
Diagnosis of Discrete-Event Systems with
Model-Based Prospection Knowledge
Roberto Garatti and Gianfranco Lamperti and Marina Zanella 1

Abstract. Diagnosis of discrete-event systems is a complex and
challenging task. Within the class of active systems, such a complex-
ity is exacerbated by the possibility of queuing (possibly uncertain)
events within connection links, thereby making essential the simula-
tion of link behavior during the reconstruction of the system reaction.
However, reconstructing such a reaction without any prospection in
the search space is generally bound to detrimental backtracking. To
cope with this ‘short-sightedness’, we present a technique which
allows the automatic generation of prospection knowledge relevant
to the mode in which events are produced and consumed in links.
Such a ‘far-sighted’ diagnosis requires that a collection of prospec-
tion graphs be generated off-line, based on the system model, which
are then exploited on-line to guide the search process. As a result,
both time and space can be considerably reduced on-line. The ap-
proach is worthwhile whenever time constraints are far more severe
on-line (when the diagnostic engine is running) than off-line (when
no diagnostic process is ongoing), which is commonplace in a large
variety of real systems.

1 INTRODUCTION

Discrete-event systems (DESs) are an important class of dynamic
systems that has been receiving an increasing interest from both the
model-based diagnosis and the FDI community. The current shared
prospect about diagnosis of DESs is that, in the general case, the
specific faults cannot be inferred without first finding out what has
happened to the system to be diagnosed. Once the system evolution
is available, the sets of candidate faults can be derived from it.

In this respect, in spite of slightly different terminologies, such
as histories [1], situation histories or narratives [3], paths [4], and
trajectories [5], all the distinct approaches describe the evolution
of a DES as a sequence interleaving states and transitions, as the
favorite behavioral models of DESs in the literature are automata.

Based on the method for tracking the evolutions of the system that
explain a given observation, two broad categories of approaches
to diagnosis of DESs can be basically singled out: (i) those that
first generate (a model of) all possible evolutions and then retrieve
only the evolutions that explain the observation, and (ii) those that
generate in one shot the evolutions explaining the observation. The
first category includes the automatic chronicle generation approach
[7] and some relevant works in the automatic control area [14, 15,
6, 11]. In the second category there fall two approaches in the AI
area [1, 12].

Since finding out the system evolutions is a computationally ex-
pensive and, therefore, inefficient process (see, for instance, [13]

1 Dipartimento di Elettronica per l’Automazione, Università di Bres-
cia, via Branze 38, 25123 Brescia, Italy, email: garatrob@tin.it, lam-
perti@ing.unibs.it, zanella@ing.unibs.it

about the computational difficulties of the diagnoser approach
[14, 15], or the worst case computational complexity analysis in
[1]), most of the approaches exploit a trade-off between off-line and
on-line computation.

Focusing on the second category outlined above, the decentral-
ized diagnoser approach [12] draws off-line a local diagnoser for
each component. Such a diagnoser is an automaton whose states
and (observable) transitions are labeled with compiled knowledge
about unobservable paths and interacting components, respectively.
Each local diagnoser is employed on-line for both a more efficient
reconstruction of all the possible evolutions of the relevant compo-
nent that comply with the observation and a more efficient merging
of the histories of distinct components into global system histories.

This paper applies knowledge compilation to the active system
approach [1, 2], to which purpose it isolates a kind of knowledge,
implicit in the models of the structure and behavior of the system
at hand, that can be compiled off-line in order to speed up on-
line execution. The framework is that of active systems, a class of
DESs modeled as networks of nondeterministic automata communi-
cating through asynchronous buffered directed links. The reaction of
a system to an event coming from the external world is assumed to
continue until there is no event left in the links. The component that
sends events on a link is the event producer and that extracting them
from the link is the consumer. The knowledge we compile is ac-
tually that inherent to the producer-consumer relationships between
components. In particular, after surveying the modeling primitives
and the basics of the evolution reconstruction method, we present, by
means of an example, (1) a method for generating off-line, under the
form of a deterministic automaton, called a prospection graph, the
model of the way events are exchanged over one or more links, and
(2) a method for exploiting prospection graphs on-line while recon-
structing the evolutions of (sub)systems. Finally, the computational
advantages of the proposal are discussed and some conclusions are
hinted.

2 BACKGROUND

Topologically, an active system § is a network of components which
are connected to one another through links. Each component is com-
pletely modeled by an automaton that reacts to events either coming
from the external world or from neighboring components through
links. Formally, the automaton is a 6-tuple (S;Ein; I;Eout;O;T),
where S is the set of states, Ein the set of input events, I the set
of input terminals, Eout the set of output events, O the set of out-
put terminals, and T the (nondeterministic) transition function. In
addition, components are implicitly equipped with three virtual ter-
minals, the standard input (In) for events coming from the external
world, the standard output (Out) for events directed toward the

X Y
L2

L1O

OI

I

X1

X2

x1: (e, In) | (e1, O)

x2: (e, In)

X3x3: (e2, I) | ({e3,e5}, O),(a, Out) X6
x7: (e2, I) | (e5, O),(c, Out)

x9: (e2, I) | ({e3,²}, O)

X4 X5

x8: (e2, I) | (f1, Flt)

x4: (e, In) | (b, Out)

x5: (e, In)

x6: (e, In)

Y1

y2: ({e1,e3}, I) | (e2, O)

Y2y1: (e1, I) | (e2, O) Y3

y3: (e3, I) | (e2, O),(f2, Flt)

y4: (e5, I) | (e2, O),(d, Out)

Figure 1. System § and models of components X (top) and Y (bottom).

external world (messages), and the fault terminal (Flt) for mod-
eling faulty transitions. An event may be uncertain in nature, that
is, represented by a disjunction of possible values, one of which is
nondeterministically generated. Links are the means of storing the
events exchanged between components. Each link L is character-
ized by a 4-tuple (I;O; Â; P), where I is the input terminal, O
the output terminal, Â the capacity, that is, the maximum number
of queued events, and P the saturation policy, which dictates the
effect of the triggering of a transition T attempting to insert a new
event E into L when L is saturated (full). Three case are possible:
(1) LOSE: E is lost, (2) OVERRIDE: E overrides the last event in
the queue of events of L, or (3) WAIT: T cannot be triggered until
L becomes unsaturated, that is, until at least one event in L is con-
sumed. The queue of events incorporated in L and the length of such
a queue are denoted by kLk and jLj, respectively. If ® = (E; µ) is
an event relevant to a terminal µ, Link(®) denotes the link leaving
µ. Initially, § is in a quiescent state §0, wherein all links are empty.
On the arrival of an event from the external world, § becomes re-
acting, thereby making a series of transitions until a final quiescent
state is reached, wherein all links are empty anew. This reaction
yields a sequence of observable events, the messages, which make
up a system observation OBS(§). Based on a diagnostic problem
}(§) = (OBS(§);§0), a reconstruction of the system reaction is
carried out, which yields an active space, that is, a graph repre-
senting the whole set of candidate histories that explain OBS(§),
each history being a path from §0 to a final state, in other terms, a
sequence of component transitions. Candidate diagnoses are even-
tually distilled from the active space, each diagnosis being a set of
faulty components, that is, those components which performed at
least one faulty transition during a candidate system history.

Example 1. In the center of Figure 1 a system § is displayed, where
X and Y are components, while L1 and L2 are links. Both compo-
nents are endowed with an input terminal I and an output terminal
O. For both links we assume capacity = 1 and saturation policy =
WAIT . The behavioral models of X and Y are displayed on the
top and on the bottom, respectively. Accordingly, Y involves three
states (Y1 ¢ ¢ ¢ Y3) and four transitions (y1 ¢ ¢ ¢ y4), one of which is
faulty (y3). For instance, transition y4 is triggered by the input event
(e5; I) and generates the set of output events f(e2; O); (d;Out)g,
where the former is directed toward X on link L2, while the latter is
a message labeled d (y4 is observable). Messages are bold in the fig-
ure. Transition y2 involves the input uncertain event (fe1; e3g; I),
meaning that y2 may either be triggered by e1 or e3. Considering
the model of X, note that, when triggered, transition x9 generates

the uncertain event (fe3; ²g; O), meaning that either e3 or nothing
is nondeterministically generated.

3 SHORT-SIGHTED DIAGNOSIS

The main task relevant to the resolution of a diagnostic problem
}(§) = (OBS(§);§0) is the reconstruction of the system reaction
to make up the relevant active space Act(}(§)). A node N in the
search space is identified by three fields, N = (¾;=;Q), where:

² ¾ = (S1; : : : ; Sn) is the record of states of the system compo-
nents, where each Si, i 2 [1 :: n], is a state relevant to a compo-
nent Ci in § (n is the number of components in §);

² = is the index of OBS(§), that is, an integer ranging from 0 to
the number of messages (length) of OBS(§);

² Q = (Q1; : : : ; Qq) is the record of queues of the q links of §.

Node N is said to be final when = equals the length of OBS(§)
and all links are empty. The search for the nodes of the active space
is started at the initial node N0 = (§0; 0; (;; : : : ; ;)). Each suc-
cessor node of a given node is obtained by applying a component
transition that is consistent with both the system topology and the
observation. An applied transition is an edge of the search space.
Nodes and edges are stored in variables @ and E , respectively. When
the reconstruction process is carried out in one step (monolithically)
without any prospection knowledge (short-sightedly), it can be de-
scribed by Algorithm 1.

Algorithm 1. (Short-sighted Reconstruction)

1. @ = fN0g; E = ;; (N0 is unmarked)
2. Repeat Steps 3 through 5 until all nodes in @ are marked;
3. Get an unmarked node N = (¾;=;Q) in @;
4. For i in [1 :: n], for each transition T within the model of com-

ponent Ci, if T is triggerable, that is, if its triggering event is
available and T is consistent with both OBS(§) and the link
policy (when T generates output events on non-virtual terminals),
do the following steps:

(a) Create a copy N 0 = (¾0;=0;Q0) of N ;

(b) Set ¾0[i] to the state reached by T ;

(c) If T is observable, then increment =0; (a message is generated)

(d) If the triggering event E of T is relevant to an internal link
Lj , then remove E from Q0[j];

(e) Insert the internal output events of T into the relevant queues
in Q0;

(f) If N 062 @ then insert N 0 into @; (N 0 is unmarked)

(g) Insert edge N
T¡! N 0 into E;

5. Mark N ;
6. Remove from @ all the nodes and from E all the edges that are

not on a path from the initial state N0 to a final state in @.

When uncertain events are involved, several new nodes N 0 are
to be generated for the same transition T , specifically, one for each
combination of possible values within each disjunction. For exam-
ple, since transition x3 in Figure 1 involves the uncertain output
event (fe3; e5g; O), two target nodes will be generated, one for e3

and one for e5. If the set of input and output events included several
uncertain events, all possible combinations would be required to be
enumerated. The triggering event of a transition, even if uncertain,
cannot include the null event ².

x2

X1Y1 ² 〈〉 〈〉

x1

X2Y1 ² 〈e1〉 〈〉

X2Y2 ² 〈〉 〈e2〉
X2Y1 ² 〈〉 〈 e2〉

y1 y2
x2

x2

X3Y2 a 〈e3〉 〈〉X3Y2 a 〈e5〉 〈〉
X3Y1 a 〈e5〉 〈〉X3Y1 a 〈e3〉 〈〉

x3(e3)x3(e5) x3(e3) x3(e5)

X3Y3 a 〈〉 〈e2〉X4Y2 ab 〈e3〉 〈〉

x4 y3

X4Y3 ab 〈〉 〈e2〉X5Y2 ab 〈e3〉 〈〉

x5 y3 x4

x5

X5Y3 ab 〈〉 〈e2〉

x6

X3Y2 ab 〈e3〉 〈〉

y3

x6

X3Y3 ab 〈〉 〈e2〉

y3

x7

X6Y3 abc 〈e5〉 〈〉

y4

X6Y2 abcd 〈〉 〈e2〉

X4Y1 ab 〈e3〉 〈〉X3Y1 a 〈〉 〈e2〉

y2 x4

X5Y1 ab 〈e3〉 〈〉X4Y1 ab 〈〉 〈e2〉

x4 x5y2

X3Y1 ab 〈e3〉 〈〉X5Y1 ab 〈〉 〈e2〉

x5 y2 x6

x6

X3Y1 ab 〈〉 〈e2〉

x7

X6Y1 abc 〈e5〉 〈〉

X3Y2 abcd 〈〉 〈〉X6Y2 abcd 〈〉 〈〉

x8 x9(²)

X3Y2 abcd 〈e3〉 〈〉 X3Y3 abcd 〈〉 〈e2〉x9(e3) y3

X4Y1 ab 〈e5〉 〈〉

x4

X5Y1 ab 〈e5〉 〈〉

x5

X3Y1 ab 〈e5〉 〈〉

x6

X4Y2 ab 〈e5〉 〈〉

X5Y2 ab 〈e5〉 〈〉

X3Y2 ab 〈e5〉 〈〉

x4

x5

x6

Figure 2. Short-sighted reconstruction space (see Example 2).

Example 2. Shown in Figure 2 is the reconstruction space generated
short-sightedly for the diagnostic problem }(§) = (OBS(§);§0),
where § is the system outlined in Figure 1, OBS(§) = ha; b; c; di,
and §0 = (X1; Y1). Each node is depicted by an ellipse, wherein
the fields ¾, =, and Q are the pair of component states (Xi; Yj),
the prefix of the observation (instead of the index value), and the
pair of link queues (kL1k; kL2k), respectively. Edges are marked
by the corresponding component transitions, possibly qualified by
the relevant chosen label when the involved output event is uncer-
tain. Dotted edges denote faulty transitions. Final nodes are depicted
as double ellipses. The dashed part of the graph represents the in-
consistent states, which are almost 60 percent of the search space.
Owing to cycles in the graph (edges marked by x2), the active space
incorporates an unbound number of candidate histories. However,
only two candidate diagnoses are possible, fY g and fX;Y g. That
is, Y is certainly faulty, while X might be faulty or not.

4 FAR-SIGHTED DIAGNOSIS

The essential problem with short-sighted diagnosis lies in the lack
of any prospection in the search space as to the consistency of the
link queues. In other words, the inability to understand that a given
configuration of Q is bound to a ‘blind alley’ forces the reconstruc-
tion algorithm to uselessly explore possibly large parts of the search
space. In order to overcome this limitation, prospection knowledge
can be automatically generated off-line based on the system model.
Considering Figure 2, such a knowledge will allow us to avoid en-
tering the inconsistent sub-space on the right through y2.

The basic idea is to view a link L as a buffer in which a producer
component Cp generates events that are consumed by a consumer
component Cc. That is, L connects an output terminal of Cp to an
input terminal of Cc. The way events are produced and consumed
in L is both constrained by the characteristics of the link (capacity
and saturation policy) and the models of Cp and Cc.

4.1 Prospection graphs

Let L = (I;O; Â; P) be a link from output terminal Op of com-
ponent Cp to input terminal Ic of component Cc. Let Mp =
(Sp;Ep

in; I
p;Ep

out;Op;Tp) and Mc = (Sc;Ec
in; Ic;Ec

out;Oc;Tc) be
the models of Cp and Cc, respectively.

Let M̂p = (Ŝp; Êp
in; Îp; Ê

p
out; Ôp; T̂p) be the automaton obtained

fromMp by replacing each transition T = S
® j ¯¡! S0 2 Tp such that

L =2 fL¯ j L¯ = Link(B); B 2 ¯g with an ²-transition and trans-
forming the obtained nondeterministic automaton into an equivalent
deterministic one. Likewise, let M̂c = (Ŝc; Êc

in; Îc; Êc
out; Ôc; T̂c)

be the automaton obtained from Mc by replacing each transition

T = S
® j¯¡! S0 2 Tc such that L6= Link(®) with an ²-transition

and transforming the obtained nondeterministic automaton into an
equivalent deterministic one. M̂p and M̂c are called the prospection
models of Cp and Cc, respectively.

A prospection state of L is a triple L = (Ŝp; Ŝc; kLk), where

Ŝp 2 Ŝp, Ŝc 2 Ŝc. Let L be a prospection state and Ŝ
T¡! Ŝ0 2

(T̂p [T̂c), Ŝ 2 fŜp; Ŝcg, T = S
®j¯¡¡! S0 2 (Tp [Tc). Let

Head(L) denote the first consumable element in kLk, Tail(L) the
queue of events in kLk following the first event, App(L; e) the
queue of event obtained by appending e to kLk, and Repl(L; e) the
queue of events obtained by replacing the last event in kLk with
e. The Next function yields the set of next prospection states as
follows:

Next(L; T)
def
= fL0 j L0 2 Nextp(L; T); T 2 Tpg [

fL0 j L0 2 Nextc(L; T); T 2 Tcg

where

Nextp(L; T)
def
= fL0 j L0 = (Ŝ0; Ŝc; kLk0); B = (E;Op) 2 ¯;

e 2 E; kLk0 = Ins(L; e); (jLj < Â or

(jLj = Â; (e = ² or P 2 fLOSE ;OVERRIDEg)))g;

Ins(L; e)
def
=

8
<
:

App(L; e) if jLj < Â
kLk if jLj = Â; (e = ² or P = LOSE)
Repl(L; e) if jLj = Â;P = OVERRIDE

and

Nextc(L; T)
def
= fL0 j L0 = (Ŝp; Ŝ0; kLk0);

® = (E; Ic); e 2 E;Head(L) = e; kLk0 = Tail(L)g:

Let C0 = (Sp
0 ; S

c
0) be the pair of initial states for Cp and Cc, re-

spectively. The spurious prospection graph of L and C0 is the non-
deterministic automaton ~Pn(L; C0) = (~Sn;En; ~Tn; Sn

0 ; Sn
f), where

~Sn = fL j L is a prospection state of Lg is the set of states,
En µ Êp [Êc µ Tp [Tc is the set of events,
Sn

0 = (Sp
0 ; S

c
0; hi) is the initial state,

Sn
f = fL j L 2 ~Sn;L = (Sp; Sc; hi)g is the set of final states,

~Tn : ~Sn £ En 7! 2
~Sn is the transition function defined as follows:

L T¡! L0 2 ~Tn iff L0 2 Next(L; T):

A state of ~Pn(L; C0) which is not within a path from the initial state
to a final state is an inconsistent state. Similarly, a transition either
entering or leaving an inconsistent state is an inconsistent transition.
The nondeterministic prospection graph of L and C0 is the nonde-
terministic automaton Pn(L; C0) = (Sn;En;Tn; Sn

0 ; Sn
f) obtained

X1 X2² X6

Y1 Y2 Y3

²

X3x3

x7

x9

X4
X5²

²
²

x8

X1 x3(e2) X3X2

x7(e2)

x9(e2)

y1(e2)

y2(e2)

y3(e2)

y4(e2)

L2

Y1X1 〈〉

Y2X1 〈e2〉 Y1X1 〈e2〉

y1

Y2X2 〈〉

y2

x3

Y3X2 〈e2〉

y3

x7

x8(e2)

Y3X3 〈〉

y4

Y2X3 〈e2〉

Y1X2 〈〉

x3

Y2X2 〈e2〉

y1

x7

Y2X3 〈〉

y3

Y3X3 〈e2〉

x9

Y3X2 〈〉

Y1X2 〈e2〉

x7

Y1X3 〈〉

Y1X3 〈e2〉

y2

x9

x8

y1x8

x9

x1

y3

0

1

y1

x3

2

y3

3

4

x7

y4

5

6

7 8

x9 x8
y4

y2 x8

Figure 3. Generation of prospection graphs (see Example 3).

from ~P n(L; C0) by removing inconsistent states and inconsistent
transitions. The prospection graph P(L; C0) is the deterministic
automaton (S;E;T; S0; Sf) equivalent to Pn(L; C0).

The notion of a prospection graph can be naturally extended to
that of a set of links L connecting a set C of components, namely
P(L;C0), where L = fL1; : : : ; Lng and C0 is the set of initial
states for components in C.

Example 3. Depicted on the left of Figure 3 is the prospection
graph P(L2; (Y1;X1)), where double ellipses denote final states.
Essentially, the generation of such a graph is analogous to the gen-
eration of an active space, where (1) component models are substi-
tuted by prospection models, (2) only one link is considered, and
(3) no observation index is considered. Displayed on the right-hand
side of Figure 3 is the prospection graph P(fL1; L2g; fX1; Y1g),
which can be obtained either directly, based on the generalized def-
inition of prospection graph, or by combining P(L1; (X1; Y1)) and
P(L2; (Y1;X1)) appropriately.

Given a system §, in order to perform a far-sighted reconstruc-
tion, which is a variation of Algorithm 1, we need to create a set
of prospection graphs P(§) = fP(L1;C01); : : : ;P(L`;C0`)g such
that

S`
i=1Li equals the whole set of links in §. P(§) is a prospec-

tion coverage of §.

Algorithm 2. (Far-sighted Reconstruction)

The first three statements are the same as in Algorithm 1. How-
ever, the Q field of each reconstruction space state here denotes a
record of ` states relevant to the ` prospection graphs in the prospec-
tion coverage P(§), namely Q = (p1; : : : ; p`). Moreover, the third
field of the initial node N0 is the record of the initial states of the
corresponding prospection graphs, namely (p01 ; : : : ; p0`). Finally,
Step 4 of Algorithm 1 is changed as follows:

For each i in [1 :: n], for each transition T within the model of
component Ci, if T is triggerable, that is, if the following two
conditions hold

(i) T is consistent with OBS(§);
Let ¦(T) = f ¹P1; : : : ; ¹Prg be the prospection graphs in P(§)
that are relevant to links connected with terminals on which
events are either consumed or generated by T ; let ¹Q(N) =
f¹p1; : : : ; ¹prg be the elements of Q(N) relevant to ¦(T):

(ii) 8j 2 [1 :: r] (¹pj
T¡! ¹p0j is an edge in ¹Pj),

x2

X1Y1 ² 0 x1 X2Y1 ² 1 X2Y2 ² 2

x2

X3Y2 a 3x3

X3Y3 a 4X4Y2 ab 3

x4 y3

X4Y3 ab 4X5Y2 ab 3

x5 y3 x4

x5

X5Y3 ab 4

x6

X3Y2 ab 3

y3

x6

X3Y3 ab 4

y3

X6Y3 abc 5

y4

X6Y2 abcd 6 X3Y2 abcd 7X6Y2 abcd 8 x8 x9 X3Y3 abcd 4

y1

y3

x7

Figure 4. Far-sighted reconstruction space (see Example 4).

then do the following steps:

(a) Create a copy N 0 = (¾0;=0;Q0) of N ;

(b) Set ¾0[i] to the state reached by T ;

(c) If T is observable, then increment =0;
(d) Replace the elements of Q0 relevant to ¹Q(N) with the new

prospection states;

(e) If N 062 @ then insert N 0 into @; (N 0 is unmarked)

(f) Insert edge N
T¡! N 0 into E .

Essentially, Algorithm 2 exploits the knowledge about the consis-
tency of link states by means of the prospection graphs generated
off-line. Although such a prospection is finite, thereby not eliminat-
ing completely the backtracking, it prevents the search from entering
(possibly large) inconsistent parts of the space. Besides, it allows for
an efficient treatment of nondeterminism caused by uncertain events.
Recall that, in short-sighted reconstruction, such situations can only
be dealt with by mere enumeration of all possible new link states
generated by the collection of input and output events of the cur-
rent transition. For example, if T generated 3 uncertain events (on
three different links), each of which represented by a disjunction
of 2 values, then we would have 8 new nodes. Instead, since the
prospection graphs are deterministic, with far-sighted reconstruction
only one new node is generated, as at most one edge marked by T
can leave each current state of the prospection graphs.

Example 4. Shown in Figure 4 is the reconstruction space for the
diagnostic problem }(§) = (ha; b; c; di; (X1; Y1)) based on the
prospection graph outlined in Figure 3. It is striking comparing it
with the short-sighted reconstruction (based on Algorithm 1) dis-
played in Figure 2. While the number of consistent states (15) is nec-
essarily equal in both reconstructions, the far-sighted reconstruction
space includes one inconsistent state only, against the 20 inconsistent
states of the short-sighted reconstruction space. In fact, while the two
states on top of both graphs are the same, there are branches stem-
ming from such states in the short-sighted reconstruction which are
missing in the far-sighted reconstruction. For example, the inconsis-
tent right-hand branch in Figure 2 is actually disabled by prospection
graph P(fL1; L2g; fX1; Y1g), which constraints the occurrence of
all the transitions involved in event exchange on the links of sys-
tem §: according to this prospection graph, only transition y1 is
allowed to follow x1, while y2, the responsible for the blind alley
in Figure 2, is not.

5 CONCLUSION

Referring to the active system approach [1, 2] to diagnosis of DESs,
this paper has shown how the off-line compilation of knowledge
about event exchange between components brings a computational
advantage on-line in terms of reduction of the number of backtrack-
ing steps performed by the history reconstruction algorithm. This
advantage is expecially tangible when relaxing a strong assumption
of all the state-of-the-art approaches to diagnosis of DESs, namely,
the preciseness of events.

In this work, all input and output events in behavioral models,
and not only observable events, as instead in [9, 10], may have an
imprecise value ranging over a set of labels, namely an uncertain
value. In presence of uncertain events, the search performed by short-
sighted diagnosis is nondeterministic, while that carried out with the
support of prospection knowledge is deterministic.

Moreover, prospection graphs, once generated off-line, can be
reused several times on-line for different diagnostic problems inher-
ent to the same system, or even for the same diagnostic problem in
case there are repetitive link patterns in the system structure.

A previous proposal [8], based itself on knowledge compilation,
transforms the active system approach into a spectrum of approaches
which, according to the classification in Section 1, range from a
totally first category version, wherein an exhaustive simulation of
the system evolution is performed off-line, while on-line activities
are limited to rule-checking, to a totally second category version,
i.e. the original approach wherein no computation is performed off-
line. Each approach falling in between consists of both off-line and
on-line processing. The contribution of this paper is orthogonal to
this work, that is, it could be integrated within any version of the
spectrum (with the exception of the exclusively on-line one) in order
to reduce backtracking steps in any reconstruction.

The exchange of events among components dealt with in this
paper, being both asynchronous and buffered, is peculiar only to the
active system approach.

One might argue that providing for a specific modeling primi-
tive, namely the link, for the structural objects that implement asyn-
chronous buffered communication between components, along with
specific methods for dealing with them, just increases the expressive
power of the method but does not alter its computational power at
all. In fact, each link could be replaced by a common component,
whose behavioral model represents the link behavior, and, therefore,
synchronous composition of automata would suffice.

This is correct in principle but scarcely feasible in practice, for
many reasons. First, the size of the behavioral model of such a
component depends not only on the capacity of the link buffer but
also on the number of distinct kinds of events that can be transmitted
on the link.

For instance, consider a link with capacity equal to three, on
which four kinds of events, say a; b; c, and d, can be transmitted.
As each state of the component representing the link is univocally
identified by the sequence of events in the buffer, the behavioral
model of such a component has

P3
k=0(4k) = 85 states.

This model may include states that are physically impossible
given the system structure, since corresponding to sequences of
events that cannot be generated, and, therefore, it is a burden for
history reconstruction.

Besides, as remarked above, such a model depends on the kinds
of events that can be transmitted on the link, that is, it depends on
the producer component of the link at hand. This is somewhat in
contrast with the philosophy of compositional modeling, according

to which individual component models are reciprocally independent.
Instead, in the active system approach and, consequently, in this

paper, a link is just the instantiation of a model, encompassing only
the terminals, capacity, and policy of the link, and such a model
is independent of the structure of the system in which the link is
instantiated.

Of course, notwithstanding the modeling simplicity, link states are
bound to emerge in the computation, sooner or later: the methods
introduced in this paper are actually aimed at minimizing the number
of physically impossible link states (and, hence, since a link state is
a part of any active system state, the number of active space states)
visited by the history reconstruction search algorithm.

In short-sighted diagnosis, where a link state is represented as a
sequence of events, not all sequences of events are considered but
only those that can be generated given the system structure. In far-
sighted diagnosis, where the link state becomes an index record, the
number of visited link states is further reduced: only those states are
generated that can evolve towards a state wherein the link is empty.

REFERENCES
[1] P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella, ‘Diagnosis of

large active systems’, Artificial Intelligence, 110(1), 135–183, (1999).
[2] P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella, ‘Diagnosis of

a class of distributed discrete-event systems’, IEEE Transactions on
Systems, Man, and Cybernetics – Part A: Systems and Humans, 30(6),
731–752, (2000).

[3] C. Barral, S. McIlraith, and T.C. Son, ‘Formulating diagnostic prob-
lem solving using an action language with narratives and sensing’, in
Seventh International Conference on Knowledge Representation and
Reasoning – KR’2000, pp. 311–322, Breckenridge, Colorado, (2000).

[4] L. Console, C. Picardi, and M. Ribaudo, ‘Diagnosis and diagnosabil-
ity using PEPA’, in Fourteenth European Conference on Artificial
Intelligence – ECAI’2000, pp. 131–135, Berlin, D, (2000).

[5] M.O. Cordier and C. Largouët, ‘Using model-checking techniques for
diagnosing discrete-event systems’, in Twelfth International Workshop
on Principles of Diagnosis – DX’01, pp. 39–46, San Sicario, I, (2001).

[6] R. Debouk, S. Lafortune, and D. Teneketzis, ‘Coordinated decentral-
ized protocols for failure diagnosis of discrete-event systems’, Journal
of Discrete Event Dynamical Systems: Theory and Application, 10,
33–86, (2000).

[7] P. Laborie and J.P. Krivine, ‘Automatic generation of chronicles and
its application to alarm processing in power distribution systems’, in
Eighth International Workshop on Principles of Diagnosis – DX’97,
Mont St. Michel, F, (1997).

[8] G. Lamperti and M. Zanella, ‘Generation of diagnostic knowledge by
discrete-event model compilation’, in Seventh International Confer-
ence on Knowledge Representation and Reasoning – KR’2000, pp.
333–344, Breckenridge, Colorado, (2000).

[9] G. Lamperti and M. Zanella, ‘Uncertain temporal observations in diag-
nosis’, in Fourteenth European Conference on Artificial Intelligence
– ECAI’2000, pp. 151–155, Berlin, D, (2000).

[10] G. Lamperti and M. Zanella, ‘Diagnosis of discrete-event systems from
uncertain temporal observations’, Artificial Intelligence, 137(1–2), 91–
163, (2002).

[11] J. Lunze, ‘Diagnosis of quantized systems based on timed discrete-
event model’, IEEE Transactions on Systems, Man, and Cybernetics
– Part A: Systems and Humans, 30(3), 322–335, (2000).

[12] Y. Pencolé, ‘Decentralized diagnoser approach: application to telecom-
munication networks’, in Eleventh International Workshop on Princi-
ples of Diagnosis – DX’00, pp. 185–192, Morelia, MX, (2000).

[13] L. Rozé, ‘Supervision of telecommunication network: a diagnoser ap-
proach’, in Eighth International Workshop on Principles of Diagnosis
– DX’97, Mont St. Michel, F, (1997).

[14] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.C.
Teneketzis, ‘Diagnosability of discrete-event systems’, IEEE Transac-
tions on Automatic Control, 40(9), 1555–1575, (1995).

[15] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D.C. Teneketzis, ‘Failure diagnosis using discrete-event models’, IEEE
Transactions on Control Systems Technology, 4(2), 105–124, (1996).

