Anything to Clarify? Report your Parsing Ambiguities!

Kerstin Biicher' and Michael Knorr' and Bernd Ludwig?

Abstract. An important factor for the acceptance of spoken dia-
logue systems is their ability to react flexibly on misunderstandings
between user and system. This paper addresses the issue of ground-
ing utterances in task-oriented human-computer dialogues. It focuses
on the aspect of handling ambiguities while parsing word lattices
from a speech recognizer: The parser detects the origin and the type
of ambiguities which are reported to the dialogue manager as com-
ments to the list of readings for the user’s utterance. This way, dis-
ambiguation is delegated to the dialogue manager and accomplished
either by exploiting the application situation or by initiating clarifi-
cation dialogues that are suitable for the dialogue situation.

1 INTRODUCTION

Experience with spoken dialogue systems such as EVAR [9] and in-
depth analysis of dialogues conducted with this system has shown
that one of the main reasons for failed human-computer interactions
is the system’s difficulty to integrate new utterances in the dialogue
context (see [4]). A detailed analysis of the reasons why interactions
failed shows that there are two dimensions of integration to be con-
sidered. First, how are phrases related to each other within an utter-
ance? This issue becomes particularly important when misrecogni-
tions by the speech recognizer created an output that is syntactically
ill formed with respect to a given formal grammar. Keyword spotting
approaches, often considered as a robust way of syntactic analysis,
are unable to analyze the lack of meaning of the whole utterance.
The disparity between the user’s intention and the constructed mean-
ing for an utterance has shown to be a main source of misunder-
standing in human-computer interaction. Second, the meaning of an
utterance has to be integrated in the dialogue context. Normally, im-
plementations of dialogue managers rely blindly on the results com-
puted by speech recognizer and parser. However, human-human dia-
logues show that persons in a conversation often reassure themselves
whether they are understanding the speaker. So, humans manage to
perform dialogues not only on the task to be carried out in an inter-
action, but also on the issue of reception.

Rethinking the interaction between parser and dialogue system on
the basis of the experiences outlined so far, we present an approach
that combines closely the processes of parsing an utterance and its in-
tegration in a dialogue. In order to improve the cooperation between
the parser and the dialogue manager, we completely reorganize the
classical chart parsing approach by splitting parsing into two phases.
In the first phase, a chart parser segments input into chunks; in the
second phase, the dependency relations among the chunks (see sec-
tion 2) are analyzed. In four steps, syntactic, semantic, and pragmatic

1 Computer Science Institute (INF 8), University of Erlangen-Nuremberg,
Germany

2 FORWISS (Research Group for Knowledge Processing), University of
Erlangen-Nuremberg, Germany

constraints are applied in a bottom-up traversal to test the viabil-
ity of dependencies. If possible, Discourse Representation Structures
(DRS) as defined in [10] are composed and rated using a combination
of scores which take into account the coverage of the interpretation,
the acoustic quality, the dialogue context and which valencies of the
chunks are filled (see section 3).

When the parser discovers an ambiguity it creates an ambiguity
report (see section 4) for the dialogue manager which might be able
to disambiguate the utterance using the dialogue context.

The dialogue manager follows an approach to rational interaction
that reacts flexibly to varying situations depending on the input it
receives. From the parser, it obtains as input DRSs and ambiguity re-
ports for the differences between the DRSs. If the dialogue manager
fails to select a single DRS in order to integrate the parsed utterance
in the dialogue context, it uses the content of the ambiguity report to
initiate a clarification dialogue (see section 5).

The parser and the dialogue manager are implemented and used
in the EMBASST project providing multi-modal assistance for con-
trolling audio and video equipment. The lexicon contains about 800
stems.

This paper is structured as follows: In section 2 we explain the
parsing process, in section 3 and section 4 we present the implemen-
tation of the parser; finally, section 5 shows how the parsing results
are integrated in the dialogue situation.

2 THO-PHASE PARSING

Building a grammar for the parsing of spoken German has two chal-
lenges: First, the parser has to be able to process input that is ungram-
matical or incomplete, since incomplete or interrupted utterances,
self-corrections and repairs, etc. are common in spontaneous speech.
Additionally, given the error rates of speech recognizers, even with
correct input the speech recognizer may produce an output which
is not grammatical, and the parser has to cope with that. Second,
German is a language with fairly free word order, also allowing for
discontinuous constituents. Therefore, the grammar cannot rely only
on linear sequence as its main concept. We try to overcome these
problems by designing a two-phase parsing process.

2.1 The First Phase

The first phase works with a grammar that employs phrase structure
rules to build small phrases, called chunks (this approach is similar
to the one of [1]). A chunk consists of a head element and another
constituent that is a possible filler of a free position in the head’s (X-
Bar-) structure. The filler usually is a specifier (the determiner in case
of a noun phrase) or a modifier (e.g. an adjective phrase modifying

3 The research presented in this paper has been carried out in the framework
of the EMBASSI project. (Grant Nr.: 01IL9904F8).

a noun). A chunk may also consist only of its head. Whether two
elements can be combined is constrained by their feature structure
which is used for unification, and by linear order requirements: Only
elements that are adjacent to each other and that occur in a fixed order
can be connected to form a chunk.

Let’s consider an example. The utterance “Den Krimi um acht
aufnehmen” (“Record the detective story at eight”) is analyzed as
a sequence of three chunks:

o the DP “den Krimi” built by conjoining the determiner “den” (the
syntactic head) and the NP “Krimi”,

o the PP “um acht” and

e the VP “aufnehmen”

To build the DP “den Krimi” we need two grammar rules:

NP: N: DP: DET NP:
head = N: head = DET:
NP =N: DET agreement = NP agreement,
DP = NP:

Chunks are not only syntactically correct units but are semanti-
cally well-formed, too. At this early stage of parsing we already have
means to interpret the user’s utterance. In the lexicon, each element
has in its entry information about its morphological features (lexi-
cal category, inflection features, gender, case etc.) and about its se-
mantics, represented as a DRS. When combining two elements, the
parser checks the compatibility of the morphological features (e.g.
agreement in case of the combination of a determiner with an NP)
and merges their DRSs resulting in a DRS for the chunk. This way,
each chunk gets an interpretation. The meaning of the utterance is
composed by finding the relation between the chunks and their inter-
pretations. This is put off to phase 2 of the parsing process. In case of
an ill-formed input, the utterance can be at least partially interpreted.
In section 3 we present how the best interpretation is selected.

In the first parsing phase, only those elements are combined that
occur in a fixed order: while “den Krimi” is perfectly well-formed,
the reverse order “Krimi den” is not. In contrast, the chunks them-
selves are not restricted to a certain position within the sentence: Ei-
ther sequence, “Um acht den Krimi aufnehmen” and “Den Krimi um
acht aufnehmen”, is grammatical. The first parsing step also ignores
the fact that the PP “um acht” actually may be attached to either the
DP “den Krimi” or the VP. These issues are addressed in phase two
of the parsing process.

2.2 The Second Phase

Phase 2 of the parsing process relies on a kind of dependency gram-
mar that for each chunk of phase 1 gives a list of possible syntactic
functions the chunk may have. The options are constrained by the
morphological features of the chunk, e.g. an NP chunk can function
as subject only if its case feature has nominative as its value.

Then, the valencies of each chunk are filled by combining it with
other chunks, e.g. building a verb phrase from a verb and its di-
rect object. Again, these combinations are gated by syntactic and
semantic constraints. Informations about the valencies of a word are
stored in the case frame of that word. The term valency here is used
in a broader sense: it includes not only obligatory elements needed
to make a phrase syntactically complete; more than that, the case
frames list all semantically and pragmatically suitable modifications
and their syntactic representations, e.g. attributes for nouns or adver-
bials for verbs. The suitability of the modification is determined by
the application ontology.

In contrast to most approaches, not only verbs have case frames.
We also need to pragmatically connect for example the DP “den
Krimi” with its modifying attribute, the PP “um acht”. The case
frame for a specific chunk is selected by the semantic head of that
chunk: In the case of the DP “den Krimi” it is not the syntactic head
DET but the content word “Krimi” whose case frame is to be used.
The semantic head is specified in the chunk building rule of phase
1 (here: DP = NP, i.e. the DP inherits all properties including the
case frame of the NP). The attachment of the PP to the DP here is
guided by the entry for “Krimi” in the case frame lexicon that allows
for modification by a chunk whose semantic interpretation is prag-
matically suitable, e.g. a starting time. The verb “aufnehmen” has
an entry, too, that fits the semantics of the PP, i.e. an adverbial with
the semantic interpretation of a starting time, specifying the starting
point of the action.

How this kind of parsing ambiguities are handled is the topic of
the remainder of the paper. The result of parsing phase 2, however,
gives at least one interpretation of the whole utterance. A charac-
teristic property of this second phase is that we control the chunk-
combination process at four linguistic levels: Each combination is
checked for its morphologic, syntactic, semantic, and pragmatic cor-
rectness. In case of different results, e.g. bad morphology (mostly
through recognition errors) but perfect pragmatics, pragmatics wins.
In case of an ambiguity, well, just go on reading.

3 IMPLEMENTATION OF THE PARSER

As explained before, the second phase of the parser uses dependency
grammar to find relations between the chunks built in the first phase.
It then traverses the dependency tree to built readings for the ut-
terance. Finally the most probable interpretations are selected. This
phase can be divided into four parts:

1. Building an agenda of possible dependencies

2. Testing the syntactic and semantic viability of the dependencies
3. Traversing the dependency tree and assembling interpretations
4. Selecting the best interpretations

3.1 Checking the Dependencies

In the first part, the parser constructs an agenda which contains all
possible dependencies from a chunk to all other chunks. For each
chunk that has a case frame the parser takes all dependencies for
its syntactic category from the dependency file. If, for example, the
chunk is a verbal phrase, the parser finds the dependencies subj,
dirobjand adverbial. For all other chunks that do not overlap
with this chunk it creates an agenda element for each dependency.

attribute
DP(Den Krimi) PP(um acht) VP(aufnehmen)

{subj,dirobj,adverbial}

{subj,dirobj,adverbial}

Figure 1. Dependencies for “Den Krimi um acht aufnehmen”.

Figure 1 shows the eight dependencies put on the agenda for the
example. In the next part, the syntactic and semantic constraints for

each dependency on the agenda are checked. The syntactic check
tests, if the dependent chunk has one of the categories that can satisty
the dependency and if the constraints on the features of dependent
and regent are met. In the example only three dependencies pass this
test: The PP could be an attribute to the DP or an adverbial to the VP
and the DP is the direct object of the VP. For the semantic check the
parser goes through all syntactically suitable slots of the regent’s case
frame and checks whether the dependent chunk meets the semantic
and pragmatic requirements of a slot. If more than one slot matches
an ambiguity report is generated, as explained in section 4. In the
example, all remaining dependencies pass the semantic test.

3.2 Assembling Interpretations

When the parser has checked all possible dependencies, it traverses
the dependency graph in a bottom-up fashion to build the possible
interpretations of the utterance. When the parser has run through all
of the chunks, each chunk contains a set of readings. In our example
“Den Krimi um acht aufnehmen” the parser adds no readings for the
chunk “um acht”, which is at the bottom of the dependency tree. It
constructs two readings for “den Krimi”, namely the original mean-
ing and the combination with the prepositional phrase, and it builds
five interpretations for “aufnehmen”.

3.3 Selecting the Best Interpretations

Finally the parser selects the readings for further processing. Conse-
quently, it first checks all DRSs. If a reading is subsumed by another
which has a better score, the former is deleted. The remaining DRSs
are passed to the dialogue manager. The score of a chart edge or
reading is calculated from a number of specific scores:

e An acoustic score obtained from the speech recognizer

e The length of the utterance part spanned by the reading

e The dialogue context. When the dialogue manager asks a question,
it sends the parser a list of the concepts of the expected answers.
Readings containing one of these are scored better.

e Each valency has an associated score, which is higher for essential
slots than for facultative ones.

In some cases it will not be possible to construct a reading that
spans the whole utterance. Then the best fragments will be handed to
the dialogue manager.

3.4 Packed DRS

In the second phase of the parser, the semantic representations for
the different readings of the input are built. To do this the semantic
representations of the chunks are combined to larger and larger rep-
resentations. Unfortunately, in the case of ambiguities, we can not
simply throw away a representation once it is used in a larger rep-
resentation, since it still may be needed to build a different reading.
Because of this we get many representations all made up from the
same basic parts.

Therefore, we decided that instead of actually constructing the
DRSs we just create “building plans”. Additionally we keep a pool
of DRS segments. These segments have disjunctive nodes at which
other segments can be plugged in. Apart from that, the disjunctive
nodes are used like discourse referents. At the end of the parse, the
DRS for the best interpretations are created from the segments ac-
cording to plugging functions (the “building plans”). This process

starts with looking up the root segment under the root node Ag. Then
the disjunctive nodes of the root segment are filled with other seg-
ments according to the plugging function. If no value is defined for a
disjunctive node, the condition in which it appears is removed. This
is repeated for each segment plugged in, until every disjunctive node
is either filled or removed.

X, ¥, A1

AvEvent(x, y)

S1 = | has-genre(y, “Krimi”)
Genre(“Krimi”)

. . [Ao — S3]
has-timeinterval(x, A1) p=|A — s
Xy L AZ — Sl J
Timelnterval(x)

S2 = | has-starttime(X, y) [Ag — S3 7
clocktime(y) Po=| Ay — 5
has-hour(y, 8) L As — Sy |
X, Az, Ag
Record(x)

S = has-avevent(x, Az)

has-timeinterval(x, As)

Figure 2. DRS pool and plugging functions for “Den Krimi um acht
aufnehmen”

Figure 2 shows the slightly simplified DRS pool for the exam-
ple “Den Krimi um acht aufnehmen”, containing a DRS segment for
each of the three chunks. On the right it shows the plugging functions
for the two best interpretations. P; describes the reading in which
the film starts at eight, P, the reading in which recording starts at
eight. During parsing a number of plugging functions are constructed
which only cover a part of the utterance. In the example all segments
are used in the plugging functions. This is not always the case. If a
lexical ambiguity exists in an utterance, there will usually be a seg-
ment for each reading of the ambiguous word, while only one of
these readings can be used in a plugging function.

In recent years a number of under-specified representations have
been developed to tackle the problem of scope ambiguities (see [11]
for an introduction). Superficially, our approach is quite similar to the
unplugged DRS in Johan Bos’ hole semantics framework ([6]). How-
ever, there are several important differences: In our unpacking algo-
rithm conditions are removed when their disjunctive nodes are not
filled; in other under-specified representations all disjunctive nodes
have to be filled, so this situation can not arise. Other representations
usually require that all segments are used in every plugging function.
This makes it impossible to represent lexical ambiguities and difficult
to represent attachment ambiguities. On the other hand, this restric-
tion allows other representations to use simple constraints to specify
the possible pluggings, while we currently use lists of plugging func-
tions. We hope to find a set of constraints suitable for defining our
plugging functions in the future.

4 AMBIGUITY REPORTS

While many ambiguities can be resolved by the parser, some will
remain and have to be handed over to the dialogue manager, which
might be able to resolve further ambiguities, for example, by using
dialogue context or user preferences. However in some cases it will
be necessary to ask the user about the meaning of his utterance.

The parsing result is a list of scored readings for the utterance.
In many systems such a list is simply passed to the dialogue man-
ager, which is left to its own devices to figure out the differences
between the readings. In our framework, however, the parser informs
the dialogue manager about the differences. If it can not resolve the
ambiguity itself, it can at least use this information to ask the user a
well directed clarification question.

Therefore, the parser marks all ambiguities when they arise, so
they can be traced through the parse. It also creates an ambiguity
report, which is sent to the dialogue manager, if the ambiguity can
not be resolved during parsing. This ambiguity report contains a dis-
course representation structure that describes the type of the ambi-
guity and its variants. The readings that follow from using a variant
are specified with the af fect s—reading condition. The meaning
in which the variants differ is recorded under has-content. De-
pending on the point were it arises, an ambiguity is classified as be-
longing to one of four types: lexical-ambiguity, pragmatic-ambiguity,
attachment-ambiguity or filler-ambiguity.

Whenever entries with different concepts for a word are retrieved
from the lexicon the parser classifies this as lexical ambiguity. A
common example of lexical ambiguities in our domain are names
of songs that double as band names. “Fiddler’s Green” for example
is an Irish folk song which was performed and recorded by numerous
bands, but is also the name of an Irish speed folk group.

Occasionally, words can be used in different pragmatic con-
texts. This is labeled pragmatic ambiguity, an example would be
the sentence “I love detective stories”. In the application’s domain
model the word “love” can be mapped to the concepts Give-
FavouriteAvEvent, GiveFavouriteAvEventLocation
or GiveFavouriteGenre which take a TV program, TV station
or a genre as second argument.

r-l,r2,u, v, w, x, x0,x_1,y
attachment-ambiguity(x)

has-variant(x,x_0) ambiguity-variant(x_0)
affects-reading(x_0, r_1) has-content(x_0, y)
AvEvent(y) has-genre(y, “Krimi”) Genre(“Krimi”)
has-variant(x,x_1) ambiguity-variant(x_1)
affects-reading(x_1, r2) has-content(x_1, w)
Record(w) has-pp(x, v) Timelnterval(v)
has-starttime(v, u) clocktime(u) has-hour(u, 8)

Figure 3. Ambiguity report for “Krimi um acht aufnehmen”

The example “Den Krimi um acht aufnehmen” features an attach-
ment ambiguity. The parser realizes this when it finds two valid de-
pendencies with “um acht” as dependent. At this point it generates
the ambiguity report shown in figure 3. The DRSs of the possible at-
tachment points are stored in has—content. Additionally, the role
has-pp is used to store the pragmatic extension of the phrase that
caused the ambiguity.

Filler ambiguities occur if two chunks compete for the same case-
frame slot of another chunk, as in the example “I want to watch the
thriller at eight, not at nine” . Both PP chunks are related to the has—
starttime slot of “thriller”.

5 MODELLING RATIONAL DIALOGUES

In [3, 7, 8] it is argued that dialogue as a form of rational interac-
tion is a means of cooperatively executing tasks for joint purposes.

Allwood ([2]) adds that any dialogue consists of successive commu-
nicative contributions. They are actions in a multi-layered plan of
interaction fulfilling certain communicative functions. The effect of
such actions is an update of the current belief structures of the dia-
logue participants. So, dialogue interpretation gets linked with cog-
nitive modelling ([5]).

5.1 Updates of the Dialogue Situation

The approach to dialogue analysis presented here separates the di-
alogue situation as the current state of the interaction from the ap-
plication situation as the current state of application pragmatics: Ut-
terances evoke actions in the application situation. This way, they
change the application’s state; the effects of these actions motivate
new speech acts to keep the interaction going until the joint purpose
has been reached. Now, under which conditions can an utterance have
such an effect on the application? Roughly speaking, if one of its
readings can be integrated in the plan for the current joint purpose.
As suggested in section 4, there are situations in which output from
the parser is ambiguous for the dialogue manager and the content of
its belief structure does not suffice for disambiguation. In such a case,
an update of the dialogue situation is impossible as the dialogue man-
ager fails to uniquely integrate the utterance in the dialogue situation.
Therefore, it is unable to carry out the current task.

5.2 Micro-conversational Events

However, the dialogue situation has been fed by the parser with in-
formation about the reasons for the ambiguity and the possible read-
ings. The ambiguity report in figure 3 is incorporated in the dialogue
situation depicted in figure 4.

Including syntactic information in dialogue situations (as also pro-
posed in [12]) is motivated by the necessity to keep a dialogue co-
herent if syntactic or semantic ambiguities of new utterances cannot
be resolved. Coherence is accomplished by focusing on the failed
preconditions for a unique integration of the utterance.

The importance of representing information about micro-
conversational events becomes clear when considering the options
of a dialogue system for a clarification dialogue that is not using any

r-l,r2,u, v, w, x, x0,x_1,y,s.0, U_1
attachment-ambiguity(x)

has-variant(x,x_0) ambiguity-variant(x_0)
affects-reading(x_0, r-1) has-content(x_0, y)
AvEvent(y) has-genre(y, “Krimi”) Genre(“Krimi”)
has-variant(x,x_1) ambiguity-variant(x_1)
affects-reading(x_1, r-2) has-content(x_1, w)
Record(w)

has-pp(x, v)

Timelnterval(v)

has-starttime(v, u) clocktime(u) has-hour(u, 8)
situation(s_0)

has-event(s_0,U_1) request(U_1)
has-reading(U_1,r_1) has-ambiguity(r_1,x)
has-reading(U_1,r_2) has-ambiguity(r_1,x)

rl: ..

r2: ..

Figure 4. Dialogue situation for an attachment ambiguity

u,v,y

AvEvent(y) has-genre(y, “Krimi”) Genre(“Krimi”)
has-timeinterval(y, v) Timelnterval(v)

has-starttime(v, u) clocktime(u) has-hour(u, 8)

u, v, w
Record(w)

has-recordingtime(w, v)

Timelnterval(v) has-starttime(v, u)
clocktime(u) has-hour(u, 8)

Figure 5. Readings resulting from the attachment ambiguity

ambiguity report: Assuming the availability of a deep text genera-
tion, how could the difference between the two readings be marked?
Probably not at all — so, a clarification would not be of much use.
We see the ambiguity report as a prerequisite for generating system
utterances that are plausible to the user. Understanding the need for
clarification, the user is able to answer in a way that really helps dis-
ambiguating. Finally, we note that with template-based generation,
such clarification dialogues seem impossible to be conducted.

5.3 Grounding Ambiguous Readings

Due to the intended purpose of an utterance in a rational dialogue,
several orthogonal aspects of constructing meaning, integrating the
utterance in the current discourse situation and relating it to the ap-
plication situation have to be considered:

Acoustics: How is the quality of speech recognition?

Syntax: What is the state and the result of the syntactic analysis?
Semantics: What is the result of the semantic composition?
Speech act: What is the effect on the discourse situation?
Coherence: Does the utterance refer to the current focus?

Plan: Is there a plan to satisfy the user’s intention?

Action: What is currently done to execute the plan?

Status: What is the state of the plan execution?

Ambiguity reports affect the syntactic and semantic aspect: they de-
liver information that no unique meaning could be constructed.The
dialogue manager knows that there are two chunks involved in the
ambiguity: C_1 and C_2. In order to ground the utterance, it com-
putes the critical parts of the readings r_1 and r_2 (see figure 5).

Using knowledge about the discourse situation the dialogue man-
ager has to decide whether the found ambiguities are relevant. There-
fore, it tries to relate the head of each DRS (y or w, respectively) to
some already existing discourse referent. If this is successful the con-
ditions in the DRS are used to verify whether it actually refers to the
assumed antecedent. If this analysis does not result in a disambigua-
tion, the dialogue manager verifies whether the content of both DRSs
is satisfiable in the current application situation hopefully excluding
one reading.

5.4 Generating Content for Clarification Dialogues

If all tries to disambiguate the meaning of the utterance fail, the dia-
logue manager uses the ambiguity report to deliver the content for a
clarification question. The intention behind the question is to involve
the user in the process of disambiguation, when he selects one of
the readings. For the purpose of transparency, the dialogue manager
can give the user additional information why it asks this question.

Without an ambiguity report, the user could at best be told that his
utterance was ambiguous without any explanation. Knowing that the
PP in the utterance could not be attached uniquely makes it possi-
ble to generate an utterance like “I am not sure if you talk about the
detective story at 8 or if I should start recording at eight.”

The main benefit of this approach is that handling of parsing am-
biguities can be solved in the same way as it is done for pragmatic
ambiguities: Like any application component, the parser is not con-
sidered a black box which is using only its own sources of infor-
mation to compute an interpretation for an utterance. It rather works
interactively with other components that have access to additional in-
formation about the dialogue situation. We think that this approach
resembles better the way in which two humans perform clarifications.

6 CONCLUSION

The paper shows an approach to computing information about micro-
conversational events during parsing word lattices. This information
reports on ambiguities found by lexical, syntactic and semantic anal-
ysis in a two stage parsing process. In this way, the parser is able
to “explain” to the dialogue manager why it produced several read-
ings for an utterance. The dialogue manager benefits from this addi-
tional input as appropriate system turns can make the user aware of
the system’s reception problems. The presented parser and dialogue
manager have been implemented. Experiments with “naive” users
have been conducted and are currently being evaluated. If possible,
we want to go even further in the sketched direction and rethink the
interface and cooperation between parsers and speech recognizers.

REFERENCES

[1] Steven Abney, ‘Parsing by chunks’, in Principle-based Parsing, eds.,
R. Berwick, S. Abney, and C. Tenny, Kluwer, Dordrecht, (1991).

[2] Jens Allwood, ‘Obligations and options in dialogue’, Think, 3, 9-18,
(May 1994).

[3] Jens Allwood, ‘Dialog as collective thinking’, in Brain, Mind, and
Physics, eds., P. Pylkko P. Pylkkanen and H. Hautamaki, volume 33
of Frontiers in Artificial Intelligence and Applications, Amsterdam,
(1997). 10S Press.

[4] Maria Aretoulaki and Bernd Ludwig, ‘Automaton-descriptions and
theorem-proving: A marriage made in heaven?’, Linkdping Elec-
tronic Articles in Computer and Information Science, 4(22),
http://www.ep.liu.se/ea/cis/1999/022/, (1999).

[5] Nicholas Asher and Alex Lascarides, ‘Intentions and information in
discourse’, in Proceedings of the 32nd Annual Meeting of the Associa-
tion of Computational Linguistics, pp. 34-41, Las Cruces, USA, (June
1994).

[6] J.Bos, ‘Predicate logic unplugged’, in Proceedings of the 10th Amster-
dam Colloquium, eds., P. Dekker and M. Stokhof, pp. 133-143. ILLC,
University of Amsterdam, (1995).

[7] Sandra Carberry and L. Lambert, ‘A process model for recognizing
communicative acts and modeling negotiation subdialogues’, Compu-
tational Linguistics, 25(1), 1-53, (1999).

[8] P.Cohen and H. Levesque, Intentions in Communication, chapter Ratio-
nal Interaction as the basis for Communication, MIT Press, Cambridge,
Massachusetts, USA, 1990.

[9] Florian Gallwitz, Maria Aretoulaki, Manuela Boros, Jiirgen Haas, Ste-
fan Harbeck, Richard Huber, Heinrich Niemann, and Elmar No6th, ‘The
erlangen spoken dialogue system EVAR: A state-of-the-art information
retrieval system’, in Proceedings of the 1998 International Symposium
on Spoken Dialogue (ISSD’98), pp. 19-26, Sydney, Australia, (1998).

[10] Hans Kamp and Uwe Reyle, From Discourse to Logic, Kluwer, Dor-
drecht, 1993.

[11] Manfred Pinkal, ‘On semantic underspecification’, in Computing
Meaning, eds., H. Bunt and R. Muskens, 33-55, Kluwer Academic
Press, (1999).

[12] Massimo Poesio and David Traum, ‘Conversational actions and dis-
course situations’, Computational Intelligence, 13(3), 309-347, (1997).

