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Abstract. In this paper an application of guided local search (GLS)
to the problem of natural language parsing is presented. The given
parsing approach is situated in a constraint based parsing paradigm
[10] that allows natural language processing in a robust and resource
adaptive way [16]. Some extensions of GLS are introduced, most
notably a multi-threaded search where a couple of agents cooperate
with each other in parallel, showing synergetic effects. The resulting
algorithm is compared to competing techniques within the frame-
work of weighted constraint dependency grammars [21]. An experi-
mental evaluation shows GLS being on par with similar approaches
[7].

1 INTRODUCTION

In the framework of weighted constraint dependency grammars
(WCDG) [21] grammatical knowledge about well-formed utterances
and their structural descriptions is given as a set of possibly con-
tradictory requirements, and the parsing problem is formulated as
a partial constraint satisfaction problem. This allows to apply solu-
tion methods like constraint propagation [27], tree search [18], tabu
search [8] or genetic methods [5] to mention only some. The work
presented here adds the novel but powerful heuristics of guided local
search to the canon of solution methods tried so far.

Within the WCDG framework parsing is viewed as an optimiza-
tion problem which is meant to determine the best solution with
respect to a weight–accumulating measure. Even in spite of erro-
neous input or contradictory evidence solutions can be brought forth.
Therefore problem solving is robust right away. Information within
the constraint solver is propagated immediately, i.e. information from
different sources is amalgamated to a consistent whole. Grammatical
knowledge is modelled in a declarative way expressed by violable
constraints in WCDGs so that a finegrained distinction between gra-
matical and non-grammatical utterances is available. Optimality de-
scribed by means of constraints is also a central issue in related lin-
guistic work [19, 12, 4].

Nevertheless, advanced natural language processing imposes its
own requirements and limits to the applicability of specific parsing
techniques, namely realtime performance, anytime properties [1], re-
source adaptability [15] and bounded incremental parsing. From the
perspective of these requirements guided local search exhibits some
advantages for natural language parsing: as a transformation based
heuristic it posesses strong anytime properties by steadily improving
a solution found so far; it only requires ������� memory; search di-
versifies and terminates with respect to its own performance profile.
This last property holds potential to effectively bound the increase
of computation time during incremental left-to-right parsing, a claim
which is subject of future research.
�
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GLS was introduced in [25] as a direct successor of GENET [3],
a neuronal network architecture to solve constraint satisfaction prob-
lems (CSPs). Since then it was applied successfully to a series of
problems [17, 13, 26]. Adapting the penalty based approach GLS of-
fers a method to solve combinatorial optimization problems in gen-
eral and partial constraint satisfaction problems (PCSPs) in particu-
lar. The application of guided local search to natural language pro-
cessing was first described in [23].

2 FOUNDATIONS

2.1 Guided Local Search

GLS is a meta-heuristic, like tabu search or simulated annealing,
which tries to guide a local search out of local optima while inves-
tigating a combinatorial optimization problem. Figure 1 illustrates
how this heuristic works.
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Figure 1. GLS escaping from a local minimum

By definition, local search only considers neighbors in a search
space of feasible solutions. Two solutions 
�� and 
�
 are considered
neighbors if 
 � can be transformed to 
 
 in one step and vice versa.
Local search then carries out only those transformations which lead
to an immediate improvement with respect to an objective function.
Inevitably, local search terminates in local optima like 
�� in Figure
1. At that point local search hands over control to the meta-heuristic.
GLS alters the objective function itself that is used to compute the
costs incurred by this local optimum. This is done by penalizing a
set of solution features of 
 � , that is by learning the characteristics of
local optima in the search space. We derive a function � by adding
a penalty term to the objective function � . Now local search uses the
augmented function � instead of � to escape from the local optimum.
We repeat this procedure until an external termination criterion is
met.

Thus guided local search consists of the following four parts:



� a set
������� �	� ��
 ��������� ��
�� of features used to characterise lo-

cal optima; let
� � � 
�� ��� if feature

� � holds in solution 
 , and �
otherwise.� a set � ����� ��� ��
 ��������� ��
�� of costs for every feature

� �� a set of penalty weights � ����� ��� ��
 ��������� ��
�� for every feature� �� a regularisation parameter �
The augmented objective function � is defined as

��� 
�� � � � 
 ��� �"!$#%'&'(*) � � ! � � � 
 � . (1)

Penalty weights are increased when a repair seems most useful re-
garding its severity and the amount of previous work which was spent
to avoid the corresponding features. Therefore the utility of a feature
can be defined as +-,'.0/

� 
 � � � � �1� � � 
��2! � �� � � � (2)

and we compute the set of features maximizing this function.

2.2 Dependency parsing using WCDG

The application of constraint satisfaction techniques for parsing has
its roots in [14] and was later extended in [9]. Given the german
sentence

ich denke wir treffen uns um zehn. (I think we meet at ten.) (3)

we are interested in finding a structural analysis as shown in Figure
2. The upper part represents a traditional surface syntactic structure

ich denkeinh wir treffenpl1 unsacc um zehn
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Figure 2. Dependency analysis of sentence (3)

consisting of dependencies between word forms labelled by the type
of subordination. In addition a semantic functor–argument–structure
is modelled on independent levels of the constraint optimization
problem. These relationships are depicted as arrows below the sur-
face structure. The different levels are mapped onto each other using
constraints as well. Note that using a weighted constraint grammar
(WCDG) we are not restricted to a specific dependency theory as
long as it considers only relations between word forms. A WCDG is
defined as a 4–tuple 304 �657�98:� �<; where� 4 is a lexicon of known words, like

�
ich, denkeappo, denkeinh,

treffeninf, treffenpl1, ����� � ,� 5 is a set of language levels, e.g.
�
syn, agent, exp, ����� � ,� 8 is a set of labels that indicate the type of a subordination,

e.g.
�
c � , c


, mod, link, ����� �

� and � is a set of constraints expressing wellformedness condi-
tions; let � �>= � be a function where � � � 
�� =1? � � � �@� � � � ? when-
ever 
 violates the constraint, and be

� � � otherwise.

The dependency tree in Figure 2 is thus encodeable as a list of edges


 � � 3 syn � ich � c � � denkeinh ; � 3 syn � denkeinh
� mod � nil ; � (4)3 syn � wir � c � � treffenpl1 ; � 3 syn � treffenpl1
� c 
 � denkeinh ; �3 syn � unsacc

� c 
 � treffenpl1 ; � 3 syn � um � mod � treffenpl1 ; �3 syn � zehn � c ��� um ; � 3 exp � denkeinh
� link � ich ; �3 theme � denkeinh

� link � treffenpl1 ; �3 agent � treffenpl1
� link � wir ; �3 patient � treffenpl1
� link � unsacc ; ������� �

where one edge A = 
 is described as a 4–tuple A = 51B 4 B"8CB 4 .
Mapping a WCDG to a partial constraint satisfaction (PCSP) is

straightforward now. Recall the definition of a PCSP as a 4–tuple30D ��EF� � � �G; where� D is a finite set of variables,� E is a finite set of domains E � holding all possible values
assignable to variables H �$= D ,� � is the set of constraints on variable assignments� and � is the objective function on variable assignments.

So we map the words on each level of a given input utterance to
the variables of the PCSP. The object is to find a variable assignment
which is optimal with regards to all constraints � where the objective
function is defined as

� � 
 � �JIK &9( K � ��� 
�� . (5)

In general we never feed a complete solution 
 into one constraint
but prefer to judge at most two edges of the dependency structure.
Thus the set of constraints � only consists of unary constraints � ��
and binary constaints � 
� . The resulting limitation of the expressive-
ness is payed off by computational advantages [22].

3 APPLYING GLS

When applying an algorithm design technique like GLS to depen-
dency parsing one has to answer a series of questions:� How can dependency structures be transformed into each other?� What is the neighborhood of a dependency structure?� How can we devise an efficient local search method?� What are reasonable solution features of dependency structures?� When should GLS be terminated?

In what follows we cover some of these questions while not dis-
cussing thoroughly every decision that we made.

3.1 Neighborhood and local transformations

The process of parsing an utterance in WCDG consists of two phases:
a problem generation phase and a search phase. In the first phase we
build up the PCSP so that we generate all values of all domains in E .
Thus the space of feasible solutions is given byL � E � BFE 
 BM�����-BFE 
 where E �N= E . (6)

All values in the domains are checked locally by all unary constraints
whereby only those values with � � � A � �POQ� � � �RA = E � � are incor-
porated.

Some obvious transformations are possible when we look at the
representation (4) of dependency relations, namely



� exchanging a lexical reading by looking up lexical ambiguities� subordinating a word under a different modifiee� changing the label of a subordination

We have to take two points into account. First these transformations
can result in an unfeasible solution 
��= L as there might not ex-
ist a corresponding variable value in the domains computed before.
Secondly, variable assignments are not independent from each other.
Choosing an assignment that uses a different lexical reading entails
transformations of those dependency relations that still use conflict-
ing readings. In the worst case a local transformation might end up
changing all variable assignments.

Therefore we want to transform dependency relations by exchang-
ing variable assignments only without manipulating the values them-
selves. The neighborhood of a dependency structure is not computed
exhaustively for obvious reasons. Instead we use a greedy strategy
using those values which are locally best in a domain. Thus we re-
place local search by a dependency construction procedure that is
called by the meta-heuristic.

3.2 Solution features

In a PCSP the constraints themselves might be taken as solution fea-
tures. So we could simply attach penalty weights to each constraint
which are then increased during the search. Alternatively, domain
values are used as solution features. The corresponding constraint
violations are gathered for each variable so that variable assignments
with maximum costs are diagnosed as hot spots. In this work we
prefer the latter approach as the set of weights is directly linked to
the problem size. Thus we allocate penalty weights for each possible
value of the PCSP.

In a local optimum, when our greedy search terminates the set of
hot spots is computed as described above and all values assigned
in a hot spot are penalized. Note that a violated binary constraint � 
�
distributes its costs to both involved variable assignments even if only
one of the involved values is responsible for the violation. A closer
look reveals that even unary constraints might be violated for quite
different reasons, e.g. the label of an edge or a lexical reading was
wrongly chosen. It can be assumed that this impreciseness is leveled
in the long run after more knowledge about the search space has been
gathered as penalty weights.

3.3 Performance profile and termination

In general GLS does not possess a built–in termination criterion be-
sides the obvious ones like expiration of time (

,
����� ) or the construc-

tion of a solution without constraint violations. So we observe the
performance profile of the search, that is the quality improvement
over time [20], in order to deduce an appropriate termination crite-
rion. Figure 3 shows the measured performance profile of the sen-
tence

mir wäre es dann lieber, wenn wir die ganze Sache auf den
Mai verschieben. (I would prefer to defer the affair until may.)

(7)

taken from a german corpus of appointment scheduling dialogues
[6]. The two curves in this figure show the costs � and the augmented
costs � as a function of time. We can see that those two curves diverge
over time while penalty weights are increased. The dots in Figure 3
indicate the best solutions found so far. The conspicuous jump of �
after eight seconds is caused by the solution found there, whose costs
allow to prune the search space

L
locally, i.e. all variable assignments
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Figure 3. Costs during computation of (7)

are omitted that are worse than the best solution. As a result, the set
of penalty weights left to learn is reduced as well so that we get this
characteristic performance profile.

The augmented costs in Figure 3 can be seen as a typical perfor-
mance profile occuring in our experiments. Thus, we want to distin-
guish different time phases of the computation:� The initialization phase at the beginning of a computation, where

the improvement rate typically is very high.� A prolongation phase, where penalty weights are learnt in order to
further improve the best solution found in the initialization phase.
Here, the improvement rate is rather low.� The termination phase reached after a (near) optimal solution is
found and the rest of the time is needed to assure that no better
solutions are easily available.

Simple heuristics allow to determine the current phase of the analysis
during an ongoing computation. This classification might be typical
in transformational optimization processes and is inspired by a simi-
lar terminology from micro-biology [11].

The distinction of the tree phases provides us with a couple of ad-
vantages: (1) by limiting the augmented costs � in the termination
phase to � ����� a very effective termination criterion is available; (2)
the communication overhead between two parallel searches as de-
scribed in section 4 might be limited during the initialization phase
when the agents are able to improve local solutions on their own;
(3) furthermore, the regularization parameter � might be chosen dif-
ferently per phase: small values of � could be of advantage in the
initialization while greater values are used in the termination phase.
The potential of such an approach needs to be investigated further.

4 EXTENSIONS

In addition to the already mentioned alternative termination criterion
we implemented a couple of major and minor add-ons to the basic
GLS, namely� reinforcement: we define favoured features that reduce the costs

instead of rising them in the augmented objective function (1)� local pruning: domains E � are sorted by augmented costs; a given
percentage of highly expensive values is cut away regularly.� normalization: we regulate the importance of a constraint besides
its costs in order to manipulate the search focus.



Furthermore we investigated a parallel search algorithm called
multi-threaded guided local search (MGLS) based on cooperation
among several sequential search agents. This kind of paralleliza-
tion differs from a data driven or functional parallelization where the
search space is portioned. In a cooperative search the complete prob-
lem is made available to all the agents which can use different heuris-
tics to explore the search space. One of the advantages of this kind of
parallelization is that communication can be reduced to broadcasting
best solutions found locally. We distinguish two modes of communi-
cation within MGLS in order to regulate how foreign information is
used by an agent:� compliance: a new best solution is broadcasted entirely to every

agent; an agent adopts this solution and investigates it with his
own parametrization� competition: only the quality of a new best solution is broadcasted;
agents might benefit from this information by locally pruning the
search space

Both modes of communication are well motivated: in a compliant
mode agents might escape from unpromising parts of the search
space with the help of other agents. But this could also have the neg-
ative effect of being driven away from near optimal solutions. Such
a distraction can be avoided in a competitive way of computation.
So far, MGLS has only been simulated in a round-robin fashion on a
single processor.

A similar approach of cooperative computation using tabu search
was reported in [2]. A description of systemic behavior, that is the
impact of cooperating agents on the optimization process, is given in
[24].

5 EXPERIMENTS

In the experiments we used a weighted constraint grammar cover-
ing 222 sentences of the Verbmobil corpus [6]. All computations
were carried out on a Pentium III 500 Mhz. Preliminary experiments
were used to determine penalty regularizations � = ? � � � � � � � ��� and
� ����� � � � � � . A limit of the execution time

,
����� � � � � s was

chosen for the given platform noticing only 7 sentences exceeding
this threshold. All other computations terminate because of expiring
augmented costs as shown in Figure 3.
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GLS has been compared to two other solution methods for
WCDG, namely branch and bound, an agenda-based tree search, and
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Frobbing [7], a transformation based algorithm related to tabu search.
In order to yield comparable results, execution time for branch and
bound and Frobbing was limited to

� � � s as well. The agenda size
was limited to � � � � entries.

Figure 4 shows the accuracy of the final solutions depending on
the problem size which is defined as ��� &'( ��� E � � . All curves were
smoothed indicating the mean accuracy. We see that GLS is able to
provide a high accuracy which, however, is still outdone by Frobbing.
On the other hand, GLS outperforms both other solution methods for
all problem instances in terms of computation time (see Figure 5).
Branch and bound did not show up well in our experiments which
is due to its limited agenda size and execution time. Experiments
in [21] show that a better accuracy is attained by a different agenda
sorting strategy.
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The last experiment discussed here is shown in Figures 6 and
7. We tested MGLS using two compliant agents parametrized with� � � � � � and � 
 � � � � and compared accuracy and performance to
the agents runing in isolation. As noted before, MGLS only simulates
concurrency. So it is not surprising to see no speedup in Figure 7. On
the other hand, the execution time of the combined agents is strictly
lower than the sum of the execution time of the isolated computa-
tions. This is accompanied by the observation shown in Figure 6 that
the MGLS provides higher accuracy than its components in isolation.
Even if we had coupled both agents by an ideal oracle choosing the
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higher quality solution at the end of the computation, no comparable
accuracy could have been obtained.

6 CONCLUSIONS

Recent advances in the field of combinatorial optimization have been
carried over to natural language processing combining weighted con-
straint dependency grammars and guided local search in a fruitful
way. We adapted the original framework using a greedy local search
and improved the termination behavior based on observations about
individual performance profiles where three characteristic phases of
a transformational optimization process can be clearly distinguished.

Since GLS is able to improve feasible solutions over time it pos-
sesses strong anytime properties. Furthermore, cooperative search
has shown to be a promising approach to concurrency. Our exper-
iments encourage the assumption that a cooperative parallel search
might not only speed up the computation but also contributes to a
higher quality of solutions.

Further investigations will focus on the potential of GLS for left-
to-right incremental parsing. In such a setting, new penalty weights
that are added to a dynamically expanding problem are initially un-
trained and thus force the search to focus on them. Consequently,
older dependency structures can be expected to fade away naturally
so that an exponential increase of the computational effort can be
avoided.
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