
Towards an Integrated Debugging Environment
�

Wolfgang Mayer � and Markus Stumptner � and Dominik Wieland � and Franz Wotawa �����

Abstract. With recent research showing that consistency based di-
agnosis can be used to model programs written in imperative pro-
gramming languages for debugging purposes, it has been possible to
develop debugging environments that provide interactive support to
the developer, homing in on individual faults within a few interac-
tions. In addition to complexity results, this paper discusses how the
results of the straightforward application of diagnosis models can be
improved upon by incorporating information obtained from multiple
test cases (i.e., input/output vector specifications). The information
from executing such test cases can be used to support heuristic state-
ment selection by assigning fault probabilities, and for elimination of
diagnosis candidates. We also discuss how the extended algorithms
can be integrated with the consideration of multiple diagnosis models
during the diagnosis process.

1 Introduction

For the last three years the JADE project has examined the appli-
cability of model-based diagnosis techniques to the software debug-
ging domain. In particular, the goals of JADE were (1) to establish
a general theory of model-based software debugging with a focus on
object-oriented programming languages, (2) to describe the seman-
tics of the Java programming language in terms of logical models
usable for diagnosis, and (3) to develop an intelligent debugging en-
vironment for Java programs based on the theoretic results.

The main practical achievement of the JADE project is the inter-
active debugging environment, which allows us to efficiently locate
bugs in faulty Java programs. Currently, this debugger is fully func-
tional with regard to nearly all aspects of the Java programming
language and comes complete with user-friendly GUIs. The JADE
debugger limits the search space of bug candidates by computing di-
agnoses for a given (incorrect) input/output behavior. This is done
by using model-based diagnosis techniques, which in some cases
have been adapted to suit the needs of an object-oriented debugging
environment. Furthermore, the debugger can be used to unambigu-
ously locate faults through an interactive debugging process, which
is based on the iterative computation of diagnoses, measurement se-
lection steps, and input of additional observations by the user.
	

This work was partially supported by the Austrian Science Fund project
P12344-INF.

University of South Australia, School of Computer and Information Sci-
ence, Mawson Lakes Boulevard 1, 5092 Mawson Lakes SA, Australia,
email: mayer@cs.unisa.edu.au�
University of South Australia, School of Computer and Information Sci-
ence, Mawson Lakes Boulevard 1, 5092 Mawson Lakes SA, Australia,
email: mst@cs.unisa.edu.au�
Vienna University of Technology, Institute of Information Systems,

Database and Artificial Intelligence Group, Favoritenstrasse 9-11, A-1040
Vienna, Austria, email: wieland@dbai.tuwien.ac.at

Graz University of Technology, Institute for Software Technology, Inf-
feldgasse 16b/II, A-8010 Graz, Austria, email: wotawa@ist.tu-graz.ac.at�
Authors are listed in alphabetical order

Since model-based diagnosis relies on the existence of a logical
model description of the underlying target system, one of the most
important components of the JADE system are its models. Currently,
the following model classes are used by the JADE debugger:

ETFDM: A dependency-based model, which makes use of a con-
crete execution trace (see [10]).

DFDM: A dependency-based model, which only makes use of static
(compile-time) information, such as the Java source code and the
programming language semantics (see [8, 10]).

SFDM: Another dependency-based model, which is based on either
the ETFDM or the DFDM and involves a higher level of abstrac-
tion by removing the distinction between locations and references
(see [8, 10]).

VBM: A value-based model, which makes use of concrete evalua-
tion values and the full programming language semantics. It com-
putes possible fault scenarios not only by making use of the un-
derlying program dependencies, but also by actually propagating
concrete run-time values from the model’s inputs to its outputs and
(in some cases) from the model’s outputs to its inputs (see [6]).

LF-VBM: A second value-based model, which is based on the un-
folded source code for a particular program run (see [7]).

Empirical results have shown that in almost all tests the JADE de-
bugger was able to substantially decrease the amount of suspect code
in a single diagnosis step. This is true for all used models with each
model having its individual strengths and weaknesses. Moreover, the
JADE debugger was able to exactly locate source code faults in inter-
active debugging sessions and in most cases outperformed traditional
debugging tools as far as the amount of user interaction was con-
cerned. However, there still remain open issues, the most important
of which are:

� The different model types have their individual strengths and
weaknesses. For example, the dependency based models can be
created and applied very quickly. However, in some cases the
dependency structure of the underlying program is so complex
that in each iteration only few statements can be removed from
the debugging scope automatically. Value-based models, on the
other hand, are much more detailed and in general score signif-
icantly better results than dependency-based models. However,
these models in their current implementation are very slow and
can thus be applied only to small Java programs. One goal of fu-
ture research activities has therefore to be to effectively combine
multiple models within a single debugging session.� A common practice in hardware diagnosis is the ranking of di-
agnoses by probability, a practice that is based on the evalua-
tion of failure rates of the individual components. Computing
such estimates for software is significantly harder, because fault
probabilities for particular program constructs are highly context-
dependent. Most descriptions of errors found during debugging



are of limited scope and mainly anecdotal in structure [4]. The
ability to rank diagnosis probabilities, even if estimated, could be
used in different phases of the debugging process in order to im-
prove the debugger’s performance, e.g., to eliminate highly un-
likely diagnoses, compute optimal measurement points, or select
the best models to be used in a multi-model debugging session.� The ultimate goal is to embed the JADE debugger within a com-
plete software engineering environment which supports its user
during all phases of the software development process. Synergies
with techniques used in other areas of software development (test-
ing in particular) can further improve the system’s debugging per-
formance.

This paper builds a framework for addressing the issues described
above. We extend the normal diagnosis process to the creation of
an integrated debugging tool, which (1) is part of a more general
software development environment, (2) makes use of probabilities to
rank diagnoses, and (3) supports the combination of multiple models
in a single debugging session.

2 Debugging Complexity

We start with a brief discussion of the time and space complexity
of debugging programs. Since this complexity depends on the type
of model used, we distinguish the main two model classes used by
the JADE debugger, i.e., dependency-based models (e.g., ETFDM,
DFDM, SFDM) and value-based models (e.g., VBM, LF-VBM).
With the value-based model, in the worst case all possible combi-
nations of statements have to be checked for being a bug candidate,
with the check time being the time for the program to run. We assume
a fixed finite runtime for the program under consideration. This might
be considerably reduced when working in an environment that allows
restarting the program at some later point instead of at the beginning,
but we do not consider this issue here.

Theorem 2.1 (Time complexity; value-based model) Let
�

be a
program, � a test case, and ��� ��� ��� the maximum time necessary to
apply program

�
to � . The worst-case time complexity for debugging

is 	
����� ��� �
�������������������
� . If we limit ourselves to single diagnoses, the
worst-case time complexity is 	
����� ��� �
��� �"!$#&%'� � �
� .

When using a dependency-based model, the time complexity again
depends on the number of possible combinations which is bound by
� ������������� for each program

�
. Checking a combination, however, now

does not depend on the maximum runtime. Instead, checking is per-
formed by a propositional horn clause theorem prover, and the length
of the logical sentence to be proved depends on the size of the model,
whose complexity is given by 	
�(�"!(#�%)� � �*�,+ -�./+ � . -�. stands for the
set of all variables of

�
.

Theorem 2.2 (Time complexity; dependency-based model)
Let

�
be a program, � a test case, and -�. the set of all vari-

ables of
�

. The worst-case time complexity for debugging is
	
�(�"!$#&%'� � �0��+ -�.1+2�"����������������� . If the diagnosis size is bound to 1, the
worst-case time complexity is 	
�(�"!(#�%)� � � 
 �'+ -�./+ � .

As experimentation shows, in the average case diagnosis runtimes
for the dependency-based model are significantly lower.

3 Fault Detection (Testing & Diagnosis)

The first step towards an integrated software development and de-
bugging tool is to combine testing and debugging. By this we mean

that a single integrated user interface must provide user-level func-
tionality that allows to (1) specify test cases for a given program, (2)
run these test cases, (3) automatically compute diagnoses in case of
“unsuccessful” test cases, i.e., test cases exhibiting an incorrect pro-
gram behavior, and (4) rank all diagnoses by their probabilities. This
ranking can use information obtained during testing and is described
in detail in this section. The advantages of such an approach are:

� As a prerequisite, each diagnosis process needs the specification
of the expected input/output behavior for each test case. In our
current implementation either the user enters it on screen, or it
is read from a file containing ground facts in a simple assertion
language. By combining testing and model-based debugging these
observations can directly be taken from the test case specification.� Multiple test cases can be used to compute diagnoses. This tech-
nique has been proposed in [9] (see also [10]). Again, coupling
testing and debugging reduces the overhead of specifying and se-
lecting these test cases.� Testing and debugging can be performed using the same interface,
including starting the diagnosis process automatically.� The computed diagnoses can be ranked using information ob-
tained directly from testing. This technique is described below.

Ranking based on multi-test case performance The results re-
ported in, e.g., [3, 5] contained only test cases that failed to deliver
the expected results. This means that diagnoses were computed for
all test cases exhibiting incorrect program behavior, whereas all other
test cases were simply ignored.

. 	 . if (Y 3 0). 
 . X = 1;
else. � . X = 1; // Should be X = -1

Figure 1. The first example program

However, successfully concluded test cases can also contain valu-
able information. The concept is demonstrated by the very simple
program given in Figure 1 and the two test cases �547698;: �
< � 8= :2� , �54�6>8 = : ��< � 8?:2� . In the examples in this paper, we index
variables based on their position in the code, with 4 � referring to the
value of variable 4 at position ! , and !@8BA indicating the initial sit-
uation before executing the first statement in the program. We also
generally talk of statements being correct or incorrect even when the
program part in question is actually an expression. Thus, to describe
Figure 1, we talk of line . 	 as a “statement”, even though it really
contains an expression that is part of an if statement reaching down
to . � . We consider statements individually even if nested (such as . 

and . � in the example). Note also that the principles discussed in this
paper apply as well to the debugging of smaller program fragments
or individual methods, but for simplicity we use the term “program”
throughout.

In general, given a set of test cases (given in terms of specifications
of input and output values for a program), we can automatically com-
pute the evaluation trace for every program

�
and test case � . This

evaluation trace comprises all statements and top-level expressions
(such as the condition of the if statement in the example) that are
executed during evaluation. For our small example we have two dif-
ferent evaluation traces. One is C(. 	 � . �2D and the other is C(. 	 � . 
"D . We
see that in both cases the condition is contained in the trace. State-
ment . 
 is in the trace and produces a correct value, and statement
. � is in the trace and produces an incorrect value. Hence, we con-
clude that . 
 cannot be a bug candidate, . 	 may contain the bug, but
. � is most likely. We now formally represent this concept.



Given a program
�

with a set of input variables
�

and output vari-
ables � , and ����� ��� � being the domain of each variable �
	 ��� � ,
we define a test case � to be a pair C�
�� � 	�� D , where 
�� (with domain�

) and 	 (with domain �>� are functions mapping variables to some
value from their domain. 
 � is total, but 	 � need not be. The total-
ity requirement on 
 � guarantees that the program is executable on
� . Now consider the set of statements of a program

�
. For a set of

test cases � . , for each statement . , we define the correctness count,��� , to denote the number of successful test cases that caused . to
be executed, and the faulty count, � � , to denote the number of un-
successful test cases. The counters imply a probability ���1�(.@� and��� �(.@� , respectively.

� � �(.@� 8 � �
����� � � � � �(. � 8 � ������ � �

Note that ��� �(.@� � ��� �(.@�18 : holds. The probability estimates re-
sulting from the example are:

. � � � � � � � �!�1�(. � �"��� �(. � �. 	 1 1 0.5 0.5
. 
 1 0 1.0 0.0
. � 0 1 0.0 1.0

We can make use of these probabilities to determine the most
likely diagnosis as stated by the following lemma:

Lemma 3.1 If the diagnosis procedure is complete with regard to
the set of possible errors in

�
, the probability ��� �(.@� must be greater

than 0, if statement . contains a bug that is detectable by the given
test cases.

From the above lemma we can directly obtain a more precise char-
acterization.

Lemma 3.2 If the diagnosis procedure is complete with regard to
the set of possible errors in

�
and � � �(.@�
8 : (i.e., � � �(.@�
8 A )

holds for a statement . , then . cannot contain a bug that is de-
tectable by the given test cases.

The reverse of course does not hold, i.e., if a statement . has the
probabilities � � �(.@��8 A and � � �(.@��8 : , it still does not need to
be buggy, although they do indicate that . is most likely to be the
source of the faulty behavior. This holds especially if � � is equal to
the number of faulty test cases. The � � �(.@� and � � �(.@� values, how-
ever, neither guarantee finding a most likely diagnosis nor give an
optimal ranking of competing diagnoses. In addition, the case where
both probability values are greater than 0, neither correctness nor
incorrectness of statements can be judged. Moreover, the probabil-
ity values heavily depend on the test cases used. For example, con-
sider the Min program depicted in Figure 2 which searches for the
minimum min in an array of integers X. It can easily be shown that
the program is correct and therefore passes the following test cases:
� < 6 8$#&%��('()>:&* � � !�+-,�8 :2� , � < 6 8.#):/) �0'(%�* � � !1+-,�8 : � ,
and � < 6 82# � :3'�)4%5* � � !1+-, 8 :2� .

Now consider the following two variants Min1 and Min2. Min1
is equal to Min except statement . 	 was changed to ’min =
X[2];’. The program Min2 is Min with statement . 
 replaced by
’min = x[1];’.

Using the counter values leads to good results for program Min2
but not for Min1. Figure 3 shows the probability values for the two
variants Min1 and Min2. The probability values of the statements
in Min1 give no clear indication about the cause of the misbehavior
and are in fact misleading. The best choice would be to prefer the

// X is an 5-element array of integers.. 	 . int min = X[1];. 
 . int i = 2;. � . while (i 3 =5) #. � . if (X[i] 3 min) #. 
 . min = X[i]; *. � . i = i + 1; *
Figure 2. The program Min

correct statement . 
 as a diagnosis because � � �(. 
 � is higher than
the faulty count of all other statements. For program Min2, the faulty
statement is identified correctly by the probabilities resulting from
the test cases.

. � Min1 Min2� � � � � � ��� �(. � �6��� �(. � � � � � � � � ��� �(. � �7��� �(. � �. 	 2 1 0.67 0.33 1 2 0.33 0.67
. 
 2 1 0.67 0.33 1 2 0.33 0.67
. � 2 1 0.67 0.33 1 2 0.33 0.67
. � 2 1 0.67 0.33 1 2 0.33 0.67
. 
 1 1 0.50 0.50 0 2 0.00 1.00
. � 2 1 0.67 0.33 1 2 0.33 0.67

Figure 3. Probability values of programs Min1 and Min2

The above principles of reducing the number of diagnoses by us-
ing multiple test cases are incorporated in the following algorithm
MultTC. MultTC is called with a set of subset-minimal diagnoses8 . , the test cases � . , and the program

�
as inputs, and returns an

ordered set of diagnoses where impossible diagnoses are removed.

Algorithm 9;:=<?>�@BA �1C�D � @ED �GF �
1. Let

8
be the empty set.

2. Compute the probabilities ���/�(. � � and ��� �(. � � for each statement
. � , by executing the program on all test cases in � . .

3. Add each diagnosis H.	 8 . to
8

if there is no statement . � with� � �(. � � 8B: in H .
4. Order the diagnoses in

8
according to the � � �(. � � values of the

contained statements . � . We assign a � value to every HI	 8
where � is defined as J��(. 	 ��KLKMK .�N�� with H 8O#�. 	 ��KMKLK � .�N!* .

5. Return
8

.

Step 3 of MultTC is needed to handle diagnoses that include a
statement . � that is never executed in an unsuccessful test case, i.e.,�!�1�(. � � 8 : holds. Since we do not have any evidence that . �
might be faulty with the given set of test cases � . , we eliminate
. � from the debugging scope. If we only consider minimal diag-
noses, the elimination of . � from a diagnosis H results in H being
inconsistent with the used model. Therefore, we remove H from the
set of diagnosis candidates. Step 3 might be superfluous for some
models (e.g., value-based models), but is necessary if only a static
analysis (e.g., DFDM) is performed. Step 4 of MultTC uses func-
tion J��(. 	 ��KMKLK � .�N�� to compute the probability value of a diagnosisH 8O# . 	 ��KMKMK . N * . If we assume . 	 ��KMKMK . N 	PH to be independent we
can use J��(. 	 ��KMKMK � . N � 82Q � �SR5T ��� �(. � � as a good heuristic.

The time complexity of MultTC is 	
��+ � .1+'�VUXW&Y � RVZ�� ��� ��� �
�
� .
However, in an integrated debugging environment the probability
values can be collected during testing and automatically be used to
rank diagnoses after an individual diagnosis step. Therefore, apart
from the negligible overhead of computing the probability values
of the diagnoses, no extra computations have to be performed. Of
course, the computed probabilities depend on the test cases used.
Note that � . is defined as a set of test cases, i.e., each test case can



only occur once in it (as it would distort the resulting probabilities
otherwise). We also assume that path testing techniques (see [1]) are
used, which guarantee that all branches are executed during testing
roughly equally often.

Variable-based weighting In order to improve the ordering of
statements and diagnoses we make use of the knowledge about cor-
rectly computed variables. If a variable � is correct after executing
the program, statements involved in the computation of � can be seen
as less likely to be responsible for a misbehavior. These statements,
however, cannot be excluded from the list of suspicious statements.
The set of statements influencing the value of � can be computed
using a functional dependency model and the observation � � � �����)� ,
where

�
is the highest index of variable � . The value of variables

before executing the program are assumed to be correct. The model
together with the observation can be used to determine all single di-
agnoses which are equivalent to the statements influencing the value
of � . The following algorithm AdaptP makes use of the knowledge
about correctness of values and adapts the probabilities of the given
diagnoses

8 . . Other parameters of AdaptP are the program
�

, the
test cases � . , and the set of all variables of

�
, i.e., -�. .

Algorithm �����
	 >��
�1CPD � @ED ��
 D �GF �
1. Let � be the set of all variables, i.e., � 8 - . .
2. For every test case �3	 � . do the following:

(a) If the program
�

does not pass the test case � , compute the set
of variables � that are correctly computed.

(b) Set � to ����� .

3. For all �
	�� do the following:

(a) Use a dependency model together with the observation� � � �����)� to determine the set � of all statements that have an
influence on the value of � .

(b) If there exists a statement �7	�� such that �7	 H for someH 	 8 . , then the new fault probability is � ��H � 8���� ���(��H � .� � ��H
� denotes the current fault probability of H .

4. Return
8 . .

In the computation above, � 	�� A � :�� is a constant value that de-
termines the factor by which the probability of a diagnosis H is de-
valuated, if H contains a statement influencing a variable which is
correctly computed in all test cases. In general, � has to be deter-
mined empirically. In the following we work with ��8 A K ) . The time
complexity of the adaption is bound by 	
��+ � .1+ �MUXW�Y � R5Z�� ��� ��� ��� �
�"!$#&%'� � � 
 �)+ -�./+ � , where the term �"!$#&%'� � � 
 ��+ -�.1+ is due to the fact
that we are interested in all single diagnoses explaining the observa-
tion � � � �����)� . We illustrate AdaptP using the Min1 and Min2 pro-
grams where the initial sets of diagnoses comprise all statements and
the adaption parameter � is set to A K ) . For both programs and all
test cases variable i is correctly computed. The value of i is deter-
mined by the statements . 
 , . � , and . � . Whereas the probability
values of the other statements remain the same, the fault probabil-
ities of statements . 
 , . � , and . � are A K )>��A K 'V' 8 A K : � for Min1
and A K ) � A K %�� 8 A K ' ' for Min2, respectively. When ordering the
statements according to their probability values, for Min1 and Min2
we receive the same sequence, i.e., C(. 
 � . 	 � . � � . 
 � . � � . �,D . In both
cases the correct diagnosis is ranked first or second.

In an integrated testing and debugging environment the algorithms!#"�$ � �&% and ���('��*��) do not cause significant overhead. Most of
the required information can be obtained during testing of

�
, and no

extra program executions are required. The additional overhead is of
the same order as computing the diagnoses using dependency-based

models. Using this ranking not only means that the user is given an
intuitive feeling of the likelihood of individual fault explanations,
indicating which diagnoses should be evaluated first (e.g., by code
inspection or creation of further test cases), but the ranking diagnoses
can also be used to increase the overall performance of the interactive
debugging tool, as discussed in detail in Section 4.

4 Fault Localization

We are now at a point in the debugging process where all diagnoses
for the set of specified test cases have been computed and ranked
by their probability values as defined in Section 3. Generally, at this
stage the number of diagnoses is still too large to immediately ex-
actly locate given faults or evaluate these diagnoses by manual code
inspection. This section describes various ways of reducing the num-
ber of diagnoses with the ultimate goal of eventually pointing the
user at the exact fault location(s).

Additional test cases One way to reduce the number of diagnoses
is to specify additional test cases. This can be done very efficiently
in an integrated debugging environment as described in Section 3,
since new test cases can automatically be executed and divided into
unsuccessful and successful test cases. All unsuccessful test cases
can then be used to compute additional conflict sets and thus reduce
the current number of diagnoses using standard model-based diag-
nosis techniques. Furthermore, the set of all test cases can be used
to adapt the probability values of all diagnoses using the algorithms
given in Section 3. However, this approach can only be expected to
work as long as test cases can be found, which provide additional
information, e.g., because they exhibit additional failures or execute
additional paths.

Additional observations Another way to decrease the current
number of diagnoses is to specify additional observations of the be-
havior of the debugged program. In contrast to the specification of
additional test cases, here we are talking about observations inside
the analyzed program, i.e., values of local variables, etc... Whereas
new observations result in the (possible) elimination of some of the
current diagnoses, the probability values of the remaining diagnoses
are not affected. Currently, the JADE debugger uses a measurement
selection algorithm to determine the location in the program, where
an observation should be specified in order to eliminate a maximum
amount of diagnoses. This algorithm is a simplification of the al-
gorithm proposed in [2] and is based on the computation of entropy
values (see [10]). However, this measurement selection algorithm as-
sumes that all diagnoses are equally likely. By using the probability
values defined in Section 3 more efficient measurement selection al-
gorithms can be designed speeding up the overall debugging time.

Alternative models Due to the generality of the definitions and al-
gorithms of model-based diagnosis, the approaches proposed herein
are not limited to the two modeling paradigms of dependency-based
models and value-based models that are currently represented in the
JADE environment. In principle there exists an infinite model space,
which contains not only general-purpose models, but also special-
purpose models, such as models designed for the debugging of loops,
arrays, or other data type specific errors. In order to further decrease
the number of diagnoses, multiple models can be used within a single
debugging session. This can be achieved in the following way:

� Start debugging with a general-purpose model with a high level of
abstraction, e.g., a dependency-based model.� Use more complex and detailed models, e.g., value-based models,
to (successively) reduce the number of diagnosis candidates.



� Once the search space of bug candidates has been narrowed suffi-
ciently, use special-purpose models to exactly locate a fault.

This approach has the advantage that diagnoses can be computed
faster than with the more detailed models alone. We combine two
models by using the results of the more general approach as focus
set for the more detailed approach. Only in the case where the more
abstract model is not capable of reducing the number of statements
does the proposed algorithm not help to decrease runtime. In the fol-
lowing we show how to combine dependency-based and value-based
models to speed up the overall debugging time. Note that the same
approaches can be used to combine any two models suitable for de-
bugging.

The following algorithm
$ � � ' � % computes a set of candidates for

the given program
�

and the set of test cases � . . We assume that all
minimal diagnoses are computed up to a pre-specified diagnosis size� � . Moreover, we assume that the value-based model . 8 ��� only
uses knowledge about the correct behavior of statements. Diagnosis
is performed at the statement level, i.e., only statements are diagnosis
components. These assumptions do not restrict the generality of our
approach.

Algorithm <������ >��7�1@BD � F �
1. Use the given test cases � . and the dependency-based model

. 8 ��	 and compute the diagnosis set
8 . .

2. Reduce
8 . by applying the

!#"�$ � �&% and ���('��*� ) algorithms.
Use a minimum probability value to cut away unlikely diagnosis
candidates. Let

8 . � be the resulting set of diagnoses. If
8 . � is

empty, decrease the minimum probability value until
8 . � is no

longer empty.
3. Compute the focus set


 . 8�� T R 	 ��
 H .
4. Use the value-based model . 8 ��� of

�
, the test cases, and the

given focus set

 . to compute a set of diagnoses

8 .�� , i.e., for
each H � 	 8 . � , H ��� 
 . .

5. Return
8 .�� as result.

The worst-case time complexity of
$ � � ''��% is of the same order as

the time complexity of diagnosis using the value-based model. Due
to the effects of the focus set limiting the overall search space the
overall runtime should be decreased, although this cannot be guar-
anteed in every case. What we know is that � T � R 	 ��� � � T R 	 ��

must hold. For example, a statement that only occurs in one multiple
fault diagnosis in

8 . � could turn out to have disappeared from
8 .�� ,

leading to correct diagnoses being omitted. For example, consider the
program Circle given in Figure 4 which computes area ' and circum-
ference � of a circle. Obviously, the program computes a wrong value
for variable � . If we use the dependency-based model, we obtain
statements . 	 and . � as bug candidates, which are used as focus set
by

$ � � ''��% . If we use the test case ��� 6 8 � � ' � 8 ' K :�� � � � 8 % K ���)� ,
we see that statement . 	 can no longer be a single diagnosis using the
value-based model. Even though statement . 	 no longer tells us the
correct value of � , from the test case and the correctness assumption
of statement . 
 we get � 8 : . Using the correctness of statement
. � and � 8 : we finally obtain � 8 ' K :�� which contradicts the
expected value of 6.28. Hence, for the given example we have only
one diagnosis remaining in the focus set, which pins the blame on
statement . � . In fact there is another valid diagnosis using the value-
based model, which would indicate two faults, in statements . 	 and
. 
 (in statement . 	 , because the assumption is that the value of �
is incorrect, and accordingly in statement . 
 because . 
 computes
a correct value for ' out of an incorrect value for � ). Note that this
diagnosis will not be computed using

$ � � ''��% because statement . 
 is
not in the focus.

. 	 . int r = d/2;. 
 . int a = r*r*3.14;. � . int c = r*3.14; // BUG! should be c = d*3.14;

Figure 4. The program Circle

As already discussed, special-purpose models can be used, once
the search space of bug candidates has been limited enough to have
clear expectations of a fault’s nature. General-purpose and special
purpose models can be combined exactly as described above. The
more detailed and specialized the used models get, the harder it be-
comes to select the right model. However, if we make use of prob-
ability values of diagnoses, this task can be made much easier. For
example, if we know that loop statements are part of the remaining
diagnoses with the highest probability values, then a model designed
especially for the debugging of loops could help to separate correct
diagnoses from incorrect ones.

5 Conclusion

The goal of this paper has been to extend the by now well-established
basis of model-based debugging by adapting a number of model-
based diagnosis techniques to the debugging domain, namely the
integration of multiple test cases, heuristics for ranking diagnoses
based on these test cases, and the integration of multiple models in
the diagnosis process. We have presented a set of algorithms that in-
corporate these extensions in the work done in [9, 3]. By moving
beyond the consideration of individual diagnosis runs and consider-
ing the work situation of an actual developer working with an inte-
grated software development environment, more information can be
brought to bear on the debugging process and be used to gain bet-
ter diagnosis performance and discrimination, while using the same
diagnosis reasoning engine underneath.

REFERENCES
[1] Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold,

1990.
[2] Johan de Kleer and Brian C. Williams. Diagnosing multiple faults.

Artificial Intelligence, 32(1):97–130, 1987.
[3] Gerhard Friedrich, Markus Stumptner, and Franz Wotawa. Model-

based diagnosis of hardware designs. Artificial Intelligence, 111(2):3–
39, July 1999.

[4] D. Knuth. The Errors of TeX. Software - Practice and Experience,
19(7):607–686, July 1989.

[5] Cristinel Mateis, Markus Stumptner, and Franz Wotawa. Debugging of
Java programs using a model-based approach. In Proceedings of the
Tenth International Workshop on Principles of Diagnosis, Loch Awe,
Scotland, 1999.

[6] Wolfgang Mayer. Modellbasierte Diagnose von Java-Programmen, En-
twurf und Implementierung eines wertbasierten Modells. Master’s the-
sis, Institut für Informationssysteme, Abteilung für Datenbanken und
Artificial Intelligence, TU Wien, 2000. (only available in German).

[7] Wolfgang Mayer. Evaluation of Value-Based Models for Java Debug-
ging. Technical report, Technische Universität Wien, Institut für Infor-
mationssysteme 184/2, Paniglgasse 16, A-1040 Wien, Austria, 2001.

[8] Markus Stumptner, Dominik Wieland, and Franz Wotawa. Comparing
Two Models for Software Debugging. In Proceedings of the Joint Ger-
man/Austrian Conference on Artificial Intelligence (KI), Vienna, Aus-
tria, 2001.

[9] Markus Stumptner and Franz Wotawa. Debugging Functional Pro-
grams. In Proceedings � � ��� International Joint Conf. on Artificial In-
telligence, pages 1074–1079, Stockholm, Sweden, August 1999.

[10] Dominik Wieland. Model-Based Debugging of Java Programs Using
Dependencies. PhD thesis, Vienna University of Technology, Computer
Science Department, Institute of Information Systems (184), Database
and Artificial Intelligence Group (184/2), November 2001.


