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Abstract. This paper explores the convergence between cognitive T;_; and the chain fromw; to N, whereN is either a node of
modeling and engineering solutions to the parsing problem in NLP. T;_1, or the lowest node of' dominating both the root of;_;
Natural language presents many sources of ambiguity, and several andw;.

theories of human parsing claim that ambiguity is resolved by us-

ing past (linguistic) experience. In this paper we analyze and refind heconnection patffior w; is the difference between the incremental

a connectionist paradigm (Recursive Neural Networks) capable offeesl: andT;_,. In this framework, a (non lexicalized) incremental
processing acyclic graphs to perform supervised learning on syntagammar is defined as the trip(e/, P, C) being\" a set of nonter-

tic trees extracted from a large corpus of parsed sentences. FolloRinals,P a set of POS (Part of Speech) tag symbols, @rdset of

ing a widely accepted hypothesis in psycholinguistics, we assume a#Pnnection paths. In each connection path we distinguish two spe-
incremental parsing process (one word at a time) that keeps a cofial nodes, called thanchorand thefoot, annotated with symbols in
nected partial parse tree at all times. By implementing a parsing sim’ and P, respectively. A derivation in this grammar is a sequence
ulation procedure, we collect a large amount of data that shows th@f attachment operations having the fo(i#i -1, cp;) — 7:, where
viability of the RNN as informant of a disambiguation process. Wecp; € C. We define theight frontier as the sequence obtained by
analyze what kind of information is exploited by the connectionisttaking the rightmost child of every node starting from the root and
system in order to resolve different sources of ambiguity, and we se@nding on the foot node. For an attachment to be admissible the fol-
how the generalization performance of the system is affected by th#®wing two conditions must hold: (1) if > 0 there must exist a node
tree complexity and the frequency of specific subtrees. We finally in the right frontier of7; _; matching the anchor ef;, and (2) the

propose some enhancements to the architecture in order to achievdo®t of cp; must be the POS tag of;. TreeT; is then constructed by
better prediction accuracy. joining T3 —1 andcp; atv (see Fig.2). Although interesting because of

its strong connection to human parsing, such a grammar is highly am-
biguous. For example, after extractidrom a set of 40,000 parsed
1 INTRODUCTION sentences in the Penn Treebank [9], the expected number of admissi-

Incremental processing of natural language (incrementality for shortple attachments at a single word position is on average 126, although
is an intuitively plausible hypothesis upon the human language proonly one attachment is correttCosta et al. [3, 2] recently proposed
cessor. The incrementality hypothesis has received a large expefe prediction of correct attachments by using a machine learning
mental support in the psycholinguistic community over the years [5]lgorithm based on recursive neural networks [6]. They show that af-
More recently, the hypothesis has been exploited in a few computder training on a small corpus of 500 parsed sentences, the accuracy
tional approaches to parsing. Lane & Henderson [8] propose Simplef prediction significantly outperforms common linguistic heuristics
Synchrony Networks, an architecture that can learn to generate strugtich as late closure and minimal attachment [7]. Moreover, the model
tural relationships between syntactic constituents and is employed gffectively reproduces well known cognitive phenomena such as re-
build a parse tree for a given input sentence. Roark & Johnson [10§ency attachment for adverbs, relative clauses in English, closure am-
devised an incremental parser based on production rules learned lrguities, and preference for NP over S in complement ambiguities
the framework of stochastic context-free grammars. In its general1]l. The model proposed in [2] is briefly sketched in the next sec-
form, the incrementality hypothesis implies that the semantic intertion. In the rest of this paper we extensively study the behavior of
pretation of some fragment of the sentence is available as the scan e model using a realistic corpus of about 42,000 parsed sentences
the input material proceeds from left to right so that the syntactic anaffom the Penn TreeBank. The aim of this investigation is twofold.
lyzer has to keep a totally connected structure at all times (that is, thEirstly we want to acquire a deeper understanding on the preferences
semantic interpreter has no means to work on disconnected itemggXpressed by the connectionist model (Section 4). Secondly we want
Under this assumption, parsing proceeds from left to right througio exploit this knowledge to enhance the network performance. In
a sequence of trees, each spanning one more word to the right unfection 5 we show how the results of the investigation enabled us to
completion of the sentence. The above notion of incrementality cagonceive two novel prediction algorithms, obtaining significant im-
be briefly formalized as follows. Given a sentesce wo - - - wjs|—1 provements in terms of accuracy and computational effort.

and a parse tre®, the incremental tre@&; spanningwo, - - -, w; IS

recursively defined as: 2 LEARNING FIRST-PASS ATTACHMENTS

he chain fr its maximal syntactic projection if= r . . . . C
* the chain fromuy to its maximal syntactic projectionif= 0, o Our problem is to specify a learning architecture which is capable
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approach relies oRecursive Neural Networ{], a machine learn-  provides a wide range of semantic and coindexing information, we
ing architecture which is capable of learning to classify hierarchicahave used only syntactic information. The incremental parser suffers
data structures, such as the incremental trees which we employ finom the problem of left recursion. Since a left recursive structure
this paper. The task of the model is to take any given woycand  can be arbitrarily nested, we cannot predict the correct connection-
incremental treel’;_1, and to rank the candidate incremental treespath incrementally. There are a few practical solutions in the litera-
that can be produced by attaching to 7;_1. The highest ranked ture (see, e.g.,[12]), but in the current work we have resorted to an
tree will be chosen as the preferred alternative. More formally, eaclimmediate approach which is extensively implemented in the Penn
example is a pairi(;,j*), whereF; is the forest of alternatives (a bag Treebank schema: namely fattenthe tree structure and avoid the

of trees corresponding to all the incremental trees resulting from alleft recursion issue altogether. Consider as an example the applica-
the possible attachments of the current ward, and;* is the index  tion of the flattening procedure to a local tree like 1 that produces as
of the correct treeT;) in F;. A recursive neural network is asked to a result a tree like 2:

predict the conditional probability that a tr@& is the correct one,

given the forest: 1. [np [~np DT NN]PP]

2. [vp DTNNPP]

yij = P(j = j*|F3) for eachj € [1, | F] : :
In this work we convert a sequence of words in a sequence of POS

wherej is the index of a tree in the forest, ang; is the proba- tags and proceed thereafter only with that. This choice was aimed at
bility estimated for the tree indexeflin the forestF;. Assuming  analyzing what kind of preferences can be expressed and learned in
the correct tree belongs in the fordst(i.e., assuming the grammar terms of pure syntactical information. In future development of this
induced from the database of all available connection paths is conwork it will be interesting to establish the increase in performance
plete), the probabilities for all of the candidate trees must sum to bnce we introduce lexical information. As a final remark note that in
(Zj yi; = 1). A hidden state vectaK (v) € R" is associated with  the current work we do not investigate the problem of POS tagging,
each nodev and encodes the subtree dominatedvbyrhe dimen-  i.e. attributing the correct part of speech to each lexical item and we
sionn must be large enough to give sufficient expressive power taassume this information available.

the network. The state vector is computed by a state transition func-

tion which combines the state vectorsud daughters with a vector

encoding of the label of. This function is computed by a multi- 4 ANALYSIS

layer perceptron, which is replicated at each node in the tree. In ouBasing our intuitions on the domain knowledge we hypothesise a cer-
case, however, we are evaluating a forest of alternative trees, nottain number of structural characteristics of the incremental trees that
single tree, requiring a slight variation over the standard recursivare likely to have an influence over the generalization performance.
network described in [6]. In particular, we employ a recursive neuralThe features that we investigate are the outdegree of specially infor-
network to process each tree in the forest, and each network uses thwtive nodes (anchor, root) and the average outdegree, the complex-
same transition function and the same output function, with sharedy of incremental trees and of connection path structures measured
weights. Moreover, the output function is linear, yielding a real out-by the number of nodes,and the height, information about the num-
puta;; associated with thg-th tree inF;. All the linear outputs are  ber of the competing alternatives, and the word index in the sentence.
finally transformed using the softmax function (normalized exponen-The intuition behind trying to analyze the influence of the outdegree
tials), yielding the estimates of the conditional probabilitigs for on the net’s performance, is that backpropagating the error becomes a
each tree in the candidate forest. The trees are then ranked accordingre difficult task as the number of possible sources amongst which
to this probability, to obtain the order of preference. Training max-to partition the error increases. The reason for analyzing the influ-
imizes the conditional log-likelihood of the predicted preferences,ence of the number of nodes or the height is that a greater height
given the true treg™*. Optimization is based on a gradient descentimplies more steps in the propagation of the information and a big-
procedure, where gradients are computed by the back-propagati@er number of nodes implies a dependency on a greater number of

through structure algorithm [6]. possible configurations. In order to measure the correlation between
these features and the net's error we run an analyses employing the
3 DATA PREPARATION Spearman Rank Correlation test over a randomly sampled sub-set

of 200 pairs (error, feature). The test indicates a significant positive
Our results are based on the Wall Street Journal Section of the Penoerrelation for all features except for the root outdegree (Rs=0.017),
Treebank Corpus [9]. We have adopted the standard setting widelgnd a stronger negative correlation between the frequency of the con-
adopted in literature (see, e.g., [1]): specifically these sections havweection path and the error (Rs=-0.39). The most significant positive
been used to form the training set (section 2-21) of 39,832 sentencewsrrelations are with the size of the connection path (Rs=0.33) and
(950,026 words), the test set (section 23) of 2,416 sentences (56,683e forest size (Rs=0.31). We therefore analyze in greater details the
words) and the validation set (section 24) of 3,677 sentences (85,33%ature of the influence of connection paths’ frequency.
words). The entire dataset used for our experiments includes there-
fore 45,925 sentences for a total of 1,092,044 words. The averagg
sentence length is 24 in a range of 1-141 (1-67 in the test set). The’
labels (tags) on the nodes of the parse trees can be divided into PQ/&e start by evaluating the prediction for the first-pass attachment if
tags, or pre-terminal tags, and non-terminal tags: the first ones donthe decision were based on the connection path frequency informa-
inate a single lexical item and indicate the grammatical function oftion only. In Figure 1 we report a comparative test between the pref-
the item (ex. a noun or a verb) while the latter ones dominate seerence expressed by the net and the preference obtained by selecting
guences called phrases that can be made of pre-terminal and/or nahe incremental tree with the most frequent connection path. The test
terminal tags. In the Penn Treebank the POS tags are 45, and tiie done on the standard set of 2,400 sentences. The figure reports
non-terminal tags are 26. Although the syntactic annotation schemte proportion of correct guesses out of the total number of words

1 Accuracy and connection path frequency



with respect to the ranking position of the guess, i.e.afoe ¢ we simpler connection paths are more frequent. As a direct consequence
consider the cases when the system has ranked the correct eleméimt correct incremental trees are themselves simpler because derived
within the first i positions. On the axis we report the proportion of by joining simpler elements. It seems, though, that the frequency ex-
correctly classified elements in respect of the total number of posiplanation cannot account for all the cases, in other words it represents
tive elements. From Figure 1 we can reliably say that the net bases igsvalid heuristic but it does not capture the overall complexity of the
decisions on something more than the pure frequency of connectioproblem. To assess this point, we investigated the case where the net-
paths. The anova test was used to determine the influence of the logrork predicts correctly but where the correctly predicted alternative
transformed frequenéyon the network’s accuracy. We analyze the is not the most frequent. By selecting these cases we can judge the ef-
true positiveelements, i.e. elements that have been preferred by théect of structural factors controlling for the confounding influence of
net and that are correct, and ttadse positiveelements, i.e. elements frequency. We extracted the sub-sample that corresponds to this latter
that have been preferred but that are wrong. For the true positive thease, which accounts for the 10% of the cases. The result indicates
mean log-frequency of the connection path was 9.16 against a mean

of 5.24 for the second best ranked alternative. The difference being ! O s e i
highly significant on the random sample of 100 pairs. For the false :
positive dataset there was no significant difference in the mean of oo o
the log frequency (7.43 for the correct element vs. 7.22 of the pre- ) L — ]
dicted elementF" < 1). Notice also that the overall mean is much 08 [ e .
higher for the true positives than the false positives. This could be
the result of a more skewed distribution of the true positives with the 07|
correct alternative having a much higher frequency than the other al-
ternatives. This seems to indicate that the net finds it more difficult to 06
express a preference when it cannot draw information directly from

the frequency distribution of the alternative connection paths. In the SN N N—
following we test if, and how much, the net expresses a preference Minimal Atiachment over Late Closure -~
beyond just using the absolute frequency of the connection paths. g
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4.2 Simplicity and frequency Figure 1. Comparison with psycholinguistic and frequency heuristics

The aim of this analysis is to characterize the features of the increthat in those cases where the net is correct but does not rely on the
mental trees that are correctly classified in respect of the trees that afiequency information the elements chosen are in fact slightly more
preferred by the network but that turn out to be incorrect. The chareomplex (greater number of nodes 31 vs 30.8, greater height 7.74
acterization will be expressed in terms of a statistically significantvs. 7.45), though the anchor has preferably a much lower outdegree
difference in the average values of the features that we are investigaf2.49 vs. 4.77) and the anchor depth is much higher (6.58 vs. 3.13).
ing. More specifically we will try to identify some consistent prop- This result can be explained considering that the most frequent con-
erties of the set of true positive elements that distinguish them frommection paths tend to have very common anchors, such as VPs, and
the second preferred element, and we will do the same with the falsihat this bias the attachment point toward this less deep nodes making
positive and the correct eleméhtObserving the distribution of the them having a greater outdegree. The results, on the other hand, con-
values taken by these features, we note that the forest size, the anchism the hypothesis that frequency is very strongly correlated with
distance from the root, the root outdegree, and the average number odmplexity. To assess this in a more sound statistical way we run the
nodes do not exhibit a normal distribution. For these features we usBearson Correlation test on a sample of 10000 pairs of connection
the Wilcoxon Matched-Pairs Signed-Ranks Test on a random samplgaths’ number of nodes vs. log(freq). We obtained a correlation of
of 200 pairs from the dataset for each feature. For all the other fearho=-0.3291 (statistical significange< 0.001) indicating that sim-
tures the anova test is used, randomly sampling 100 pairs from thgler connection paths are reliably more frequent. In the following we
dataset for each feature. The conclusion that we can draw from thigy to decompose and study the source of ambiguity of the problem
analysis is that trees which are simpler in various senses are preferratlits two main components: the ambiguity on the attachment point
by the network when the correct alternative is slightly more com-and the ambiguity on which connection path to use.

plex. The simplicity can be expressed in terms of a shorter connection

path, shorter trees, or connection paths or trees with fewer nodes, or -
with nodes with a smaller outdegree. There seems moreover to be n?b?’ Anchor attachment ambiguity

meaningful effect of the maximum outdegree on the net false posiye tested whether the network uses some complex statistical anal-
tive error. We finally note how the differences within the whole incre- ,ge5 1o disambiguate the attachment point of the anchor but resorts
mental tree are much smaller than that between the connection pat frequency counts to choose the connection path. To verify this
indicating that these latter ones are the key element responsible nypothesis we prepared a test set where the correct anchor is given
the discrimination between the correct element and the incorrect chggng we collect the network’s preferences on the remaining forest of
sen element. Examining the simplicity preference we note that all theompetitors. In order to understand if the network uses only the fre-
features are strongly correlated and that there could be an underlylr_thency information of connection paths we counted the number of
factor_ that is the direct caqse of the preference, nar_nely the_ combisorrect predictions where a connection path with lower frequency
natorial effects of the atomic grammar elements, which implies thajyas preferred. Out of 88.5% correctly classified instances 3.8% were
5 This is because the connection path frequency follows an exponential did?°t frequency b_ased. We also considered the wrong choices, evglugt-
tribution. ing how many times the network has made a mistake because it did
6 For more details see [4] prefer a more frequent connection path instead of the correct less fre-




guent one. The result is that this is true in 66.3% of the cases whenee have an agreement more than 78% of the times (61.5% for Net
the net makes a mistake. Two thirds (2/3) of the mistakes can theréMA-LC). This allows us to infer that the network has learned to use
fore be attributed to the net’s preference for more frequent connectiothe LC-MA preference, but that has also found other statistics to rely
paths. The results obtained suggest a new strategy: we let the netwoukon, which explains the 20% difference with respect to the LC-MA.
choose the anchor using full information and then resort to the sim-
ple frequency of connection paths to choose among the alternatives.
In order to verify this approach, we determine how frequently the ne ENHANCEMENTS
is capable of choosing a connection path that attaches to the correst1  Tree reduction
anchor, even if the path itself is wrong. We collapsed all the con-
nection paths that have the same anchor point into a single class ariéhe experimental results reported in Section 4 have shown how the
we counted how many times the correct connection path falls withircomplexity of the incremental trees negatively affects the predic-
that specific class. We then generalized this approach in order to tak®n performance. We would like to decrease this complexity (i.e.
into consideration the second or third anchor chosen. We found thdhe number of nodes) without risking to disregard useful features.
91.54% of the times the network correctly predicts the anchor in théntuitively not all the information of the incremental tree is signif-
first choice, 97.11% of the times the anchor is predicted within thdcant for the disambiguation task. Specifically it can be argued that
first 2 choices and 98.39% within the first 3. We then ranked thethe knowledge of the internal composition of “closed” constituents,
incremental trees preferred by the network as the first, second arice. constituents that have been fully parsed, can be summarized by
third choice respectively. As ranking criterion we use the connectiorihe non-terminal tag that immediately dominates the constituent. In
path’s frequency and the net's preference. As a result we obtain fopther words, the knowledge that a deeply nested NP is made of a
the frequency heuristic an accuracy respectively of 88.3%, 77.359%equence of (DT NN) or rather a more complex (DT JJ NN NN) is
and 75.9% for the 1st, 2nd, 3rd choices, while adopting the prefernot informative with respect to deciding how to attach a connection
ence expressed by the net we obtain an accuracy of 89.5%, 84.4%ath. If this hypothesis is true it should be possible to eliminate a sig-
83.3%. The experiment suggests that the network is very successfaificant part of the nodes of the incremental tree without decreasing
in predicting the anchor and resorts to the frequency statistics for théhe discriminating power of the information that is left in the remain-
prediction of the connection path. However, in comparison with theing nodes. We propose a reducing scheme where we keep all the
pure frequency estimation, the net allows more viable alternatives toodes that dominate incomplete components plus all their children.
compete in 2nd and 3rd position in the ranked list, indicating onceBecause of the incremental nature of the algorithm, it turns out that
again that the net is conditioning the statistics collected on some uséhese nodes belong to the right frontier of the incremental tree. The
ful context present in the incremental tree. These results motivate procedure we are adopting turns out to be consistent with the notion
deeper analyses of the kind of statistics that the network is reallpf c-command. When we create Ti, we keep only the right frontier
employing. of Ti-1 and those nodes that c-command the right frontier itself. Pre-
serving the nodes that c-command the nodes that are active (those
. L Lo that are potential anchors) is linguistically motivated in that it keeps
4.4 Linguistic heuristics the nodes that can exhibit a “linguistic influence” on each other. In

Psycholinguistic studies suggest that the syntactic module of the hlﬁgure 2 we show the subset of retained nodes. In order to test the

man parser expresses some structural preferences among which the
minimal attachment (MA) preference and the late closure (LC) pref-
erence ([7]). MA implies that humans tend to prefer simpler and
shorter analyses (i.e. connection paths and incremetnal trees with
fewer nodes). LC, instead, suggests that, a preference is expressed
to connect the current analyses with recently processed material (i.e.
low attachment anchor points are preferred). In Fig.1 we report the
comparative test between the predictions expressed by the network
and those expressed by the combined strategy LC-MA and MA-LC,
where combining the strategies means that we resort to the second
strategy for all those elements considered equal by the first strategy.
The results show the effectiveness of these heuristics (see fig. 1);
within the first two alternatives the LC-MA heuristic finds the cor- Figure 2. Sequence of incremental trégs.. . . T5. In bold the result of the

rect element 70% of the times (while MA-LC 50% of the times). tree reduction procedure. In dashed lines the connection path.

The network guesses correctly more than 82% of times with the firsequivalence hypothesis we run an experiment with the following set-
proposed element and more than 90% within the first two proposeting. The datasets are the standard training, validation and test sets
elements. In order to test whether the network has learned to expresgere we have applied the reduction procedure. The network has 20
preferences that mimic the analyzed heuristics or rather has found amits in the recursive and output part. At each epoch the parameters
orthogonal set of features we analyzed the prediction overlappingf each net are saved. The performance in generalization of each net
We considered how many times the network first choice correspondare measured against the validation set. The best performing param-
exactly to the first element ranked by each heuristic combinationeters configuration is then tested on the test set. We report in figure
The results indicate that the network resolves to the heuristics onl{ the comparison between the performance on the reduced dataset
half of the time (43.5% match between Net and LC-MA, 44.5% Netand the normal dataset. The results indicate that not only we have not
vs. MA-LC). If we allow the first or second choice of the network eliminated relevant information, but we have helped the system elim-
to match the first or second choice of the heuristics combination wénating potential sources of noise making the task somewhat simpler
find that between the net’s preference and the LC then MA heuristi@and allowing for a better generalization. To explain this behavior we

To T1 T2 Ts Ta Ts



can hypothesize the fact that the states that encode the informatiarot have to compete against the ones allocated for the most frequent
relative to what lays in deep (i.e. more distant from the root) nodesases (nouns, verbs).
are “noisy” and confound higher (i.e. closer to the root) states.

6 CONCLUSIONS

We have shown how the analyses of the preferences expressed by the
When the learning domain can naturally be decomposed in a set 9kcursive neural network allow to have a useful insight on the nature
disjoint sub-domains, it is possible to specialize several learners opf the statistics information used by the system. We have found that
each sub-domain being confident that we are not decreasing the ovefre net bases its preferences to disambiguate the anchor attachment
all discriminating performance of the system. The domain in whichpoint on some complex information and mainly resorts to frequency
we are operating lends itself to such a decomposition. For examplgg choose the correct connection path. Moreover, we have shown how
the knowledge acquired by the system in processing the attachmefHe system prefers to attach simple structures to recently processed
of verbs, is quite different from that used to attach articles or pUnCtUmateriaL in a similar way to some heuristics proposed in the psy-
ation elements, i.e. in the two cases the features that are relevant fepolinguistic literature, but that the incremental tree offers a richer
discriminating the correctincremental trees, differ. The knowledge otontext on which to condition the preferences which can be exploited
the domain suggests that certain attachment decisions will be hardgy the proposed architecture. From the domain knowledge we have
than others. For example, the prepositional attachment is notoriouslyjeen able to use the above findings to propose a reduction scheme
a hard problem, especially when full-lexical information is not usedand a specialized architecture capable to enhance the overall predic-

5.2 Specialization on POS tags

(asitis notin our case). We verify this hypothesis with an experimention accuracy of the network. We believe that further improvements
that has the following setting. We divide the set of POS tags into 1Qyre achievable only introducing more information by lexicalizing the
sub-sets where we collate “similar” tags, i.e. tags that have a simimcremental grammar. Future work will focus on the use of the recur-
lar grammatical functioh A special set contains all those tags that sjve neural network as an informant to guide an incremental parser.

couldn’t be put in any other sub-8ef\ network of 25 units, trained
on the standard training set is then used on the standard test set. T,

prediction results are collected and partitioned in the appropriate subgeEFERENCES

sets accordingly to which POS tag was involved in the attachment de{1]
cision. We report the results in Table 1, where Al is the best accuracy
obtained using the method of Section 5.1 while in column Freq we re-

. 2]
port the fraction of the total dataset represented by each sub-set. Th[e
results indicate that the problem is harder in the case of adverbs and
prepositions and easier for nouns, verbs and articles. We propose tf3]
enhance the overall performance letting single nets to concentrate on
specific ambiguities, i.e. having a net being exposed only to attach-
ment decisions involving, for example, adverbs or prepositions. The(s]
setting of the experiment is as described in Section 5.1. We report
in table 1 the comparison between the performance of the special-
ized networks (column A2) and the unspecialized network (column[S]
A1) on the same dataset and the relative error reduction (column Err.
red). The results indicate that we have an overall enhancement of

6

Category Freq Al A2 | Rel. errred 1
Article 12.4] 89.09 | 90.97 17.2

Preposition | 12.6 | 64.26 | 68.19 11.0 [71
Adjective 7.4 | 87.00 | 88.74 13.4

Verb 135 | 94.72 | 96.41 32.0 (8]
Noun 32.9 | 9452 | 95.53 18.4

Possessive 2|1 97.99| 97.13 -42.8 9]
Adverb 4.2 | 53.46 | 55.88 5.2
Conjunction| 2.3 | 70.41| 76.28 19.8

Punctuation| 11.7 | 75.29 | 80.84 225 [10]
Other 1| 68.64| 72.88 13.5
Total 100 | 84.82 | 87.14 15.3

[11]

Table 1. Specialization improvement
[12]

the performance (15.3% error reduction) and that some categories
greatly benefit from this approach. We believe that the reason is that
the resources (i.e. areas in the state space) allocated for discriminat-
ing the less frequent classes (conjunctions, punctuation, adverbs) do

7 For example all the tags MD VB VBD VBG VBN VBP VBZ are together
under the category VERB.
8 |t includes POS tags that denote foreign words, exclamations, symbols, etc
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