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Abstract. This paper explores the convergence between cognitive
modeling and engineering solutions to the parsing problem in NLP.
Natural language presents many sources of ambiguity, and several
theories of human parsing claim that ambiguity is resolved by us-
ing past (linguistic) experience. In this paper we analyze and refine
a connectionist paradigm (Recursive Neural Networks) capable of
processing acyclic graphs to perform supervised learning on syntac-
tic trees extracted from a large corpus of parsed sentences. Follow-
ing a widely accepted hypothesis in psycholinguistics, we assume an
incremental parsing process (one word at a time) that keeps a con-
nected partial parse tree at all times. By implementing a parsing sim-
ulation procedure, we collect a large amount of data that shows the
viability of the RNN as informant of a disambiguation process. We
analyze what kind of information is exploited by the connectionist
system in order to resolve different sources of ambiguity, and we see
how the generalization performance of the system is affected by the
tree complexity and the frequency of specific subtrees. We finally
propose some enhancements to the architecture in order to achieve a
better prediction accuracy.

1 INTRODUCTION

Incremental processing of natural language (incrementality for short)
is an intuitively plausible hypothesis upon the human language pro-
cessor. The incrementality hypothesis has received a large experi-
mental support in the psycholinguistic community over the years [5].
More recently, the hypothesis has been exploited in a few computa-
tional approaches to parsing. Lane & Henderson [8] propose Simple
Synchrony Networks, an architecture that can learn to generate struc-
tural relationships between syntactic constituents and is employed to
build a parse tree for a given input sentence. Roark & Johnson [10]
devised an incremental parser based on production rules learned in
the framework of stochastic context-free grammars. In its general
form, the incrementality hypothesis implies that the semantic inter-
pretation of some fragment of the sentence is available as the scan of
the input material proceeds from left to right so that the syntactic ana-
lyzer has to keep a totally connected structure at all times (that is, the
semantic interpreter has no means to work on disconnected items).
Under this assumption, parsing proceeds from left to right through
a sequence of trees, each spanning one more word to the right until
completion of the sentence. The above notion of incrementality can
be briefly formalized as follows. Given a sentences = w0 · · ·w|s|−1

and a parse treeT , the incremental treeTi spanningw0, · · · , wi is
recursively defined as:

• the chain fromw0 to its maximal syntactic projection ifi = 0, or
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• Ti−1 and the chain fromwi to N , whereN is either a node of
Ti−1, or the lowest node ofT dominating both the root ofTi−1

andwi.

Theconnection pathforwi is the difference between the incremental
treesTi andTi−1. In this framework, a (non lexicalized) incremental
grammar is defined as the triple(N ,P, C) beingN a set of nonter-
minals,P a set of POS (Part of Speech) tag symbols, andC a set of
connection paths. In each connection path we distinguish two spe-
cial nodes, called theanchorand thefoot, annotated with symbols in
N andP, respectively. A derivation in this grammar is a sequence
of attachment operations having the form(Ti−1, cpj) → Ti, where
cpj ∈ C. We define theright frontier as the sequence obtained by
taking the rightmost child of every node starting from the root and
ending on the foot node. For an attachment to be admissible the fol-
lowing two conditions must hold: (1) ifi > 0 there must exist a node
v in the right frontier ofTi−1 matching the anchor ofcpj , and (2) the
foot of cpj must be the POS tag ofwi. TreeTi is then constructed by
joiningTi−1 andcpj atv (see Fig.2). Although interesting because of
its strong connection to human parsing, such a grammar is highly am-
biguous. For example, after extractingC from a set of 40,000 parsed
sentences in the Penn Treebank [9], the expected number of admissi-
ble attachments at a single word position is on average 126, although
only one attachment is correct4. Costa et al. [3, 2] recently proposed
the prediction of correct attachments by using a machine learning
algorithm based on recursive neural networks [6]. They show that af-
ter training on a small corpus of 500 parsed sentences, the accuracy
of prediction significantly outperforms common linguistic heuristics
such as late closure and minimal attachment [7]. Moreover, the model
effectively reproduces well known cognitive phenomena such as re-
cency attachment for adverbs, relative clauses in English, closure am-
biguities, and preference for NP over S in complement ambiguities
[11]. The model proposed in [2] is briefly sketched in the next sec-
tion. In the rest of this paper we extensively study the behavior of
the model using a realistic corpus of about 42,000 parsed sentences
from the Penn TreeBank. The aim of this investigation is twofold.
Firstly we want to acquire a deeper understanding on the preferences
expressed by the connectionist model (Section 4). Secondly we want
to exploit this knowledge to enhance the network performance. In
Section 5 we show how the results of the investigation enabled us to
conceive two novel prediction algorithms, obtaining significant im-
provements in terms of accuracy and computational effort.

2 LEARNING FIRST-PASS ATTACHMENTS

Our problem is to specify a learning architecture which is capable
of learning parsing decisions on the basis of incremental trees. Our

4 These attachments are referred to as ”first-pass” attachments in psycholin-
guistics, because there can be a ”second pass” due to structural revision.



approach relies onRecursive Neural Networks[6], a machine learn-
ing architecture which is capable of learning to classify hierarchical
data structures, such as the incremental trees which we employ in
this paper. The task of the model is to take any given wordwi and
incremental treeTi−1, and to rank the candidate incremental trees
that can be produced by attachingwi to Ti−1. The highest ranked
tree will be chosen as the preferred alternative. More formally, each
example is a pair (Fi,j∗), whereFi is the forest of alternatives (a bag
of trees corresponding to all the incremental trees resulting from all
the possible attachments of the current wordwi), andj∗ is the index
of the correct tree (Ti) in Fi. A recursive neural network is asked to
predict the conditional probability that a treeTi is the correct one,
given the forestFi:

yij = P (j = j∗|Fi) for eachj ∈ [1, |F |]

wherej is the index of a tree in the forest, andyij is the proba-
bility estimated for the tree indexedj in the forestFi. Assuming
the correct tree belongs in the forestFi (i.e., assuming the grammar
induced from the database of all available connection paths is com-
plete), the probabilities for all of the candidate trees must sum to 1
(
∑

j
yij = 1). A hidden state vectorX(v) ∈ Rn is associated with

each nodev and encodes the subtree dominated byv. The dimen-
sionn must be large enough to give sufficient expressive power to
the network. The state vector is computed by a state transition func-
tion which combines the state vectors ofv’s daughters with a vector
encoding of the label ofv. This function is computed by a multi-
layer perceptron, which is replicated at each node in the tree. In our
case, however, we are evaluating a forest of alternative trees, not a
single tree, requiring a slight variation over the standard recursive
network described in [6]. In particular, we employ a recursive neural
network to process each tree in the forest, and each network uses the
same transition function and the same output function, with shared
weights. Moreover, the output function is linear, yielding a real out-
put aij associated with thej-th tree inFi. All the linear outputs are
finally transformed using the softmax function (normalized exponen-
tials), yielding the estimates of the conditional probabilitiesyij for
each tree in the candidate forest. The trees are then ranked according
to this probability, to obtain the order of preference. Training max-
imizes the conditional log-likelihood of the predicted preferences,
given the true treej∗. Optimization is based on a gradient descent
procedure, where gradients are computed by the back-propagation
through structure algorithm [6].

3 DATA PREPARATION

Our results are based on the Wall Street Journal Section of the Penn-
Treebank Corpus [9]. We have adopted the standard setting widely
adopted in literature (see, e.g., [1]): specifically these sections have
been used to form the training set (section 2-21) of 39,832 sentences
(950,026 words), the test set (section 23) of 2,416 sentences (56,683
words) and the validation set (section 24) of 3,677 sentences (85,335
words). The entire dataset used for our experiments includes there-
fore 45,925 sentences for a total of 1,092,044 words. The average
sentence length is 24 in a range of 1-141 (1-67 in the test set). The
labels (tags) on the nodes of the parse trees can be divided into POS
tags, or pre-terminal tags, and non-terminal tags: the first ones dom-
inate a single lexical item and indicate the grammatical function of
the item (ex. a noun or a verb) while the latter ones dominate se-
quences called phrases that can be made of pre-terminal and/or non-
terminal tags. In the Penn Treebank the POS tags are 45, and the
non-terminal tags are 26. Although the syntactic annotation schema

provides a wide range of semantic and coindexing information, we
have used only syntactic information. The incremental parser suffers
from the problem of left recursion. Since a left recursive structure
can be arbitrarily nested, we cannot predict the correct connection-
path incrementally. There are a few practical solutions in the litera-
ture (see, e.g.,[12]), but in the current work we have resorted to an
immediate approach which is extensively implemented in the Penn
Treebank schema: namely weflattenthe tree structure and avoid the
left recursion issue altogether. Consider as an example the applica-
tion of the flattening procedure to a local tree like 1 that produces as
a result a tree like 2:

1. [NP [NP DT NN] PP]
2. [NP DT NN PP]

In this work we convert a sequence of words in a sequence of POS
tags and proceed thereafter only with that. This choice was aimed at
analyzing what kind of preferences can be expressed and learned in
terms of pure syntactical information. In future development of this
work it will be interesting to establish the increase in performance
once we introduce lexical information. As a final remark note that in
the current work we do not investigate the problem of POS tagging,
i.e. attributing the correct part of speech to each lexical item and we
assume this information available.

4 ANALYSIS

Basing our intuitions on the domain knowledge we hypothesise a cer-
tain number of structural characteristics of the incremental trees that
are likely to have an influence over the generalization performance.
The features that we investigate are the outdegree of specially infor-
mative nodes (anchor, root) and the average outdegree, the complex-
ity of incremental trees and of connection path structures measured
by the number of nodes,and the height, information about the num-
ber of the competing alternatives, and the word index in the sentence.
The intuition behind trying to analyze the influence of the outdegree
on the net’s performance, is that backpropagating the error becomes a
more difficult task as the number of possible sources amongst which
to partition the error increases. The reason for analyzing the influ-
ence of the number of nodes or the height is that a greater height
implies more steps in the propagation of the information and a big-
ger number of nodes implies a dependency on a greater number of
possible configurations. In order to measure the correlation between
these features and the net’s error we run an analyses employing the
Spearman Rank Correlation test over a randomly sampled sub-set
of 200 pairs (error, feature). The test indicates a significant positive
correlation for all features except for the root outdegree (Rs=0.017),
and a stronger negative correlation between the frequency of the con-
nection path and the error (Rs=-0.39). The most significant positive
correlations are with the size of the connection path (Rs=0.33) and
the forest size (Rs=0.31). We therefore analyze in greater details the
nature of the influence of connection paths’ frequency.

4.1 Accuracy and connection path frequency

We start by evaluating the prediction for the first-pass attachment if
the decision were based on the connection path frequency informa-
tion only. In Figure 1 we report a comparative test between the pref-
erence expressed by the net and the preference obtained by selecting
the incremental tree with the most frequent connection path. The test
is done on the standard set of 2,400 sentences. The figure reports
the proportion of correct guesses out of the total number of words



with respect to the ranking position of the guess, i.e. forx = i we
consider the cases when the system has ranked the correct element
within the first i positions. On they axis we report the proportion of
correctly classified elements in respect of the total number of posi-
tive elements. From Figure 1 we can reliably say that the net bases its
decisions on something more than the pure frequency of connection
paths. The anova test was used to determine the influence of the log-
transformed frequency5 on the network’s accuracy. We analyze the
true positiveelements, i.e. elements that have been preferred by the
net and that are correct, and thefalse positiveelements, i.e. elements
that have been preferred but that are wrong. For the true positive the
mean log-frequency of the connection path was 9.16 against a mean
of 5.24 for the second best ranked alternative. The difference being
highly significant on the random sample of 100 pairs. For the false
positive dataset there was no significant difference in the mean of
the log frequency (7.43 for the correct element vs. 7.22 of the pre-
dicted element,F < 1). Notice also that the overall mean is much
higher for the true positives than the false positives. This could be
the result of a more skewed distribution of the true positives with the
correct alternative having a much higher frequency than the other al-
ternatives. This seems to indicate that the net finds it more difficult to
express a preference when it cannot draw information directly from
the frequency distribution of the alternative connection paths. In the
following we test if, and how much, the net expresses a preference
beyond just using the absolute frequency of the connection paths.

4.2 Simplicity and frequency

The aim of this analysis is to characterize the features of the incre-
mental trees that are correctly classified in respect of the trees that are
preferred by the network but that turn out to be incorrect. The char-
acterization will be expressed in terms of a statistically significant
difference in the average values of the features that we are investigat-
ing. More specifically we will try to identify some consistent prop-
erties of the set of true positive elements that distinguish them from
the second preferred element, and we will do the same with the false
positive and the correct element6. Observing the distribution of the
values taken by these features, we note that the forest size, the anchor
distance from the root, the root outdegree, and the average number of
nodes do not exhibit a normal distribution. For these features we use
the Wilcoxon Matched-Pairs Signed-Ranks Test on a random sample
of 200 pairs from the dataset for each feature. For all the other fea-
tures the anova test is used, randomly sampling 100 pairs from the
dataset for each feature. The conclusion that we can draw from this
analysis is that trees which are simpler in various senses are preferred
by the network when the correct alternative is slightly more com-
plex. The simplicity can be expressed in terms of a shorter connection
path, shorter trees, or connection paths or trees with fewer nodes, or
with nodes with a smaller outdegree. There seems moreover to be no
meaningful effect of the maximum outdegree on the net false posi-
tive error. We finally note how the differences within the whole incre-
mental tree are much smaller than that between the connection paths
indicating that these latter ones are the key element responsible for
the discrimination between the correct element and the incorrect cho-
sen element. Examining the simplicity preference we note that all the
features are strongly correlated and that there could be an underlying
factor that is the direct cause of the preference, namely the combi-
natorial effects of the atomic grammar elements, which implies that

5 This is because the connection path frequency follows an exponential dis-
tribution.

6 For more details see [4]

simpler connection paths are more frequent. As a direct consequence
the correct incremental trees are themselves simpler because derived
by joining simpler elements. It seems, though, that the frequency ex-
planation cannot account for all the cases, in other words it represents
a valid heuristic but it does not capture the overall complexity of the
problem. To assess this point, we investigated the case where the net-
work predicts correctly but where the correctly predicted alternative
is not the most frequent. By selecting these cases we can judge the ef-
fect of structural factors controlling for the confounding influence of
frequency. We extracted the sub-sample that corresponds to this latter
case, which accounts for the 10% of the cases. The result indicates
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Figure 1. Comparison with psycholinguistic and frequency heuristics

that in those cases where the net is correct but does not rely on the
frequency information the elements chosen are in fact slightly more
complex (greater number of nodes 31 vs 30.8, greater height 7.74
vs. 7.45), though the anchor has preferably a much lower outdegree
(2.49 vs. 4.77) and the anchor depth is much higher (6.58 vs. 3.13).
This result can be explained considering that the most frequent con-
nection paths tend to have very common anchors, such as VPs, and
that this bias the attachment point toward this less deep nodes making
them having a greater outdegree. The results, on the other hand, con-
firm the hypothesis that frequency is very strongly correlated with
complexity. To assess this in a more sound statistical way we run the
Pearson Correlation test on a sample of 10000 pairs of connection
paths’ number of nodes vs. log(freq). We obtained a correlation of
rho=-0.3291 (statistical significancep < 0.001) indicating that sim-
pler connection paths are reliably more frequent. In the following we
try to decompose and study the source of ambiguity of the problem
in its two main components: the ambiguity on the attachment point
and the ambiguity on which connection path to use.

4.3 Anchor attachment ambiguity

We tested whether the network uses some complex statistical anal-
yses to disambiguate the attachment point of the anchor but resorts
to frequency counts to choose the connection path. To verify this
hypothesis we prepared a test set where the correct anchor is given
and we collect the network’s preferences on the remaining forest of
competitors. In order to understand if the network uses only the fre-
quency information of connection paths we counted the number of
correct predictions where a connection path with lower frequency
was preferred. Out of 88.5% correctly classified instances 3.8% were
not frequency based. We also considered the wrong choices, evaluat-
ing how many times the network has made a mistake because it did
prefer a more frequent connection path instead of the correct less fre-



quent one. The result is that this is true in 66.3% of the cases where
the net makes a mistake. Two thirds (2/3) of the mistakes can there-
fore be attributed to the net’s preference for more frequent connection
paths. The results obtained suggest a new strategy: we let the network
choose the anchor using full information and then resort to the sim-
ple frequency of connection paths to choose among the alternatives.
In order to verify this approach, we determine how frequently the net
is capable of choosing a connection path that attaches to the correct
anchor, even if the path itself is wrong. We collapsed all the con-
nection paths that have the same anchor point into a single class and
we counted how many times the correct connection path falls within
that specific class. We then generalized this approach in order to take
into consideration the second or third anchor chosen. We found that
91.54% of the times the network correctly predicts the anchor in the
first choice, 97.11% of the times the anchor is predicted within the
first 2 choices and 98.39% within the first 3. We then ranked the
incremental trees preferred by the network as the first, second and
third choice respectively. As ranking criterion we use the connection
path’s frequency and the net’s preference. As a result we obtain for
the frequency heuristic an accuracy respectively of 88.3%, 77.35%
and 75.9% for the 1st, 2nd, 3rd choices, while adopting the prefer-
ence expressed by the net we obtain an accuracy of 89.5%, 84.4%,
83.3%. The experiment suggests that the network is very successful
in predicting the anchor and resorts to the frequency statistics for the
prediction of the connection path. However, in comparison with the
pure frequency estimation, the net allows more viable alternatives to
compete in 2nd and 3rd position in the ranked list, indicating once
again that the net is conditioning the statistics collected on some use-
ful context present in the incremental tree. These results motivate a
deeper analyses of the kind of statistics that the network is really
employing.

4.4 Linguistic heuristics

Psycholinguistic studies suggest that the syntactic module of the hu-
man parser expresses some structural preferences among which the
minimal attachment (MA) preference and the late closure (LC) pref-
erence ([7]). MA implies that humans tend to prefer simpler and
shorter analyses (i.e. connection paths and incremetnal trees with
fewer nodes). LC, instead, suggests that, a preference is expressed
to connect the current analyses with recently processed material (i.e.
low attachment anchor points are preferred). In Fig.1 we report the
comparative test between the predictions expressed by the network
and those expressed by the combined strategy LC-MA and MA-LC,
where combining the strategies means that we resort to the second
strategy for all those elements considered equal by the first strategy.
The results show the effectiveness of these heuristics (see fig. 1);
within the first two alternatives the LC-MA heuristic finds the cor-
rect element 70% of the times (while MA-LC 50% of the times).
The network guesses correctly more than 82% of times with the first
proposed element and more than 90% within the first two proposed
elements. In order to test whether the network has learned to express
preferences that mimic the analyzed heuristics or rather has found an
orthogonal set of features we analyzed the prediction overlapping.
We considered how many times the network first choice corresponds
exactly to the first element ranked by each heuristic combination.
The results indicate that the network resolves to the heuristics only
half of the time (43.5% match between Net and LC-MA, 44.5% Net
vs. MA-LC). If we allow the first or second choice of the network
to match the first or second choice of the heuristics combination we
find that between the net’s preference and the LC then MA heuristic

we have an agreement more than 78% of the times (61.5% for Net
MA-LC). This allows us to infer that the network has learned to use
the LC-MA preference, but that has also found other statistics to rely
upon, which explains the 20% difference with respect to the LC-MA.

5 ENHANCEMENTS

5.1 Tree reduction

The experimental results reported in Section 4 have shown how the
complexity of the incremental trees negatively affects the predic-
tion performance. We would like to decrease this complexity (i.e.
the number of nodes) without risking to disregard useful features.
Intuitively not all the information of the incremental tree is signif-
icant for the disambiguation task. Specifically it can be argued that
the knowledge of the internal composition of “closed” constituents,
i.e. constituents that have been fully parsed, can be summarized by
the non-terminal tag that immediately dominates the constituent. In
other words, the knowledge that a deeply nested NP is made of a
sequence of (DT NN) or rather a more complex (DT JJ NN NN) is
not informative with respect to deciding how to attach a connection
path. If this hypothesis is true it should be possible to eliminate a sig-
nificant part of the nodes of the incremental tree without decreasing
the discriminating power of the information that is left in the remain-
ing nodes. We propose a reducing scheme where we keep all the
nodes that dominate incomplete components plus all their children.
Because of the incremental nature of the algorithm, it turns out that
these nodes belong to the right frontier of the incremental tree. The
procedure we are adopting turns out to be consistent with the notion
of c-command. When we create Ti, we keep only the right frontier
of Ti-1 and those nodes that c-command the right frontier itself. Pre-
serving the nodes that c-command the nodes that are active (those
that are potential anchors) is linguistically motivated in that it keeps
the nodes that can exhibit a “linguistic influence” on each other. In
Figure 2 we show the subset of retained nodes. In order to test the
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Figure 2. Sequence of incremental treesT0 . . . T5. In bold the result of the
tree reduction procedure. In dashed lines the connection path.

equivalence hypothesis we run an experiment with the following set-
ting. The datasets are the standard training, validation and test sets
where we have applied the reduction procedure. The network has 20
units in the recursive and output part. At each epoch the parameters
of each net are saved. The performance in generalization of each net
are measured against the validation set. The best performing param-
eters configuration is then tested on the test set. We report in figure
1 the comparison between the performance on the reduced dataset
and the normal dataset. The results indicate that not only we have not
eliminated relevant information, but we have helped the system elim-
inating potential sources of noise making the task somewhat simpler
and allowing for a better generalization. To explain this behavior we



can hypothesize the fact that the states that encode the information
relative to what lays in deep (i.e. more distant from the root) nodes
are “noisy” and confound higher (i.e. closer to the root) states.

5.2 Specialization on POS tags

When the learning domain can naturally be decomposed in a set of
disjoint sub-domains, it is possible to specialize several learners on
each sub-domain being confident that we are not decreasing the over-
all discriminating performance of the system. The domain in which
we are operating lends itself to such a decomposition. For example,
the knowledge acquired by the system in processing the attachment
of verbs, is quite different from that used to attach articles or punctu-
ation elements, i.e. in the two cases the features that are relevant for
discriminating the correct incremental trees, differ. The knowledge of
the domain suggests that certain attachment decisions will be harder
than others. For example, the prepositional attachment is notoriously
a hard problem, especially when full-lexical information is not used
(as it is not in our case). We verify this hypothesis with an experiment
that has the following setting. We divide the set of POS tags into 10
sub-sets where we collate “similar” tags, i.e. tags that have a simi-
lar grammatical function7. A special set contains all those tags that
couldn’t be put in any other sub-set8. A network of 25 units, trained
on the standard training set is then used on the standard test set. The
prediction results are collected and partitioned in the appropriate sub-
sets accordingly to which POS tag was involved in the attachment de-
cision. We report the results in Table 1, where A1 is the best accuracy
obtained using the method of Section 5.1 while in column Freq we re-
port the fraction of the total dataset represented by each sub-set. The
results indicate that the problem is harder in the case of adverbs and
prepositions and easier for nouns, verbs and articles. We propose to
enhance the overall performance letting single nets to concentrate on
specific ambiguities, i.e. having a net being exposed only to attach-
ment decisions involving, for example, adverbs or prepositions. The
setting of the experiment is as described in Section 5.1. We report
in table 1 the comparison between the performance of the special-
ized networks (column A2) and the unspecialized network (column
A1) on the same dataset and the relative error reduction (column Err.
red). The results indicate that we have an overall enhancement of

Category Freq A1 A2 Rel. err red
Article 12.4 89.09 90.97 17.2
Preposition 12.6 64.26 68.19 11.0
Adjective 7.4 87.00 88.74 13.4
Verb 13.5 94.72 96.41 32.0
Noun 32.9 94.52 95.53 18.4
Possessive 2 97.99 97.13 -42.8
Adverb 4.2 53.46 55.88 5.2
Conjunction 2.3 70.41 76.28 19.8
Punctuation 11.7 75.29 80.84 22.5
Other 1 68.64 72.88 13.5
Total 100 84.82 87.14 15.3

Table 1. Specialization improvement

the performance (15.3% error reduction) and that some categories
greatly benefit from this approach. We believe that the reason is that
the resources (i.e. areas in the state space) allocated for discriminat-
ing the less frequent classes (conjunctions, punctuation, adverbs) do

7 For example all the tags MD VB VBD VBG VBN VBP VBZ are together
under the category VERB.

8 It includes POS tags that denote foreign words, exclamations, symbols, etc

not have to compete against the ones allocated for the most frequent
cases (nouns, verbs).

6 CONCLUSIONS

We have shown how the analyses of the preferences expressed by the
recursive neural network allow to have a useful insight on the nature
of the statistics information used by the system. We have found that
the net bases its preferences to disambiguate the anchor attachment
point on some complex information and mainly resorts to frequency
to choose the correct connection path. Moreover, we have shown how
the system prefers to attach simple structures to recently processed
material, in a similar way to some heuristics proposed in the psy-
cholinguistic literature, but that the incremental tree offers a richer
context on which to condition the preferences which can be exploited
by the proposed architecture. From the domain knowledge we have
been able to use the above findings to propose a reduction scheme
and a specialized architecture capable to enhance the overall predic-
tion accuracy of the network. We believe that further improvements
are achievable only introducing more information by lexicalizing the
incremental grammar. Future work will focus on the use of the recur-
sive neural network as an informant to guide an incremental parser.
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