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Abstract. Knowledge based systems usually rely on large
size domain models needed to support reasoning and decision-
making. The development of realistic models represents a crit-
ical and labour intensive phase. Automatic terminology ac-
quisition (TA) has been proposed as the task of automati-
cally extracting specialized dictionaries from raw texts use-
ful for application purposes like precise information retrieval
and machine translation. In this paper we argue that TA pro-
vides a significant contribution in the development of ontolog-
ical components of a knowledge bases. We therefore propose
an automatic knowledge acquisition architecture for the TA
process based on robust methods for text processing and on
algorithms for learning decision trees. An incremental semi-
automatic approach is proposed to enable the first steps in
the development of a domain ontology. The novel aspects of
the method rely on the use of syntagmatic and lexical prop-
erties of terms combined with analogous (negative) evidences
observable for non-terms. The underlying assumptions as well
as the different adopted linguistic representations have been
extensively investigated over a large test set. The scale of the
target test data provides empirical evidence of the superior-
ity of the method over more quantitative approaches. The
proposed architecture is thus a viable approach to the devel-
opment of conceptual domain dictionaries.

1 Terminology extraction and domain
modelling

Knowledge based systems usually rely on large size domain
models needed to support reasoning and decision-making.
The development of realistic models represents a critical and
labour intensive phase. Automatic terminology acquisition
(TA) has been often proposed as the task of developing spe-
cialized dictionaries in target application scenarios (e.g. pre-
cise information retrieval systems). In TA complex linguistic
expressions (e.g. joint venture) are usually discovered in texts
and used to populate knowledge repositories (e.g. inheritance
networks). It is worth noticing that terminology acquisition
allows the detection of those grammatical structures (or sur-
face forms) denoting complex concepts needed within a par-
ticular domain. This provides a partial support for the devel-
opment of domain models in knowledge based applications.
Terminological entries represent relevant concepts for the tar-
get domain.
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Methods for TA rely on extensional descriptions of a do-
main usually embodied by large text collections related to it.
Human experts start analysing and encoding terms by also
adding normative definitions if required. These decisions bias
their later analysis within the same texts. The corpus to-
gether with the intermediate term dictionary forms what we
will hereafter call an implicit domain model. Clearly neither
the dictionary nor the corpus represent a complete conceptual
model of the domain, but they express:

e a (temporary) set of relevant concepts in a domain
e the full variety of term usages, implicitly expressing prop-
erties and relations of each underlying conceptual item.

The TA process represents thus an earlier phase of the de-
velopment of an explicit semantic domain model useful for
a number of different intelligent activities (e.g. information
retrieval and decision making).

Most automatic TA methods start from the definition of
what a term is and there is a general consensus in defining a
term as a surface representation of a key domain concept [9].
This definition opens different ”operational” interpretations
leading to the design of different corpus-driven TA systems.
An ”operational” definition can be obtained by specifying:

e how to constrain admissible surface forms, usually via spe-
cialized NP grammars in agreement with valid natural lan-
guage interpretations;

e how to establish the relevance of a candidate form s as
denotation of a domain concept.

Generally valid surface forms are specified at the morpho-
syntactic level and derive candidate forms S. Sometimes,
heuristics are also employed, like stop words lists of irrele-
vant (e.g. temporal) expressions. Statistical models are then
used over candidate in S as measures of domain relevance. In
[7], the simple frequency f(s) of surface forms in the corpus
is suggested to be the most effective measure. f seems to re-
produce the terminologist judgement better than other more
complex measures. However, as admittedly mentioned in [7],
frequency alone is still far from being a perfect discriminat-
ing ” termhood” function. For instance, in an economic corpus
made of about 13,000 newspaper articles joint venture and oil
price have been found 687 and 787 times, respectively. Given
such counts as the only distinctive feature, no method can dis-
tinguish the first as a true terminological expression from the
second that is a general (i.e. domain independent) expression.
A still frequency-driven approach that employs a contrastive
measure across several domains has been recently proposed
in [2], with slight performance improvements.



In the above models the implicit domain model is con-
sidered just as the sample space where distributions of new
candidates can be observed. However, the distributional be-
haviour of surface forms is not the only observable property.
Two important kinds of information are neglected:

e usages of already accepted terms (or terms given as initial
seeds) embodied by the corpus. The conteztual information
of terms, like grammatical relationships they establish with
other words, is extensively used by terminologists to reason
about term relevance

o negative assumptions. The refusal of frequent, but non-
terminological, expressions provides information about
what a term is not. An inductive approach (e.g. decision
trees) may well exploit this as negative evidence during
training and classification.

From information about typical usages of accepted (or re-
fused) candidates we can derive an intentional definition of
term (or non term). Several properties (i.e. ezogenous infor-
mation as in [4]) can be observable in the contexts of terms.
They form an implicit definition for the acceptance new candi-
dates. Relevant properties shared among terms should from a
predictive (intentional) model able to correctly separate terms
from non-terms. For example, let the following text fragments
represent a scientific corpus (SC):

Example 1 (Corpus SC)

a) The bread-and-butter equation of fluid mechanics governs
the conservation of energy of everything from flows to jets and
turbulence. But the equation has been hard to apply to drop
formation because at the time of pinch-off, terms in the equation
head off to infinity.

b) The generalized airfoil equation governs the pressure across
an airfoil oscillating in a wind tunnel.

Expressions bread-and-butter equation and generalized airfoil
equation in the Example 1, are both subjects of the verb
govern. This is often true of technical definitions of physi-
cal laws. Such grammatical fact (as a shared property among
the two potential terms) may thus be adopted as selective
criteria. If, for example, bread-and-butter equation has been
already decided as a term, we can use subject-ness with the
verb govern as a decision rule. Such grammatical similarity is
typical of the underlying domain. The induction of such rules
provides a truly domain-specific intensional term definition.
Notice how this is also true for non-terms that give rise to
negative classification rules in the model.

The method depicted above is an original approach to TA.
Corpus-driven methods (e.g. [6, 11, 10]) usually do not de-
velop any unified intentional term definition and do not use
any negative evidence. The extensional term definition has
been instead used for quantitative (frequency based) criteria
like co-occurrences in text windows. A knowledge-intensive
method based on term semantic networks is used in [1, 10]
to detect new terms and organize them within the existing
knowledge bases. In [4] a richer approach based on shallow
syntactic analysis is proposed to support TA over ”poorer”
domains, i.e. domains for which lexical semantic knowledge
bases are not available. The above approaches make use of
contextual information observed for known (i.e. already as-
sessed terms) but neglect the negative information about
“non-terms” (general expressions available in ”supervised”
approaches).

In this paper the notion of domain-specific intensional term
definition is induced via linguistic processing of a target cor-
pus and machine learning. The result is a weakly supervised
classification system that, triggered by a small amount of
seeding information (terms already known in the domain),
predicts the ”termhood” of new surface forms as found in
the corpus. A syntactically motivated model is induced by
representing grammatical exogenous properties of terms (and
non-terms) in contexts. The formalism adopted for exogenous
information is described in Section 2. Experimental evalua-
tion based on a decision tree learning algorithm (C4.5 [12])
is then presented in Section 3. Results suggest that the pro-
posed corpus-driven TA method is a viable architecture that
integrates natural language processing and machine learning
for knowledge acquisition.

2 A syntactic-oriented notion of
extensional term definitions

The implicit domain model definition is used by terminol-
ogists that read texts and decide about termhood or non-
termhood of new candidates. Inductive learning of an inten-
sional term model is inherently based on the observations
over text corpora. A suitable observation model should in-
clude all those selective properties characterizing terms. One
such model corresponds to a space for describing positive and
negative instances.

The aim here is to select the regular behaviour of terms in
corpus contexts, i.e. their exogenous information. Syntax will
be used (in line with other works like [8] or [4]) as a linguistic
level able to characterize similarity among contexts. If a par-
ticular grammatical relation (e.g. subject) frequently links
positive instances (e.g. generalized airfoil equation) to some
other textual elements (e.g. the verb to govern), it can be as-
sumed as a decision rule for discovering termhood. As gram-
matical relations can be easily observed for known terms as
well as for promising candidates, the resulting rule set is the
target intensional term definition.

In the next Sections the formal definitions of the feature
vectors representing positive and negative instances (i.e. their
exogenous information) are presented.

2.1 Term occurrences and exogenous
information

When collecting evidences of a given term ¢ across a domain
corpus we need to determine whether or not different contexts
are indicators of its exogenous behaviour. A first possibility is
to collect only contexts where a valid surface form for > ap-
pears. Notice however, that in many cases terms are referred
in an elliptic fashion. In the example 1.a), the second occur-
rence of the word equation is an elliptic occurrence of bread-
and-butter equation. As a consequence the context ... the equa-
tion has been hard to apply to drop formation ... describes the
exogenous behaviour of the bread-and-butter equation term as
well. Many simple terms (i.e. one-word terms) are elliptic ref-
erences to complex terms (i.e. multi-word terms). Generally,

2 A valid surface form is here simply intended as a morphological
variant of the term, e.g. fluid mechanics equations vs. fluid me-
chanics equation: the t canonical form here is the latter singular.



the term grammatical head (e.g. equation in bread-and-butter
equation) is used in elliptic references.

The syntactic exogenous behaviour of a term is driven by
its semantics. The head h(t) of a term t is usually its se-
mantic carrier. This assumption is widely used in other term
structuring approaches (cf. [11]). h(t) is thus a good canonical
candidate of ¢. Its occurrences in the corpus are representative
of direct or elliptic occurrences of ¢. This is a computationally
attractive approximation for counting. Moreover, as terms are
expected to have unique interpretations in a coherent domain,
terms t and t’ such that h(t) = h(t') will be considered equiva-
lent with respect to their exogenous information. Accordingly,
terms bread-and-butter equation and generalized airfoil equation
are equivalent with respect to the head equation.

The contribution of all contexts where a given head h(t) ap-
pears forms an equivalence class, C(t), in the corpus. A single
(collective) representation, the vector v(t), for ¢ can be thus
derived from all ¢ € C(t). Moreover, this seemingly applies to
”non-terms”. In the next section, definition for vectors v(t),
i.e. feature vectors populating the sample space, is given.

2.2 Spaces for exogenous features

The automatic induction of a model for terms (or non terms)
out from the extensional domain model requires a suitable
knowledge representation formalism. The overall process in-
cludes the following steps:

e Extraction of grammatical information from local contexts
as local feature vectors using shallow parsing techniques

o Generation of a global feature vector for an entire term
equivalence class

e Induction of the target intensional definition as a decision
tree that separates incoming candidates into terms and
non-terms via machine learning algorithms

The above process can be also modelled as an incremental
approach. Newly accepted (or refused) candidates® allow a dy-
namic revision of the corresponding decision tree structure: a
new learning process can be activated over the newly assessed
instances. The usage of syntactic information supports the
derivation of rich (decision-tree) descriptions. It supports not
only decisions about the termhood of incoming surface forms
but the declarative aspects (e.g. typical grammatical relations
as properties motivating a given decision) may support as well
more powerful inferences, like induction of semantic relations
among terms.

As poor agreement exists about grammatical properties
characterizing terminological structures in a domain, we will
explore several alternatives. A ”light model” represents only
the type of the grammatical relations established by a term
t with other contextual elements. For example, types like
object or subject are features expressing the role of a term
in an underlying context (e.g. equation is subject in Ex. 1).
The resulting feature space will be hereafter called ” syntactic
(E)” .

A more informative (deeper) model can be otherwise ob-
tained by preserving the local lexical information. In such a

3 Possibly manual validation at each step can be applied to the
most promising choices of the system.

"syntactic lexicalised” model (A), the lexical item that gov-
erns the observed grammatical relation is stored in a local vec-
tor together with the grammatical type. For example, given
the context " The equation of mechanics governs the conserva-
tion of energy.” of equation, we can capture equation as the
subject of the verb to-govern.

The two kinds of information have different feature
spaces, ¥ and A respectively. The feature system F>,
in ¥, includes the following syntactic types: F> =
{V-PP,NP-PP, V-Subj, V-0bj, ADJ-PP, ADV-PP}. In the syntac-
tic lexicalised space A the different lexicalised information
(Syntactic_Type, governing_lemma) will be considered as in-
dependent features. For example F*=(V-Subj,to-govern)
for t=equation or F,?:(NP—PP,conservation) for the
t=energy can be derived from Ex. 1.

The above features can be obtained by shallow parsing of
the corpus sentences. In the experiments we have used the
CHAOS syntactic parser described in [5]. Notice that syntac-
tic ambiguity in parsing may affect the above observations
and frequency counts. Highly ambiguous (but frequent) phe-
nomena (e.g. prepositional phrase attachments) may increase
the values for irrelevant features. On the contrary, the pruning
of all ambiguous relations may result in too poor evidences. In
our approach we use the notion of plausibility of a grammat-
ical relation within an eXtended Dependency Graph (X DG@G)
representation scheme (see [3]). Ambiguous relations 7 in a
dependency graph are given a score pl(r) inversely propor-
tional to the number of conflicting syntactic interpretations.
The plausibility pl(r) ranges in the (0, 1] interval: pl(r) = 1
if r is unambiguous for the parser, and pl(r) < 1 otherwise.
The excerpt in Ex. 1.a) generates the XDG in figure 2, where
pl(NP-PP,conservation-of-energy) = 0.5
pl(VP-PP,govern-of-energy) = 0.5.

VP_PP:: 05

VF Subj::: 1

[The bread-and-butter equation] [governs] [the conservation] [of energy] [.]

Figure 2. A sample XDG

Grammatical relations local to the source sentence s are
thus quadruples (¢, s, F;, p;) where p; is the plausibility local
to s of the relation between ¢ and F;. This representation is
used to easily obtain the local term vectors. The values given
to the features are the shown plausibility in s or 0 if they do
not appear. From the graph in Fig 2 the following local vec-
tors are obtained for ¢ =energy, in ¥ and A respectively:
vE(t,8) = (... (F” =05)...(F =0.5)...)
vA(t,s) = (... (F} =05)... (FA=0.5)...)
where F’=V-PP, F’=NP-PP and F}=(V-PP,to-govern),
F=(NP-PP, conservation), For t =equation the following
vectors are derived instead:

f(t,s) =(..(F7=1)...(F’=0)...)
At s)=(..(FA=1)...(F}=0)...)
where F°=V-Subj and FA=(V-Subj,to-govern).

Once local vectors 9(t, s) are available for each sentence s in
the corpus, the global feature vectors representing the global
behaviour of the term in the corpus are obtained in the two
spaces as follows:

V)= Y vR(ts) (1)

sEC(t)



VAt = Y oA(t,s) 2)

sEC(t)

where C(t) include the corpus contexts (i.e. the equivalency
class) of ¢.

The values a feature vector assigns to features F; empha-
size the strength of association between the ¢ and F;. Cu-
mulative plausibility here replaces frequency counts to better
model ambiguity in observations. Notice that, for the same
F;, the estimated frequency EsEC(t) pl(t, s, F;), produces the
same ranking as mutual information MI(¢, F;). Feature vec-
tors vZ(t) and v*(t) are finally normalized to obtain #%(t)
and 9" (¢). These normalized vectors 9= (¢) and 9 (¢t) are in-
put to the decision tree learner. For sake of comparison, a
frequency-based learner has been obtained (feature space ®)
by defining:

0% (t) = (rf(t))

where rf(t) is the relative frequency of ¢ in the corpus. Such
discrete space will simulate the behaviour of a quantitative
model based on simple frequency.

The above spaces, i.e. the syntactic, the syntactic lexicalised
and the frequency-based spaces can be called here ”pure”.
As better results can be obtained if different information is
integrated (as also suggested in [4]): contextual information
can be used in cooperation with the term frequency. Three
other spaces have been thus defined via juxtaposition of the
underlying pure vectors, v (t), ¥ (t) and 9*(t): (1) ® x %,
representing frequency and syntactic information; (2) ® x A
that merges frequency and syntactic lexicalised information;
(3) @ x ¥ x A merging the three sources of information.

3 Experimental investigation

The aim of the evaluation is to measure the impact of the
different source information on the TA process as well as to
verify the quality of the term intensional model embodied by
the induced decision tree. The experiments have been run
over a well-established implicit domain model and statistical
validation of results have been obtained by n-fold cross valida-
tion. The source domain consists of a corpus of about 250,000
words on the Italian Civil laws, a corresponding thesaurus of
600 terminological expressions built by a team of expert ter-
minologists. The corpus has been processed by the CHAOS
parser [3, 5] producing about 3,000 different structures denot-
ing potential terminological expressions. We assumed that the
only valid term instances are those coded in the thesaurus.
We have thus about 1/4 valid structure among the corpus-
derived candidates. As a performance figure the error rate
€ has been adopted as the percentage of misclassified items
in the test set, i.e. wrongly accepted corpus candidates. In
each 5-fold cross-validation, the system considers an 80% of
the corpus candidates as training items (divided evenly be-
tween positive terms in the thesaurus and negative items, i.e.
nominals that are NOT in the thesaurus). Different decision
trees are built for the 5 runs deriving (for the different feature
spaces) what is called a domain-specific explicit term model
in section 1. The test is then run over the 20% remaining can-
didates and error rates are then reported as mean values. A
baseline TA method assigning about 0.20 probability to each

candidate and randomly selecting 1 over 5 candidates has a
performance of about 32% error rate *.

The first test has been carried out within the & space.
The decision tree based learning looks for discriminating fre-
quency classes among terms and non-terms. Table 1 reports
the outcome of this first test. As expected pure frequency (®)
provide a significant increase in performance (e ~ .17) with
respect to the baseline. However, both exogenous spaces (X
and A) show superior performances. Notice that all the three
learning processes make use of negative information. The
better ”pure” models appear to be the syntactic lexicalised
space A. This demonstrates that a truly domain-oriented
term definition outperforms a general notion of domain
importance (as the one based on simple term frequency).
An explicit modelling of exogenous grammatical information
is very useful given a significant difference in performance
(i.e.+18% wrt ®). This confirms the initial assumption:
syntactical lexicalised features capture stable relations
between particular lexicals in the domain. The most impor-
tant rules in one decision tree for the A space are for example:

(V-Subj,essere) <= 0.00772201 A (NP-PP,contratto)
> 0.00239808 = Term

(V-Subj,essere) > 0.00772201 A (V-Subj,essere) >
0.153846 A (V-0bj,fare) > 0.0263158 => Non-term

where the (V-Subj,essere) is the feature representing
the subject relation with the verb essere (to be) whilst
(V-0bj,fare) represents the object relation with the verb
fare (to make). These characterize specific semantic proper-
ties of terms as induced from the corpus. The space X, al-

Feature Space [ P A
Error Rate (%) | 16,99 16,235 14,25

Table 1. Final error rate on the X, A e ® ”"pure” spaces.

though weaker, is characterized by a less expensive training,
as it includes about 6 features with respect to the 5,251 fea-
tures of A. It is thus useful to analyse the combination of dif-
ferent features trying to optimise also the learning complexity.
In Table 2 the performance of hybrid systems are reported.
Combining different sources always outperforms ”pure” sys-

PxY IdIxXxA IPxXELxA
15,61 13,88 13,74

Feature Space
Error Rate (%)

Table 2. Final error rate on the ® x 3, & x A, and

P x ¥ x A ”frequency” spaces.

tems (Table 1). Although lexicalised indicators are always su-
perior (column 3 and 4 in Table 2), the performance over the
® and X is rather good.

A further set of measures has been carried out by simulat-
ing an incremental training process closer to the terminolo-
gist activity. Negative items are here added to the learning
set in increasing portions. The result is a sequence of systems
obtained by different training. As positive instances can be
derived by pre-existing terminological resources in an mplicit
domain model, repositories of non-terms instances do not ex-
ist. For these latter the major source is the activity of the
terminologists themselves that are involved in the decision

4 It is the prob(Refuse|Term)+prob(Accept| NonTerm) = 8.2+
2x.8=.32



process: refused entries enter in the repository of negative ex-
ample and can be exploited during the manual activity. In
order to assess the impact of the negative information, the
performance has been be measured over training sets charac-
terized by an increasing number of negative examples. The
plot in Fig. 3 describes the error rate variations against per-
centages of the training negative samples employed. It shows
that, whenever the baseline is overcome, the feature space in
which a better term model can be induced is still the syntac-
tical lexicalised space A. The superiority of A features char-
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Figure 3. Error rate on the X, A e ® ”pure” spaces.

acterizes several training set sizes, and this shows that the
corresponding learning converges earlier during the terminol-
ogist work. The best result reachable with the term frequency
(i.e. space @) is obtained in the A space using roughly 60%
of the negative training examples. The optimal threshold for
the term frequency (i.e. the one obtained with all the train-
ing set) is not easily induced by the decision-tree learner. On
the other hand, ¥ is rarely more effective than simple term
frequency. In Figure 4 , the same test is repeated for hybrid
learners. The syntactic space becomes more interesting when

Error Rate %
=
(6]

% Bad

Figure 4. Error rate on the ¥ x & and A x ® ”frequency”
spaces against the A space.

used in combination with term frequency as already suggested
by the Table 2. This is also shown by the plots of Fig. 4: the
3 x ® and A x ® space are comparable to A. Even if ¥ x ®
is still under the performances obtained by A, it is a valuable
alternative to the simple frequency for its low computational
training costs.

4 Discussion

In this paper, terminology acquisition (TA) has been modelled
as an inductive process that generates an explicit term model
from an implicit domain model, i.e. a corpus plus a (possibly
partial) terminology database. The adoption of linguistically

principled descriptions of corpus examples has enabled the
derivation of features relevant to the TA activity. The re-
sulting learner (based on decision trees) has been extensively
measured. Results suggest that lexicalised and grammatical
information about term contexts are effective information in
the target model. Performance obtained outperforms previ-
ously published results on the same tasks. Moreover, given
the richness of the proposed (and implemented) feature rep-
resentation scheme, the method can be easily adaptable to
more complex task. In particular, the availability of term lists
enriched with syntagmatic descriptions enable the study of
semantic properties over them. As proposed elsewhere, learn-
ing of a semantic (rather than simply syntagmatic) model of
the underlying terminological concepts is a step towards ter-
minology structuring and ontological induction. The overall
high performances obtained by the proposed learning archi-
tecture are thus the basis for the on-going research activity in
the area ontological induction from texts.
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