Defeasible Logic with Dynamic Priorities

Grigoris Antoniou
Univ. of Bremen, Germany
ga@tzi.de

Abstract.

Defeasible logic is a nonmonotonic reasoning approach
based on rules and priorities. Its design supports efficient
implementation, and it shows promise to be successfully de-
ployed in applications.

So far only static priorities have been used, provided by an
external superiority relation. In this paper we show how dy-
namic priorities can be integrated, where priority information
is obtained from the deductive process itself. Dynamic prior-
ities have been studied for other related reasoning systems,
such as default logic and argumentation. We define a proof
theory, study its formal properties, and provide an argumen-
tation semantics.

1 Introduction

Defeasible reasoning is a nonmonotonic reasoning approach
in which the gaps due to incomplete information are closed
through the use of defeasible rules that are usually appropri-
ate. Defeasible logics were introduced and developed by Nute
over several years [15]. These logics perform defeasible reason-
ing, where a conclusion supported by a rule might be over-
turned by the effect of another rule. Roughly, a proposition p
can be defeasibly proved (+9dp) only when a rule supports it,
and it has been demonstrated that no applicable rule supports
—p; this demonstration makes use of statements —dq which
mean intuitively that an attempt to prove ¢ defeasibly has
failed finitely. These logics also have a monotonic reasoning
component, and a priority on rules.

This family of approaches has recently attracted consider-
able interest. Its use in various application domains has been
advocated, including the modelling of regulations and busi-
ness rules [11], modelling of contracts [18], legal reasoning
[16] and agent negotiations [9]. Also, defeasible reasoning (in
the form of courteous logic programs [10]) provides the foun-
dation for IBM’s Business Rules Markup Language and for
planned W3C activities. Therefore defeasible reasoning is ar-
guably one of the most successful subareas in nonmonotonic
reasoning as far as applications and integration to mainstream
IT is concerned.

Recent theoretical work on defeasible logics has: (i) es-
tablished some relationships to other logic programming ap-
proaches without negation as failure [1]; (ii) analysed the for-
mal properties of these logics [3, 14], and (iii) has delivered
efficient implementations [13].

So far defeasible logics had fixed priorities, given in the
form of an external superiority relation. But dynamic priori-

ties, where priorities are derived within the logic, have been
considered in related areas, such as for extended logic pro-
grams [5, 6] and argumentation [17]. Reasons for considering
dynamic priorities include the following:

e (ase-based priorities: Sometimes preference of a rule over
another is conditional on a property holding. In such cases
it is natural to write @ — r1 > 72 and apply the priority
information whenever a has been derived.

e Defeasible priorities: Sometimes case-based priorities do
not apply always, but will be subject to “attacks” from
other arguments. This happens, for example, in the legal
domain, when different prioritisation principles can be ap-
plied (specificity, hierarchy, recency). In such cases the prin-
ciples should be stated conditionally using defeasible rules,
and may be defeated by stronger principles.

e We expect dynamic priorities to be particularly useful for
intelligent agents working on the Web. Such agents will
frequently need to make decisions about the reliability of
information, especially to resolve conflicts among different
sources.

In this paper we show how dynamic priorities can be incorpo-
rated in the framework of defeasible logics. We consider two
variations: one in which cyclic priorities may emerge, and one
in which such cycles are avoided. We study both approaches,
and derive various theoretical results concerning their proof
theory and semantics.

2 The Approach
2.1 A Language for Defeasible Reasoning

A defeasible theory (a knowledge base in defeasible logic) con-
sists of three different kinds of knowledge: strict rules, defea-
sible rules, and a superiority relation. (Fuller versions of de-
feasible logic also have facts and defeaters, but [3] shows that
they can be simulated by the other ingredients).

Strict rules are rules in the classical sense: whenever the
premises are indisputable (e.g. facts) then so is the conclu-
sion. An example of a strict rule is “Emus are birds”. Written
formally:

emu(X) — bird(X).

Defeasible rules are rules that can be defeated by contrary
evidence. An example of such a rule is “Birds typically fly”;
written formally:

bird(X) = flies(X).

The idea is that if we know that something is a bird, then we
may conclude that it flies, unless there is other, not inferior,
evidence suggesting that it may not fly.

In the defeasible logics defined so far in the literature, an
external, acyclic superiority relation among rules is used to
define priorities among rules, that is, where one rule may
override the conclusion of another rule. For example, given
the defeasible rules

r: bird(X)
r': brokenWing(X)

= flies(X)
= —flies(X)

which contradict one another, no conclusive decision can be
made about whether a bird with broken wings can fly. But if
we introduce a superiority relation > with ' > 7, with the
intended meaning that r’ is strictly stronger than r, then we
can indeed conclude that the bird cannot fly.

2.2 Formal Definition

In this paper we restrict attention to essentially propositional
defeasible logic. Rules with free variables are interpreted as
rule schemas, that is, as the set of all ground instances; in
such cases we assume that the Herbrand universe is finite.
We assume that the reader is familiar with the notation and
basic notions of propositional logic. If ¢ is a literal, ~ ¢ denotes
the complementary literal (if ¢ is a positive literal p then ~g
is —p; and if ¢ is —p, then ~q is p).

Rules are defined over a language (or signature) 3, the set
of propositions (atoms) and labels that may be used in the
rule.

A rule r : A(r) — C(r) consists of its unique label r, its
antecedent A(r) (A(r) may be omitted if it is the empty set)
which is a finite set of literals, an arrow < (which is a place-
holder for concrete arrows to be introduced in a moment), and
its head (or consequent or conclusion) C(r) which is a literal.
In writing rules often we omit set notation for antecedents.
There are two kinds of rules, each represented by a different
arrow. Strict rules use — and defeasible rules use =.

Given a set R of rules, we denote the set of all strict rules
in R by Rs. R[q] denotes the set of rules in R with consequent

q.
A defeasible theory D is a finite set of rules R.

2.3 Defeasible Logic with Dynamic
Priorities

The approach we take is as follows:

e For every rule r we associate a unique label label(r).

e In the language language we introduce a binary predicate
> which applies to rule labels. The intuitive meaning of
label(r1) > label(rz) is that rule r1 is stronger than rule ro.

e Literals including > may appear anywhere in a rule: as
antecedents or as consequents, negated or not negated. For
example, we can write:

a = label(r1) > label(rz)
—label(ry) > label(r2) = ¢
e A defeasible theory is just a set of rules. We don’t use ex-

ternal priority information, but only the priorities derived
from the theory.

We consider two variants of defeasible logic with dynamic
priorities. The first one is simpler and allows cyclic priority
information to be derived (thus resulting in the possibility
of inconsistencies). The second approach checks for potential
cycles in the priorities, and rules them out.

According to the first approach, it is the user’s responsi-
bility to ensure that cycles do not occur (just as it is the
programmer’s responsibility to avoid dividing by zero). The
second approach prevents cycles from occurring, in anticipa-
tion of its use in distributed environments, where cycles can
easily occur when putting together knowledge from various
sources.

3 DDL1: Dynamic Defeasible Logic
without Cycle Checking

3.1 Proof Theory

A conclusion of a defeasible theory D consists of a sign, a
tag, and a literal. The + sign denotes provability, and the —
sign denotes finite failure to prove. The tags we use are those
introduced for the family of defeasible logics in [2]: A denotes
strict provability, and O denotes defeasible provability. More
tags will be introduced soon. So, a conclusion +0dq is intended
to mean that ¢ is defeasibly provable in D. And —A means
that ¢ is provably not strictly provable.

Provability is defined below. It is based on the concept of
a derivation (or proof) in D = R. A derivation is a finite se-
quence P = P(1),...,P(n) of tagged literals satisfying the
following conditions. The conditions are essentially inference
rules phrased as conditions on proofs.P(1..i) denotes the ini-
tial part of the sequence P of length 1.

+ATE P(i + 1) = +Aq then
Ir € Rs[q] Va € A(r) : +Aa € P(1..7)

That means, to prove +Aq we need to establish a proof for
q using strict rules only. This is a deduction in the classical
sense — no proofs for the negation of ¢ need to be considered
(in contrast to defeasible provability below, where opposing
chains of reasoning must be taken into account, t00).

—A:If P(i+ 1) = —Agq then
Vr € Rslq] Ja € A(r) : —Aa € P(1..7)

The definition of —A is the so-called strong negation of +A:
normal negation rules like De-Morgan rules are applied to the
definition, + is replaced by —, and vice versa. Therefore in
the following we may omit giving inference conditions of both
+ and —.

+0: If P(i+ 1) = +0q then either
(1) +Aq € P(1..i) or
(2) (2.1) 3Ir € R[g] Ya € A(r) : +0a € P(1..i) and
(2.2) —A ~qe€ P(1..4) and
(2.3) Vs € R[~q] either
(2.3.1) Ja € A(s) : —0a € P(1..1), or
(2.3.2) 3t € R[q] such that
Va € A(t) + 0a € P(1..i) and
+0(label(t) > label(s)) € P(1..7)

Intuitively: to show that q is provable defeasibly we have two
choices: (1) We show that ¢ is already definitely provable;
or (2) we need to argue using the defeasible part of D as
well. In particular, we require that there must be a strict or
defeasible rule with head ¢ which can be applied (2.1). But
now we need to consider possible “counterattacks”, that is,
reasoning chains in support of ~ ¢. To be more specific: to
prove g defeasibly we must show that ~ ¢ is not definitely
provable (2.2). Also (2.3) we must consider the set of all rules
which are not known to be inapplicable and which have head
~ q. Essentially each such rule s attacks the conclusion ¢q. For
q to be provable, each such rule s must have been established
as non-applicable (2.3.1). Alternatively, there is an applicable
rule with head ¢ which is stronger than the rule s, according
to the priority information derived so far.

We note that the only difference to the corresponding infer-
ence condition in the “classical” defeasible logic [3] is the last
line: we use the priority derived so far, instead of an external
superiority relation.

The inference condition —0 is defined in a similar way, as
the strong negation of the 40 inference condition.

Also we note that the conclusion ¢ may be a literal
label(ry) > label(r2).

Example 3.1 Consider the theory
r1L:i=>DP r3 = q
T2 Ip=>T3 T4 T4 1= q

(in examples the notation r : A = C implies that r is the
unique label of the rule). We can derive +9dp,+9(r3 > ra),
and +0q.

O

3.2 Ambiguity Propagation

In [2] we discussed the property of ambiguity propagation,
noting that the original defeasible logic was ambiguity block-
ing. A preference for ambiguity blocking or ambiguity prop-
agating behaviour is one of the properties of non-monotonic
inheritance nets over which intuitions can clash [19]. Ambi-
guity propagation results in fewer conclusions being drawn,
which might make it preferable when the cost of an incorrect
conclusion is high. For these reasons an ambiguity propagat-
ing version of DL is of interest.

The solution to achieve ambiguity propagation behaviour
is to separate the invalidation of a counterargument from the
derivation of —0 tagged literals. We do so by introducing a
third level of provability (besides definite and defeasible prov-
ability), called support and denoted by f . Intuitively, a literal
p is supported if there is a chain of reasoning that would lead
us to conclude p in the absence of conflicts.

Thus in our modification of the +9 condition, a counter-
argument may be disregarded only if a literal in its body is
known not to be supported (— [), which is stronger than the
previous condition that made it sufficient for a literal in the
body not be defeasibly provable. First we modify the +0 con-
dition (the —@ condition is modified accordingly following the
Principle of Strong Negation).

+0ap: If P(i4 1) = +0apq then either
(1) +Aq € P(1..4) or

(2) (2.1) 3r € R[q] Ya € A(r) : +0apa € P(1..i) and
2.2) —A ~q € P(1..7) and
(2.3) Vs € R[~q] either
(23.1) Ja € A(s) : — [a € P(1..i) or
(2.3.2) 3t € R|q] such that
Va € A(t) : +0apa € P(1..7) and
+0ap(label(t) > label(s)) € P(1..9)

—~

Next we define the inference conditions for support. If we
ignore the superiority relation we could define it simply as
a simple chain. However, in situations where two conflicting
rules can be applied and one rule is inferior to another, the in-
ferior rule should not be counted as supporting its conclusion.
Thus we refine the inference rule as follows (— f is defined ac-
cordingly):

+ [+ If P(i+1) = + [g then either
+Aq € P(1..i) or
Ir € R]g] such that
Va € A(r) : + [a € P(1..4), and
Vs € R[~q] either
Jda € A(S) : —Oama € P(1..7) or
+0(label(r) = label(s)) € P(1..4)

3.3 Properties

First we make the following observation: if > does not oc-
cur in a defeasible theory, then DDL1 behaves exactly as the
classical defeasible logic.

Theorem 1 (Coherence) It is impossible to derive both
+tag q and —tag q from a defeasible theory D, for tag €

{2, 0, 0up, [}-

Theorem 2 (Consistency) Let the set {label(ri) >
label(rs) | D+ +9(label(ry) = label(rz))} not contain a cy-
cle. Then +0p and +0—p, or +0app and +0ap—p, only if +Ap
and +A—p.

In other words, an inconsistency in the defeasible part can
only occur if the same inconsistency already occurs in the
strict part. This property does not hold if we do not assume
the extra condition, as the following example shows.

Example 3.2 Consider the theory
r1:I=>T3=T4 r3s:=Dp
oI => T4~ T3 r4 = Tp

We have —Ap and —A-p, but +9p and +90-p. It is instruc-
tive to see the difference between r4 > r3 and —r3 > r4. If we
modify rule ro to = —rs = r4, then we can derive —0p and
—0-p.

O

The following theorem says that there exists a chain of in-
creasing expressive power among several tags, similar to the
situation in defeasible logic without dynamic priorities.

Theorem 3 +A C 40, C 40 C +f.
For each inclusion there are defeasible theories in which the
inclusion is strict.

4 DDL2: Dynamic Defeasible Logic with
Cycle Checking

4.1 Proof Theory

Define Chains(label(r1) > label(rz)) to be the set of all se-
quences of strict or defeasible rules, without multiple occur-
rences C = (rM, ..., (™) such that

o O(r'D) = label(r}) = label(r,,), for all i € {1,...,n —1}.

o i =11, 71, =ra.

Intuitively, Chains collects all chains of priority statements,
starting with label(r1) and ending at label(rz2), that can be
derived if all rules in the chain are applied. For a rule with
head label(rz) > label(r1) to be applied, we must first find in
all chains for label(r1) > label(r2) an inapplicable rule.

Formally, we expand the inference condition for +0 by a
case (2.4), in case P(i + 1) = +0(label(r1) = label(rz)).

(2.4) VC € Chains(label(rz) = label(ry))
dreC Ja€ A(r) : —0a € P(1..9)

The inference conditions for —0, +04p and —0,p are modified
in the same way. The inference conditions for strict provability
and support remain unaffected.

Example 4.1 Consider
rT1:=>T3~—"T4 r3:=>p
oI = T4~ T3 T4 = TP

We cannot derive +9(rs = 74) because of the chain (r2, 1),
in which neither rule can be proven to be inapplicable. There-
fore —0p and —0—p.

O

4.2 Properties

First we make the following observation: if > does not oc-
cur in a defeasible theory, then DDL2 behaves exactly as the
classical defeasible logic.

Theorem 4 (Coherence) It is impossible to derive both
+tag q and —tag q from a defeasible theory D, for tag €

{A,0,0up, [}-

Theorem 5 (Consistency) +9p and +9-p, or +dapp and
+0ap—p, only if +Ap and +A-p.

In other words, an inconsistency in the defeasible part can
only occur if the same inconsistency already occurs in the
strict part.

As in DDL1, there exists a chain of increasing expressive
power among several tags, similar to the situation in defeasible
logic without dynamic priorities.

Theorem 6 +A CC 40, C+0C + [.
For each inclusion there are defeasible theories in which the
inclusion is strict.

5 Argumentation Semantics

For space limitations we will only discuss the ambiguity block-
ing variant of DDL2. The argumentation semantics will be an
expansion of [8] which considered the classic defeasible logic
with static priorities.

5.1 Arguments

Usually arguments are defined to be proof trees (or monotonic
derivations). However, defeasible logic requires a more general
notion of argument due to the notion of team defeat (see [8]
for details).

An proof tree for a literal p based on a set of rules R is
a (possibly infinite) tree with nodes labelled by literals such
that the root is labelled by p and for every node with label h:

If b4, ..
instance of a rule in R with body b1, ..

., bn label the children of h then there is a ground
., by, and head h.

Any literal labelling a node of proof tree P is called a con-
clusion of P. However, when we refer to the conclusion of a
proof tree, we refer to the literal labelling the root. If all rules
in a proof tree are strict, then the tree is called strict, else
defeasible.

An argument A for p is a set of proof trees for p. A is finite,
or strict, if all proof trees in A are finite or strict, respectively.
A (proper) subargument of A is a (proper) subtree of a tree
in A. Given a defeasible theory D, the set of arguments that
can be generated from D is denoted by Argsp. Finally we
define > 4,45 to be the set of all literals label(r1) > label(rz)
which are conclusions of a rule that appears in an argument
in Args.

At this stage we can characterize the definite conclusions
of defeasible logic in argumentation-theoretic terms.

Proposition 5.1 Let D be a defeasible theory and p be a
literal.

1. D F +Ap iff there is a finite strict argument for p in Argsp
2. DF —Ap iff there is no (finite or infinite) strict argument
for p in Argsp

5.2 Interaction Between Arguments

An argument A attacks as argument B if a conclusion in A
is the complement of a conclusion in B; or if label(r1) >
label(rz2) is a conclusion in A, and all rules in a member of
Chains(label(ra) = label(r1)) occur in a proof tree in B.

An argument A defeats a defeasible argument B at literal
g w.r.t a set of arguments Args if (1) there exist 74 in A and
rp in B with conclusions ~ ¢ and ¢, respectively, such that
label(ra) ¥ args label(rg); or (2) q¢ = label(r1) > label(r2),
rp in B has conclusion ¢, and all rules in a member of
Cycles(label(rz) > label(r1)) occur in a proof tree of A.

A set of arguments S defeats a defeasible argument B w.r.t.
Args if there is an A € S that defeats B w.r.t. Args. Note
that Args is used as a context which provides the superiority
relation.

Example 5.1 Consider

T a=p —a
T2 p=gq —b
r3: b= -p rs =Ty > T4

T4 TP = Tq

Consider the arguments A : a = p = gqand B: b =
—p = —q, and the set Args = {= r2 > ra4}. The only priority
information is 2 > args 74. Therefore A defeats B at —p and
-q w.r.t. Args, and B defeats A at p w.r.t. Args.

O

Similar to [8] we define team defeat and undercut as follows:
An argument team defeats a defeasible argument B at g w.r.t.
Args if for every rule rp with conclusion ¢ there is a rule r4 in
A with conclusion ~ ¢, such that label(ra) > args label(rg).

Let strong(S) be the set of arguments, all of whose subar-
guments are supported by S. Obviously S C strong(S). Also,
note that if Ay, Ay € strong(S) are arguments for the literal
q, then A; U A; is also an argument for ¢q. Thus there exists a
maximal argument for ¢ in strong(S), denoted by maz(q, S).

A defeasible argument A is undercut by a set of arguments
S if there is a literal ¢ such that strong(S) defeats a proper
subargument of A at ¢ w.r.t. S, and A does not team defeat
maz(~ q,S) at ~ ¢ w.r.t. S.

5.3 The Status of Arguments

An argument A is supported by a set of arguments S if every
conclusion in A is also the conclusion of a finite argument in
S. An argument A for p is acceptable w.r.t. a set of arguments
S if (1) A is strict; or (2):

(2a) every proper subargument of A is supported by S, and
(2b) every argument attacking A is either undercut by S or team

defeated by A.
Let D be a defeasible theory. We define JP as follows:

o JP =10
o JB, ={a € Argsp | a is acceptable w.r.t. JP}

The set of justified arguments in D is JArgs® = UizlJiD. A
literal is justified if it is the conclusion of a finite argument in
JArgsP.

Theorem 7 D & +0q iff q is justified.

An argument A is rejected by sets of arguments S and T if
(1) A is defeasible, and either

(2a) a proper subargument of A is in S, or
(2b) there exists an argument B attacking A, such that B is

supported by T', and A does not team defeat B w.r.t. T
We define RP as follows:

e RP=9¢
e RE, ={ac Argsp | a is rejected by RP and JArgs®}

The set of rejected arguments in D is RArgs® = UileiD.
A literal is rejected if there is no argument for p in Args? —
RArgsp.

Theorem 8 D F —0dq iff q is rejected.

6 Conclusion

In this paper we studied dynamic priorities in the defeasible
logics. We studied two variants, depending on whether cyclic
priority information is allowed to occur or not. For each vari-
ant we considered levels of proof: strict, defeasible with am-
biguity propagation, defeasible with ambiguity blocking, and
support. We defined the proof theory, derived coherence and
consistency, and established a chain of inclusion for the vari-
ous levels of proof. Finally we defined a more abstract char-
acterisation in the form of an argumentation semantics.

The next step in this research line is to implement the logics
and use them in applications.

REFERENCES

(1]

2]

(3]

(4]
(5]

(6]
[7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

G. Antoniou, M.J. Maher and D. Billington. Defeasible Logic
versus Logic Programming without Negation as Failure, Jour-
nal of Logic Programming, 42 (2000): 47-57.

G. Antoniou, D. Billington, G. Governatori and M.J. Maher.
A Family of defeasible reasoning logics and its implementa-
tion. In Proc. 14th European Conference on Artificial Intel-
ligence (ECAI’2000), 459-463.

G. Antoniou, D. Billington, G. Governatori and M.J. Maher.
Representation results for defeasible logic. ACM Transactions
on Computational Logic 2 (2001): 255-287

D. Billington. Defeasible Logic is Stable. Journal of Logic and
Computation 3 (1993): 370-400.

G. Brewka. Well-Founded Semantics for Extended Logic Pro-
grams with Dynamic Priorities. Journal of Artificial Intelli-
gence Research 4 (1996): 19-36.

G. Brewka and T. Eiter. Preferred Answer Sets for Extended
Logic Programs. Artificial Intelligence 109 (1999): 297-356.
J.P. Delgrande, T Schaub and H. Tompits. Logic Programs
with Compiled Preferences. In Proc. ECAI’2000, 464-468.
G. Governatori and M.J. Maher. An Argumentation-
Theoretic Characterization of Defeasible Logic. In Proc.
ECAI’2000.

G. Governatori, A. ter Hofstede and P. Oaks. Defeasible Logic
for Automated Negotiation. In Proc. Fifth CollECTeR Con-
ference on Electronic Commerce, Brisbane 2000.

B.N. Grosof. Prioritized conflict handling for logic programs.
In Proc. International Logic Programming Symposium, MIT
Press 1997, 197-211.

B.N. Grosof, Y. Labrou and H.Y. Chan. A Declarative Ap-
proach to Business Rules in Contracts: Courteous Logic Pro-
grams in XML. In Proc. 1st ACM Conference on Electronic
Commerce (EC-99), ACM Press 1999.

H.A. Kautz and B. Selman. Hard problems for simple default
theories. Artificial Intelligence 28 (1991): 243-279.

M.J. Maher, A. Rock, G. Antoniou, D. Billington and T.
Miller. Efficient Defeasible Reasoning Systems. In Proc. 12th
IEEE International Conference on Tools with Artificial In-
telligence (ICTAI 2000), IEEE 2000, 384-392.

M.J. Maher. Propositional Defeasible Logic has Linear Com-
plexity. Theory and Practice of Logic Programming, to ap-
pear.

D. Nute. Defeasible Logic. In D.M. Gabbay, C.J. Hogger and
J.A. Robinson (eds.): Handbook of Logic in Artificial Intelli-
gence and Logic Programming Vol. 3, Oxford University Press
1994, 353-395.

H. Prakken. Logical Tools for Modelling Legal Argument: A
Study of Defeasible Reasoning in Law. Kluwer Academic Pub-
lishers 1997.

H. Prakken, G. Sartor. Argument-based logic programming
with defeasible priorities. Journal of Applied Non-Classical
Logics 7 (1997): 25-75.

D.M. Reeves, B.N. Grosof, M.P. Wellman, and H.Y. Chan.
Towards a Declarative Language for Negotiating Executable
Contracts, Proceedings of the AAAI-99 Workshop on Artifi-
cial Intelligence in Electronic Commerce (AIEC-99), AAAI
Press / MIT Press, 1999.

D.D. Touretzky, J.F. Horty and R.H. Thomason. A Clash
of Intuitions: The Current State of Nonmonotonic Multiple
Inheritance Systems. In Proc. IJCAI-87, Morgan Kaufmann
1987, 476-482.

