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Abstract. This paper presents experimental comparison between
selected neural architectures for chaotic time series prediction prob-
lem. Several feed-forward architectures (Multilayer Perceptrons) are
compared with partially recurrent nets (Elman, extended Elman, and
Jordan) based on convergence rate, prediction accuracy, training
time requirements and stability of results.

Results for chaotic logistic map series presented in the paper in-
dicate that prediction accuracy of MLPs with two hidden layers is
superior to other tested architectures. Although potential superiority
of MLPs needs to be confirmed on other chaotic time series before
any general conclusions can be drawn, it is conjectured here that on
the contrary to the common beliefs in several cases feed-forward nets
may be better suited for short-term prediction task than partially re-
current nets.

It is worth noting that significant improvement in prediction accu-
racy for all tested networks was achieved by rescaling the data from
interval (0,1) to (0.2, 0.8). Moreover, it is experimentally shown that
with a proper choice of learning parameters all tested architectures
produce stable (repeatable) results.

1 INTRODUCTION

Neural networks are widely used for time series prediction and anal-
ysis [7, 8, 4, 1]. Except for the most popular applications to financial
(usually stock market related) problems they are also applied to sev-
eral other nonlinear prediction problems, e.g. weather forecasting [6]
or bankruptcy prediction [5, 2].

One of important application areas of neural nets is chaotic time
series prediction often treated as an indicator of the method’s quality
before its application to the real (usually financial or business) data.
There are two main advantages of such approach: first of all - chaotic
series are usually less demanding in terms of complexity and time re-
quirements, and therefore well suited for preliminary tests; secondly
- there exist several benchmark chaotic series (logistic map, sunspot
series, Mackey-Glass, etc.), which provide a base for comparison be-
tween different methods.

The main objective of this paper is experimental comparison be-
tween selected feed-forward and partially recurrent neural architec-
tures for chaotic time series prediction based on logistic map series.
The underlying questions are the following:

� how accurate predictions are possible with particular neural archi-
tectures ?
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� are partially recurrent nets really better suited for prediction tasks
than feed-forward ones ?

� what are the main advantages and disadvantages of both ap-
proaches ?

The paper is organized as follows: section 2 presents logistic map
series used as experimental evaluation data, section 3 outlines the
concept of the experiment (tested architectures, data files and training
algorithms), section 4 presents experimental results. Conclusions and
possible direction for future work are presented in section 5.

2 LOGISTIC MAP SERIES

Logistic map is one of classical benchmarks for time series predic-
tion. The series is defined by the following recursive equation:

���� � ������ ���� �� � ��� ��� (1)

where � � ��� �� is a predefined parameter. The choice of � deter-
mines the “degree of chaos” in eq. (1).

For any given time series the amount of chaos in the data is usu-
ally measured by the so-called Lyapunov Exponent [9], which is
a scalar value (denoted by �). � � � characterize chaotic series,
whereas � � � denote non-chaotic systems. The plot of � versus �
for �� � ��	�	
 is presented in Figure �. From Figure � it can be
seen that chaotic series are generated for �� � � � �, for some ��3.
The highest value of � - which corresponds to the highest amount of
chaos in logistic equation - is obtained for � � �. Following [3] we
have used

� � � and �� � ��	�	
 (2)

in all tests presented in this paper4. The first ��� values of the series
(1)-(2) are presented in Figure 	.

3 EXPERIMENT DESCRIPTION

A set of a priori selected architectures, described in more detailed in
the next subsection was tested in the experiment. For each architec-
ture suboptimal selection of internal network’s parameters (number
and size of hidden layers, time window size, self-loop weights in
partially recurrent nets) and training coefficients (learning rate, mo-
mentum) was made based on preliminary tests. Once these parame-

� It can also be seen that � � � also for some choices of �� � � � �. These
“exceptions” are called �-windows [9].

� Our results are compared with [3] in section 4.2.



Figure 1. The plot of Lyapunov Exponent versus � for logistic map series
with �� � ������.

Figure 2. The first ��� values of logistic map series generated for � � �
and �� � ������.

ters were chosen, they remained fixed during final experiment5. In all
tested networks sigmoidal neurons were used.

3.1 Tested architectures

Four types of neural architectures were tested:

� multilayer perceptrons with one hidden layer (��	���, �����
�, ������, �������) and two hidden layers (���
��
��,
�� 		 � 		 � �, �� ��� ��� � and �� ��� ��� �),

� Jordan networks with one hidden layer, feedback one-to-one
connections between output layer and additional state layer and
fixed self-loop connections in state layer neurons. The following
architectures were tested: �� ��� �, �� 	�� �, �� ��� � and
�� 

 � �, each with one element state layer,

� Elman networks with one hidden layer and one context layer.
Outputs of hidden layer neurons were connected one-to-one with
inputs to context layer neurons and each context layer neuron
had a fixed self-loop connection. Context neurons were fully con-
nected with hidden layer neurons. The following architectures
were tested: � � �� � �, � � 	� � � and � � �� � � with re-
spectively ��� 	� and �� neurons in the context layer,

� extended Elman networkswith two hidden layers and one-to-
one connected with them two context layers (one context layer
for the first hidden layer and the other one for the second hid-
den layer). Each context layer neuron had a fixed self-loop con-
nection. Context neurons were fully connected with respective
hidden layer neurons. The following architectures were tested:

� Except for some tests with partially recurrent nets were adaptive methods
were used.

� � 
 � 
 � �, � � �� � �� � � and � � �
 � �
 � � each
with two context layers of size 
, �� and �
, respectively.

3.2 Data files

Several data files were generated based on logistic equation (1) with
parameters (2). Each data file was composed of ���� subsequent val-
ues divided into three subsets: training set (the first 
�� points), val-
idation set (next ��� points) and test set (the last 	�� points).

All data was rescaled from interval ��� �� to interval ���	� ����
according to suggestion stated in [11], which was fully confirmed in
preliminary simulations (see Figures �-
).

Figure 3. Comparison of preliminary results for the tested Elman-type
architectures on the original (0,1) dataset and the one rescaled to (0.2, 0.8).

Figure 4. Comparison of preliminary results for the tested feed-forward
architectures on the original (0,1) dataset and the one rescaled to (0.2, 0.8).

3.3 Training algorithms

Feed-forward networks were trained with standard backpropagation
with momentum algorithm and partially recurrent ones with back-
propagation with momentum for partially recurrent nets. Simulations
were performed in the Stuttgart Neural Network Simulator environ-
ment [10]. For training feed-forward nets fixed learning rate � � ���
and fixed momentum 	 � ��� were used in all final tests. Jordan



Figure 5. Comparison of preliminary results for the tested Jordan
architectures on the original (0,1) dataset and the one rescaled to (0.2, 0.8).

In the figure AD denotes the case of adaptively chosen learning rate - as
oppose to all other cases where the fixed learning coefficient was applied.

nets were trained with � � ���
 and 	 � ���
, and parameters for
Elman nets were � � ��	 and 	 � ���
. In each case the choice of �
and 	 was based on initial tests. Due to very unstable results of these
tests for extended Elman architectures adaptive methods for chosing
learning rate and momentum were used in this case.

Several values for self-loop weights in state layer neurons of Jor-
dan networks and in context layer neurons of Elman-type networks
ranging from ��� to ��� were tested.

In the training procedure validation was made after every 	��
learning epochs. Training was stopped either after three subsequent
raises of validation error or after �� ��� training epochs.

3.4 Supplementary tests

Some limited number of experiments was also performed for longer
term prediction. In these tests the goal was to predict ���� for 
 � �
based on ��. Reasonable results were obtained for 
 � 	� �, with
visible degradation for 
 � �.

4 RESULTS

Each architecture was tested on the same 	� data sets generated from
logistic map equation. In some cases the learning procedure became
stuck in a very early stage (e.g. after several hundred epochs) and
the results were therefore far from satisfactory. These tests were dis-
carded and final result for each network was calculated only among
successful tests. The number of unsuccessful tests varied between �
for MLPs and 
 for Jordan networks with 	� � for Elman nets.

4.1 Comparison of architectures

Comparison of the best architectures of each type is presented in Fig-
ure �. Closer look at results for all tested architectures in the “win-
ning” type, i.e. feed-forward nets with 	 hidden layers is presented
in Figure 
.

On both figures ��
� denotes the mean value of the set of
mean square root errors generated in individual tests, �������
denotes the standard deviation and ������� the standard error

Figure 6. Comparison of the best architectures in each of five types of
networks.

calculated as ������� � ��������
�

��� �� where � is the
number of tests.

Several conclusions can be drawn from Figure � and the rest of
experimental results not presented here. The main ones are the fol-
lowing:

[1] The most accurate predictions were obtained for feed-
forward networks with two hidden layers. The best prediction
was generated for �� ��� ��� � architecture with the ��
�
approximately equal to ��	 � ����.
When the network was run without the upper limit for the number
of training epochs the results were enhanced to ��
� � ��� �
���	 - after 	�� ��� epochs.

[2] Very good results, but one order of magnitude worse than for 	
hidden layer feed-forward nets, were obtained for extended Elman
architectures with adaptive learning and momentum rates. These
results were in turn one order of magnitude better than those for
partially recurrent architectures (Jordan and Elman) with � hidden
layer.

[3] The best result among perceptrons with � hidden layer was ��

order of magnitude worse than the best result for 	 hidden layer
perceptrons. Hence, it is suggested that networks with 	 hidden
layers (both feed-forward and partially recurrent) are more
effective in short term prediction task for chaotic time series
than their � hidden layer counterparts.

[4] Partially recurrent nets converged faster than feed-forward
ones, but on the other hand were generally more sensitive to
learning and momentum rate changes. As mentioned before, in
case of extended Elman networks, we were unable to select fixed
learning coefficients that generated stable results.

[5] Significant improvement was achieved by rescaling the data
from interval ��� �� to ���	� ����.

[6] Results were repeatable with relatively low variances for all ar-
chitectures.

4.2 Comparison with literature

Experimental results were compared to those presented in [3] where
similar experiment was reported. For all tested types of networks our
results were superior to those presented in [3].

Seeking for possible explanations of these differences we exactly
repeated Hallas and Dorfner’s tests and obtained very close results



Figure 7. Comparison of � hidden layer feed-forward networks tested in
the experiment.

to theirs. Further analysis of both experiments led to three aspects,
which most probably have caused superiority of our results:

� first, in our experiment learning with momentum was applied,
� second, the data was rescaled to ���	� ����6,
� third, individual learning and momentum coefficients (or adaptive

scheme in case of extended Elman networks) were applied in our
tests, whereas in [3] the same coefficients were used for all types
of networks.

4.3 Further analysis of results

Certainly, the most surprising conclusion that can be drawn from the
above set of experiments is the superiority of feed-forward architec-
tures over the recurrent ones (which ”by definition” are supposed
to be more appropriate for predicting recurrent time series). Even
though a similar qualitative conclusion was reported in [3] it is still
interesting to search for a possible explanation of this phenomenon.

One of the potential explanations is the fact that in the recursive
logistic equation value ��
 � �� at time 
 � � depends only on the
last time step value i.e. ��
�. Previous values of the series do not (ex-
plicitely) provide any additional information for predicting model.
Certainly, due to the recursion mechanism ��
� �� does implicitely
depend also on previous values: ��
���� ��
�	�� � � � � ����, though
this dependence is potentially much weaker compared to ��
�.

In order to verify the above claim additional tests were performed.
First feed-forward networks (MPLs) tested in this work were com-
pared to respective feed-forward networks trained based on the ��-
element input (composed of ��
�� ��
���� � � � � ��
���). Next, par-
tially recurrent architectures were tested against the choice of self-
recurrent connection strengths. The following conclusions from the
numerical results support the claim that ��
 � �� depends signifi-
cantly higher on ��
� than on previous elements of the logistic series:

� MPLs with one input performed better than those with ten inputs
(the last ten values of the series),

� the best results for partially recurrent networks were obtained
when self recurrent loops in state (or context) layers were dis-
abled, i.e. the strenghts of these weights were set to 0.

Another way to estimate the relevance of previous values in the se-
ries is to calculate the strenght (the sum of absolute values) of out-

� Certainly results were compared after reverse rescaling to interval ��� ��.

going weights from individual inputs in the multi-input MLP net-
work 7 (e.g. the ��-input network described above composed of
��
�� ��
���� � � � � ��
��� values). Such analysis - shown on Figure
� - additionally confirms the fact that significance of the last value of
the series is superior to the others.

Figure 8. The plot of estimated influence of previous logistic map series
values: ���� ��� � � 	� � � � � � and ���� on prediction of the current value:
���
 �� in case of ��-input feed-forward architecture. Bars represent the

sums of absolute values of outgoing weights.

5 MAIN CONCLUSIONS AND DIRECTIONS
FOR FUTURE WORK

Results presented in this paper indicate that neural nets with 	 hidden
layers are superior to those with � hidden layer in short-term predic-
tions of logistic map time series. Although potential superiority of
MLPs needs to be confirmed on other chaotic time series before any
general conclusions can be drawn, it is conjectured here that on the
contrary to the common beliefs in several cases feed-forward nets
may be better suited for short-term prediction task than partially re-
current nets. It is worth noting that similar qualitative conclusions
were also presented in [3], however with generally poorer prediction
results. An interesting observation is relatively high stability of re-
sults for all architectures.

Several improvements of this work may be considered in future.
The first idea is to replace standard backpropagation method by more
efficient training algorithms such as Quickprop or Rprop. Next, addi-
tional improvement is expected with application of adaptive schemes
for learning and momentum rates.

There are also several open problems, e.g. verification of the above
results on another chaotic series or application to longer term predic-
tions. Finally, an interesting issue is to compare the above types of
neural architectures based on financial or business data. Our current
research is focused on that area.


 Certainly such intuitive approach is acceptable only for rough estimation
purposes and under the condition that all inputs are rescaled to the same
range (which is true in case of logistic map series).
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