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Abstract. Properties of a novel algorithm called non-negative ma-
trix factorization (NMF), are studied. NMF can discover substruc-
tures and can provide estimations about the presence or the ab-
sence of those, being attractive for completion of missing infor-
mation. We have studied the working and learning capabilities of
NMF networks. Performance was improved by adding sparse code
shrinkage (SCS) algorithm to remove structureless noise. We have
found that NMF performance is considerably improved by SCS noise
filtering. For improving noise resistance in the learning phase, weight
sparsification was studied; a sparsifying prior was applied on the
NMF weight matrix. Learning capability versus noise content was
measured with and without sparsifying prior. In accordance with ob-
servation made by others on independent component analysis, we
have also found that weight sparsification improved learning capa-
bilities in the presence of Gaussian noise.

1 Introduction

In most pattern recognition problem noise filtering is of central issue.
The separation of noise from data is, however, problem-dependent.
In information theory, noise is considered structure-free, i.e. of max-
imal entropy. For continuous variables, Gaussian distribution of unit
variance has the maximal entropy. The recently introduced sparse
code shrinkage (SCS) algorithm [3], aims to separate Gaussian noise
from structured components by minimizing mutual information. This
novel approach can be considered as a generalization of wavelet de-
noising [3]. The generalization concerns the process of the learn-
ing of the underlying basis set given an ensemble of inputs and then
performingdenoisingvia thresholding, similarly to in the case of
wavelet bases. SCS originates from independent component analy-
sis (ICA, also called blind source separation, or de-mixing), which
has about a ten years long history now [5, 2, 1, 9, 8]. The objective of
ICA algorithms is to optimize information transfer for linearly mixed
inputs [4]. ICA removes higher order correlations from components.
ICA transformed information has limited power in pattern comple-
tion problems that assume correlations between components.

Decompositionof multivariate data into correlating sub-structures
can be useful in pattern completion problems, e.g. when occlusion
may occur. The objective of learning is to seek sub-parts in individ-
ual inputs of an ensemble of inputs to enable inferencing. A powerful
recent technique is non-negative matrix factorization (NMF, [6, 7]),
which aims to find sub-structures in a given set of inputs. NMF as-
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sumes that each input is built from non-negative components and is
mixed by a matrix having non-negative matrix elements.

In this paper a combination of SCS and NMF algorithms is pro-
posed for filtering noisy inputs. Weight sparsification using a spar-
sifying prior is applied to the NMF matrix to improve learning ca-
pabilities for noisy inputs. In Sec. 2 the joined architecture is de-
scribed. Simulation results on a the two-bar problem are presented in
Sec. 3. Conclusions are drawn in Sec. 4. For completeness and for
the reproduction purposes a short summary of the algorithms and the
derivation of the learning rules are provided in the Appendix. De-
tailed derivations can be found in the cited literature.

2 Architecture

SCS is a bottom-up filter, which assumes that inputs are mixed from
independent sources. In this case, the SCS filter is capable to re-
cover the original sources. Moreover, these original sources can be
found even if the mixed inputs are corrupted by additive Gaussian
noise. NMF, on the other hand, can be seen as a top-down generative
algorithm that searches for positively correlated components in the
inputs under the condition that both the sources and the mixing ma-
trix can have only non-negative elements. NMF optimizes the inter-
nal representation to minimize the reconstruction error between input
and generated (reconstructed) input. NMF provides positive magni-
tudes of positive components to be superimposed for reconstruction.
In turn, NMF discovers positive substructures, which can be super-
imposed. For faces, for example, NMF provides barely overlapping
components, such as eyes, mouth and nose [6, 7].

The two algorithms can be merged into a single architecture as
shown in Fig. 1, whereW denotes the bottom-up SCS transforma-
tion that together with denoising produces the sparse components,
whereasQ is the NMF generative matrix.INMF denotes the NMF
procedure. The architecture depicted in Fig. 1 will be referred to as
the ‘loop’.

We investigated the learning capabilities and working perfor-
mance of the proposed joined architecture. The loop exhibited good
parameter-free performance with the following settings:

First, bottom-up learningThe sparse components were computed
using the non-linear SCS method. The bottom-up demixing matrix
W is learned on noise-free inputs, whereas the SCS shrinkage func-
tion is estimated from noise covered inputs in this phase.

Second, top-down learning:Inputs are filtered by the bottom-up
matrixW and the SCS non-linearity is applied. The non-linear out-
puts are multiplied by the pseudo-inverseW+ of matrixW (which
is equal toWT in our case [3]). In other words, the inputs are pro-
jected into the SCS subspace defined by the row vectors of matrix
W and sparsification is performed on the projections. Afterwards,



these sparse components are transformed back to the original in-
put space. The reconstructed inputs are shifted to the positive range.
These bounded and non-negative inputs are subsequently used in
batch mode to compute the NMF basis set (or NMF matrix,Q).

Working phase:Inputs are projected into the SCS subspace as be-
fore. Sparsification occurs, sparsified components are projected back
to the input space. NMF componentsh are developed using the NMF
iteration procedure (INMF ) keeping matrixQ unchanged. The iter-
ation minimizes the mean square of the reconstruction error. Recon-
structed input̂x can be computed by multiplying the NMF matrixQ
with the NMF vectorh from the right.
For further details, see Appendix.

Figure 1. Graphical representation of the algorithm
x, s,h andx̂: input, shrunk (denoised) ICA components, hidden (NMF)
variables, and reconstructed input, respectively.W, W+, Q andINMF

denote demixing matrix, pseudoinverse of the demixing matrix, NMF matrix
and NMF iteration, respectively. Arrow: linear transformation, arrow with
black dot: linear transformation with component-wise non-linearity (the

shrinkage kernel), lines with two arrow-heads: iteration. The algorithm was
utilized in a two phase mode (see text for details).

3 Results

3.1 The bar example

Orthogonal bars were used for demonstration purposes. The orien-
tation of bars can be either horizontal or vertical. The task was to
identify and reconstruct the bars on gray-scale images while (i) each
input is composed of two or more bars, (ii) inputs are covered by
additive Gaussian noise of zero mean but with varying variance in
different experiments. We studied the effect of the additive noise on
the quality of the reconstruction. The ‘original’ inputs consisted of
white bars represented by1’s for each vector component, whereas
the background was black having0 values in the appropriate vector
component. Overlapping components of bars were not added but as-
sumed value1. Noisy inputs were constructed as follows: Zero mean
Gaussian noise with various standard deviations (STD) was added
to the values of the noise-free inputs. These noise corrupted inputs
were shifted and clipped to the positive range. The amount of shift-
ing was determined so that clipping preserved90% of the noise. An
example of a noise-free input and its noise added version are shown
in Fig. 2(A) and (B), respectively.

3.2 Experimental demonstrations

Simulation results on reconstruction properties are shown in Figs. 2
and 3. Figure 2(B) depicts one of the inputs used for training and test-
ing. The SCS, NMF, and combined SCS and NMF reconstructed in-
puts are shown in Fig. 2(C)-(E). NMF (Fig. 2(D)) fails with such high

(A) (B) (C) (D) (E)

Figure 2. Input and it’s reconstructed forms
(A) Perfect input without noise. Input size:12× 12. (B) Noise-free input
covered with zero mean1.5 STD Gaussian noise. (C) Reconstructed input

(RI) with SCS. (D) RI with NMF. (E) RI with combination of SCS and
NMF. Note the improved reconstruction for the combined method compared

to single SCS or single NMF algorithms. The number of basis vectors for
both algorithms (SCS, NMF) was set to24.

noise content, it can be seen that reconstructed input has a high noise
content. Instead, the combined method ‘predicts’ higher amplitudes
for pixel values corresponding to the1’s of the original (noise-free)
input, leading to a better reconstruction.

Reconstructing capabilities of the different methods are shown in
Fig. 3 as a function of noise. As it can be seen on this figure, per-
formance of NMF can be improved by both SCS pre-filtering and by
weight matrix sparsification.
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Figure 3. Reconstruction abilities of the different methods
Reconstructed inputs produced by different methods for different noise

content. Standard deviation of Gaussian noise is shown on the leftmost side.
(A): noise-free input, (B): noise covered input, (C): SCS reconstruction, (D):
NMF reconstruction, (E): using SCS pre-filtering, (F): NMF reconstruction

with NMF matrix trained with weight sparsification, (G): NMF
reconstruction using SCS pre-filtering and with NMF matrix trained with

weight sparsification.

Additional information can be gained by examining the basis sets
of the different methods (Fig. 4). Fig. 4(A) depicts the ICA ba-
sis vectors trained on noisy inputs. ICA basis vectors reveal the
underlying line-like structure. ICA, as expected, fails to discover
the positive components. Instead, ICA finds basis vectors of dif-
ferent signs. Moreover, ICA fails to find the single line structure
if more bars are present in each input. (This effect is not shown
here). NMF is much less sensitive to the number of bars presented
simultaneously in the inputs. NMF, on the other hand, is noise sen-
sitive. The high noise content of the NMF basis set (Fig. 4(B)) ex-



plains the poor performance of NMF reconstruction shown in Fig. 2.
NMF trained on inputs that have undergone SCS pre-filtering be-
fore NMF training represent the original noise-free inputs better
(Fig. 4(C)). The NMF basis set is also improved somewhat by weight
sparsification (Fig. 4(D)). Further improvement can be seen when
both SCS pre-filtering and NMF weight sparsification are applied
together (Fig. 4(E)). In this last figure, as expected, small elements
of the NMF matrix have disappeared; the figure seems ‘cleaner’. It
is, however, unexpected that the larger elements of the NMF matrix
become more balanced, the variance of pixel grey level within each
bar became lower upon weight sparsification.

Quantitative dependencies on noise are shown in Fig. 5. Root
mean square (RMS) reconstruction error versus noise is depicted
for NMF and for the combined NMF and SCS method. Figure 5(A)
shows the noise dependence of the reconstruction error for a per-
fect single bar input covered with varying amount of noise. NMF
(SCS+NMF) results are shown by dashed (dotted) lines. Another plot
shows the analogous results for two bar inputs (Fig. 5(B)). The per-
formance is improved by the combined method in both cases. SCS
has attractive noise resistance properties even if it is unable to find the
components of the underlying structure, so SCS can improve noise
resistance of NMF. Note that the RMS error is small but non-zero
for inputs with zero noise. This is because of the non-linearity in the
construction of the inputs – pixel values of overlapping bars are not
added.

There is a dependence of performance on the input dimension and
on the number of hidden components. It was found that the noise
filtering capabilities of SCS have a more pronounced positive effect
on the NMF algorithm if the number of hidden components is smaller
relative to the dimension of the input.

It may be important to emphasize that SCS was trained on noise-
free inputs. In turn, it may seem that noise-filtering remains a prob-
lem for the combined method. This is not the case, however. In our
architecture, the task of SCS is not the learning of the hidden vari-
ables, because this is done by the NMF algorithm. In our architec-
ture the task of SCS is simply the estimation and the removal of the
Gaussian noise. To this end, the learning and the removal of the noise
content, a feature that SCS exhibits, is satisfactory. Finally, we note
that the mathematical theorems concerning the convergence of learn-
ing and the stability of the iterative procedures of both algorithms are
left intact in this loop structure by construction.

4 Conclusions

Non-negative matrix factorization was studied in this paper. NMF
has attractive properties for pattern decomposition and, in turn, has
potentials for correlation based pattern completion. However, it was
found that NMF is noise sensitive. Two methods were studied to
overcome this difficulty. Sparse code shrinkage denoising, which was
used for pre-filtering, and weight weight sparsification, which was
applied to improve the quality of the basis vectors.

The combined method has attractive properties because of two rea-
sons:

• Gaussian noise can be separated by the SCS algorithm and, in turn,
the noise sensitivity of the NMF method is lowered.

• Efficient correlation based pattern completion can not be expected
either from ICA or from SCS, because components of these meth-
ods have minimized second and higher order correlations. SCS
followed by the NMF algorithm has good chances to discover sub-
structures and, in turn, the combined method has good chances in
pattern completion tasks.
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Figure 4. Learned sets of basis vectors
Sets of learned basis vectors for (A): ICA basis set, (B): NMF basis set, (C):
NMF basis set trained on inputs pre-filtered by SCS, (D): basis set of NMF
augmented with weight sparsification, (E): NMF basis set trained on inputs

pre-filtered by SCS and augmented with weight sparsification. STD of
Gaussian noise equals 1.5 for all cases.
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Figure 5. Reconstruction errors
Markers denote different methods. Line with point marker: NMF: dashed
line, SCS and NMF: dotted line. Line without marker: NMF with prior:
dashed line, SCS and NMF with prior: dotter line. (A) Root mean square

reconstruction error for single bar inputs versus STD of noise. (B)
Dependence of the root mean square reconstruction error on standard

deviation of the noise for double-bar inputs. In both cases, performance of
the combined method is significantly better and the usage of sparsifying

prior decreases the reconstruction error.

Weight sparsification was shown to improve the learning properties
of the NMF algorithm.

Appendix

Weight Sparsification

Given a non-negative matrixV, find non-negative matrix factorsQ
andH such that:

V ≈ QH, (1)

where (following the notation of [7])V ∈ Rn×m
+ , Q ∈ Rn×r

+ , H ∈
Rr×m

+ .
Consider the following cost function:

F (Q,H) = exp

 
1

2

X
ij

�
Vij − (QH)ij

�2
!

, (2)

[7] presents an algorithm that optimizes (2) and proves its conver-
gence to a local minima. We extend the mentioned cost function with
a sparse exponential prior on the weight matrixQ and representation
matrixH:

F (Q,h) = exp
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X
ij
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Vij − (QH)ij
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·
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ij

γ1Qij
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· exp
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ij

γ2Hij
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,

whereγ1, γ2 ∈ R+.
For simplicity we can optimize the logarithm of cost function (3)

(the logarithm is a monotone function). The modified cost function
is then

F = log F (Q,h) =
1

2

X
ij

�
Vij − (QH)ij

�2

+
X
ij

γ1Qij +
X
ij

γ2Hij (3)

Using the derivative of (3) with respect toH:

∂F

∂H
= −QT V + QT QH + γ2 (4)

and the derivative of (3) with respect toQ:

∂F

∂Q
= −VHT + QHHT + γ1 (5)

the following gradient algorithm can be derived:

(a) t = 1;

(b) h(t) = h(t) + α1

�
QT Qh (t)−QT v (t) + γ2

�

(c) h(t) = ⊕(h(t))

(d) Q = Q + α2

�
Qh (t)h (t)T − v(t)h(t)T + γ1

�

(e) Q = ⊕(Q)
(f) if convergence go back to (b), else go to (g)
(g) t = t + 1, back (b)

where function⊕ cuts the negative values,α1, α2 are learning pa-
rameters,h(t) andv(t) are the tth column vector ofH andV, AT

denotes the transpose of matrixA. Convergence of the algorithm is
guaranteed by an appropriate choice ofα1, α2.

Lee and Seung [7] give a more compact update rule forQ andH.
We extended their derivation for the modified optimization function
with sparse exponential prior:

Definition 4.1. G(h, h′) is an auxiliary function forF (h) if
G(h, h′) ≥ F (h), G(h, h) = F (h)

Lemma 4.2. If G is an auxiliary function forF , then F is non-
increasing under the update

ht+1 = arg min
h

G(h, ht) (6)

Proof. F (ht+1) ≤definition G(ht+1, ht) ≤eq.(6) G(ht, ht) =
F (ht)

Lemma 4.3. If K(ht) is a diagonal matrix Kij(h
t) =

δij(Q
T Qht)i/h

t
i, (δ is the Kronecker delta), then

G(h,ht) = F (ht)+(h−ht)T ∂F (ht)+
1

2
(h−ht)T K(ht)(h−ht)

(7)
is an auxiliary function for

F (h) =
1

2

X
i

(vi −Qih)2 + γ2

X
i

hi

Proof. G(h,h) = F (h) is obvious.
To proveG(h,h) ≤ F (h) we have to compare the Taylor series

of F (h):

F (h) = F (ht) + (h− ht)T ∂F (ht) +
1

2
(h− ht)T (QT Q)(h− ht)

using
∂2F

∂2H
= QT Q

with equation (7) to find thatG(h,h) ≤ F (h) is equivalent to

G(h,ht)− F (h) ≥ 0

(h− ht)T (K(ht)−QT Q)(h− ht) ≥ 0



To prove positive semidefiniteness, consider the matrix:Mij(h
t) =

ht
i

�
K
�
ht
�−QT Q

�
ij

ht
j which is just a re-scaling of the compo-

nents ofK −QT Q. ThenK −QT Q is semidefinite if and only if
M is, and

vT Mv =
X
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vihiδij(Q
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2 ≥ 0

ReplacingG(h,ht) in equation (6) by (7) yields the following
update rule:

∂G(h,ht)

∂h
= 0

∇F (ht) + K(ht)h− 1

2
K(ht)ht − 1

2
K(ht)ht = 0

=⇒ K(ht)h = K(ht)ht −∇F (ht)

=⇒ ht+1 = ht −K(ht)−1∇F (ht)

=⇒ ht+1
i = ht

i
(QT v)i − γ2

(QT Qht)i

(8)

Similar update rule forQ can be derived by reversing the roles
of Q and H (in function G and F ) and using a diagonal matrix
Kij(Q

t) = δij(Q
tHHT )i/Q

t
i:

Qt+1
ij = Qt −K(Qt)−1∇F (Qt) =

Qt
ij

(VHT )ij − γ1

(QtHHT )ij

(9)

One can only estimate the optimalγ1 andγ2 in equation (8) and
(9) to preserve the non-negativity ofh andQ. Time (input) varying
γ1 andγ2 can also be given:

γ1 =
1

k1
(VHT )ij , γ2 =

1

k2
(QT v)i,

wherek1, k2 ∈ (1,∞).

One Loop of the combined algorithm

The combined algorithm in one loop can be summarized as follows.
Let x ∈ Rn denote the input to the system.

1.(a) Learning phase:Estimation of the sparse coding transforma-
tion W and shrinkage functiong.

(b) Working phase:Loading the sparse code transformation matrix
W and estimating the shrinkage functiong.

2. Computation of the projection on the sparsifying basis:s =
g(Wx), whereg is the estimated shrinkage function.

3. Estimation of the denoised inputs:xSCS = WT s.
4.(a) Learning phase:NMF basis setQ and the hidden variablesh

are estimated using the denoisedxSCS inputs. In the NMF
iteration, the cost function was applied with an additional
sparsification prior on the NMF matrix:

J = exp(‖X−QH‖2frob) · exp(γ · ‖Q‖1frob),

where columns of matrixH represent the hidden representation
vectors, columns of matrixX represent the denoisedxSCS in-
puts,γ defines the strength of the prior (γ = 0 means no prior).
Subscript ‘frob’ indicates Frobenius norm defined as the sum of
the squared matrix components:‖Q‖p

frob =
P

ij(Qij)
p.

The batch learning rules for the basis set and hidden variables
were used:

Hij ← Hij
(QT X)ij

(QT QH)ij
, Qij ← Qij

(XHT )ij − γ

(QHHT )ij

(b) Working phase:Using the NMF basis set (Q) computed in
batch mode, the hidden variables (h) can be estimated. Input:
xSCS .

5. Estimation of the reconstructed inputx̂ by multiplying the hidden
variableh with the NMF basis matrixQ.
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