inefficient implementation, the high over-
head caused by copying OEs also contributes noticeably. As a con-
sequence, the models can only be applied to small- to medium-sized

programs dealing with a moderate number of objects. To speed up
the models, further research and combination with other techniques
are required.

6 CONCLUSION

Building intelligent debugging aids for programmers is an important
goal repeatedly attacked by researchers during the last decades. Un-
fortunately, no generally applicable solution has been found so far. In
this paper we describe an approach relying on model-based diagno-
sis and introduce two models for Java programs that closely follow
the Java execution semantics, including dynamic object creation and
referencing. As presented, the performance of these models on test
programs is quite encouraging and significantly exceeds that of ear-
lier dependency-based models. In particular, the Loop Free Model
proved to be clearly more effective than the “plain” Value-Based
Model due to its more effective backward reasoning ability. Incor-
porating these models in a system with multi-model reasoning capa-
bility and ranking criteria for diagnoses holds the promise of wider
applicability (due to integration with dependency-based models) and
even better discrimination. As our approach clearly outperforms clas-
sical debugging techniques for many example programs, the model-
based approach can be considered a promising technique that should
be further researched to obtain a generally applicable debugging tool.

REFERENCES
[1] Edmund M. Clarke, Orna Grumberg, and David E. Long, ‘Model

Checking and Abstraction’, ACM Transactions on Programming Lan-
guages and Systems, 16(5), 1512–1542, (September 1994).

[2] Luca Console, Gerhard Friedrich, and Daniele Theseider Dupré,
‘Model-based diagnosis meets error diagnosis in logic programs’, in
Proceedings

�

�
���

International Joint Conf. on Artificial Intelligence,
pp. 1494–1499, Chambery, (August 1993).

[3] James C. Corbett, ‘Using shape analysis to reduce finite-state models
of concurrent java programs’, Technical report, Department of Infor-
mation and Computer Science, University of Hawaii, (1998).

[4] Gerhard Friedrich, Markus Stumptner, and Franz Wotawa, ‘Model-
based diagnosis of hardware designs’, Artificial Intelligence, 111(2),
3–39, (July 1999).

[5] Daniel Jackson, ‘Aspect: Detecting Bugs with Abstract Dependences’,
ACM Transactions on Software Engineering and Methodology, 4(2),
109–145, (April 1995).

[6] Beat Liver, ‘Modeling software systems for diagnosis’, in Proceedings
of the Fifth International Workshop on Principles of Diagnosis, pp.
179–184, New Paltz, NY, (October 1994).

[7] J. W. Lloyd, ‘Declarative Error Diagnosis’, New Generation Comput-
ing, 5, 133–154, (1987).

[8] Cristinel Mateis, Markus Stumptner, and Franz Wotawa, ‘Debugging
of Java programs using a model-based approach’, in Proceedings of the
Tenth International Workshop on Principles of Diagnosis, Loch Awe,
Scotland, (1999).

[9] Cristinel Mateis, Markus Stumptner, and Franz Wotawa, ‘Modeling
Java Programs for Diagnosis’, in Proceedings of the European Confer-
ence on Artificial Intelligence (ECAI), Berlin, Germany, (August 2000).

[10] Raymond Reiter, ‘A theory of diagnosis from first principles’, Artificial
Intelligence, 32(1), 57–95, (1987).

[11] Ehud Shapiro, Algorithmic Program Debugging, MIT Press, Cam-
bridge, Massachusetts, 1983.

[12] Markus Stumptner and Franz Wotawa, ‘Debugging Functional Pro-
grams’, in Proceedings

�

�
���

International Joint Conf. on Artificial In-
telligence, pp. 1074–1079, Stockholm, Sweden, (August 1999).

[13] Mark Weiser, ‘Program slicing’, IEEE Transactions on Software Engi-
neering, 10(4), 352–357, (July 1984).

[14] Dominik Wieland, Model-Based Debugging of Java Programs Using
Dependencies, Ph.D. dissertation, Vienna University of Technology, In-
stitute of Information Systems, 2001.

[15] Franz Wotawa, ‘Debugging VHDL Designs using Model-Based Rea-
soning’, Artificial Intelligence in Engineering, 14(4), 331–351, (2000).

[16] Franz Wotawa, ‘On the Relationship between Model-Based Debug-
ging and Program Slicing’, Artificial Intelligence, 135(1–2), 124–143,
(2002).

