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Abstract. Twelve years ago, various notions of preferential entail-
ment have been introduced. The main reference is a paper by Kraus,
Lehmann and Magidor (KLM), one of the main competitor being a
more general version defined by Makinson (MAK). These two ver-
sions have already been compared, but it is time to revisit these com-
parisons. Here are our main results: (1) These two notions are equiv-
alent, provided that we restrict our attention, as done in KLM, to the
cases where the entailment respects logical equivalence (on the left
and on the right). (2) A serious simplification of the description of
the fundamental cases in which MAK is equivalent to KLM, includ-
ing a natural passage in both ways. (3) The two previous results are
given for preferential entailments more general than considered in
some texts, but they apply also to the original definitions and, for this
particular case also, the models can be simplified.

1 INTRODUCTION

Here is one possible presentation of preferential entailments: We are
given some knowledge, represented as a set of logical formulas. This
set can be associated with various kinds of objects, providing its “se-
mantics”: it can be associated with its set of models, or equivalently
in the propositional case, with the set of the complete theories which
entail the formulas. Or it can be associated with the set of theories
(complete or not) which entail the formulas. Then we are given a
binary relation among these objects, and we keep only the objects
which are “preferred” (meaning minimal) for this relation. We get a
stronger set of formulas, deduced “by default”: we get also all the
formulas associated with this reduced set of objects. This allows to
reason in a non monotonic way, since augmenting the knowledge
may invalidate previous conclusions. Indeed, some objects may be-
come minimal in the smaller set associated with the new knowledge.
We can allow more flexibility by considering copies of models, or
copies of theories, defining the relation among these sets of copies.
We get then four kinds of preferential entailments, called KLM be-
low, which have been introduced by Kraus, Lehmann and Magidor
(1990) in [7] ([7] requires some conditions on the relation, but adding
these conditions is straightforward in our results).

Makinson (1994, first version in 1989) has defined a more gen-
eral version [8], called MAK here. An unstructured “semantics” is
defined simply by a satisfaction relation from some set of objects to
the set of formulas, without any condition. It is then useless to con-
sider sets of these objects instead of singletons: its suffices to define
directly as our starting set, the set of sets that we would want to con-
sider. Also, since nothing prevents two different objects from being
associated with the same set of formulas, it is useless to consider
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copies of objects. A drawback of this simple definition is that the no-
tion of classical deduction is lost. The “entailment” can be highly non
standard, departing from classical logic and natural ways of reason-
ing. We can e.g. deduce A ∧B without deducing A. As a bonus, we
can consider as our starting logic basically any non classical logic.

If we want to compare the two notions, we must determine which
non standard behavior we admit in the “semantics” defining the pref-
erential entailment. If we want to extend KLM entailment in order to
deal with any situation accessible to MAK entailment, all we have to
do is to admit any unconstrained satisfaction relation between the set
of states and the set of formulas. We can even restrict our attention to
the simplest of the four cases, defining the relation directly on the set
of the objects describing the semantics. Thus, the interesting point
is the other direction. Thanks to recent results on preferential en-
tailments, we show that, provided classical equivalence is respected,
MAK entailment is equivalent to KLM entailment. Since it is clear
that KLM entailment respects logical equivalence, equivalence be-
tween the two formalisms holds in all the cases where it is possible.
We describe a simple subclass of MAK models, which includes all
the cases where MAK entailment respects classical equivalence, and
for which it is easy to describe a passage from MAK formulation to
KLM formulation and back. We improve previous results obtained
by Dix and Makinson (1992) in [4] and by Voorbraak (1993) in [13].
The description of the subclass of MAK is much simpler than in [4].

In Section 2 we introduce the notations and the logical pre-
requisite necessary for this text. In Section 3 we remind the defi-
nitions and main properties of the kind of preferential entailments
considered here, giving our results in Section 4.

2 NOTATIONS AND FRAMEWORK

• L, ϕ, T : We work in a propositional language L, and we use the
same denotation L for its set of formulas. Letters ϕ, ψ denote for-
mulas (identified with their equivalence class). Letters T or C denote
sets of formulas.

• V, M, µ, P(E), µ |= · · ·: V (L) (vocabulary), denotes a set of
propositional symbols and µ denotes an interpretation for L, identi-
fied with the subset of V (L) that it satisfies. The satisfaction relation
is denoted by |=, µ |= ϕ and µ |= T being defined classically. For
any set E, P(E) denotes the set of its subsets. The set P(V (L)) of
the interpretations for L is denoted by M. A model of T is an inter-
pretation µ such that µ |= T . The sets of the models of T and ϕ are
denoted respectively by M(T ) and M(ϕ).

• T |= · · · , Th(T ),T: T |= ϕ and T |= T 1 are defined classi-
cally. A theory is a subset of L closed for deduction, and T denotes
the set {T ⊆ L / T = Th(T )} of the theories of L.

• M1 |= · · · , Th(µ), Th(M1): A theory C ∈ T is complete if



∀ϕ ∈ L, ϕ ∈ C iff ¬ϕ /∈ C. The set Th(µ) = {ϕ ∈ L / µ |= ϕ}
of the formulas satisfied by µ is the theory of µ. For any subset M1

of M, M1 |= T means µ |= T for any µ ∈ M1 and the theory of
M1 is the set Th(M1) = {ϕ ∈ L / M1 |= ϕ} [thus Th(M1) =⋂

µ∈M1

Th(µ)]. This ambiguous use of Th and of |= (applied to
sets of formulas or interpretations) is usual. For any T ∈ T, we get
T =

⋂
Ti∈T, Ti|=T

T i =
⋂

Ci∈T, Ci complete, Ci|=T
Ci. The set of

all the complete theories is in a natural one-to-one mapping with M:
For any µ ∈ M, Th(µ) is complete, and for any complete C ∈ T,
M(C) is a singleton {µ} ⊆ M. For any T ⊆ L, we get µ |= T iff
Th(µ) |= T and for any M1 ⊆ M, M1 |= T iff Th(M1) |= T .

3 PREFERENTIAL ENTAILMENTS

3.1 Preferential KLM entailment

Since their introduction [7], these kinds of preferential entailment
have been extensively studied. As [4] remarks, “the use of the term
preferential is [..] rather anarchic [...]”. The situation has not really
improved since these “early years”, however, it is clear that now the
word is not restricted to the “cumulative cases” as done in [7]. The
expression “preferential entailment” was first introduced by Shoham
(1988) in [12], and then regularly generalized and/or modified. The
basic idea however is still the same: we consider a set of objects
describing the semantics, and a binary relation ≺ on this set of ob-
jects. We get a “preferential semantics” in which only the objects,
associated with a set of formulas, which are minimal for ≺, are con-
sidered. The definitions we give can be found in e.g. [7, Definitions
3.10, 3.13] (“single formula version”) and [6, Definitions 4.26–29]
(“theory version”, only version considered here), with some modifi-
cations which have already been considered in e.g. [4, 2, 5]. These
modifications are either cosmetic, or consist in dropping some spe-
cial condition imposed in the original text to the relation ≺, since (1)
we do not need these restrictions, and (2) our study can accommodate
in a straightforward way these restrictions.

Definition 3.1 A KLM model is a triple S = (S, l,≺), where S is
a set, the elements of which are called states, l is a mapping S →
P(M) that labels every state with a set of interpretations and ≺ is a
binary relation on S, called a preference relation.

We define a satisfaction relation |≡: for any s ∈ S, s|≡ ϕ whenever
l(s) |= ϕ and, for any T ⊆ L, s|≡ T whenever l(s) |= T . For any
set of formulas T ⊆ L, we define S(T ) = {s ∈ S / s|≡ T } and
the set S≺(T ) of the states in S(T ) which are minimal for ≺ by
S≺(T ) = {s ∈ S(T ) / s′ ≺ s for no s′ ∈ S(T )}.

S(T ) is T̂ in the original texts. Notice that, as noted by Bochman
(1999) in [1], we can replace the set l(s) of interpretations by a
theory, precisely the theory Th(l(s)), and we will in fact generally
prefer this formulation, where l is a mapping S → T instead of
S → P(M). Also, we drop here the consistency of states condition
l(s) 6= ∅ (or alternatively l(s) 6= L if we consider labelling with the-
ories) which appears in the original definitions. As explained below,
this condition is unnecessary.

The role of l is to allow “copies of” sets of interpretations (or al-
ternatively “copies” of theories), since various states can be mapped
by l to the same object.

Definition 3.2 Let us call an entailment relation, any relation |∼ in
P(L)×L. Any entailment relation can be extended into a relation in
P(L) ×P(L) by defining T |∼ T ′ as T |∼ ϕ for any ϕ ∈ T ′.

From any entailment relation, we can define a mapping C from
P(L) to itself, called an entailment: C(T ) = {ϕ ∈ L / T |∼ ϕ}.

Definition 3.3 [7] A KLM entailment relation |∼KLM
≺ is defined as

follows from a KLM model S: for any T ∪ {ϕ} ⊆ L, T |∼KLM
≺ ϕ

whenever s|≡ ϕ for any s ∈ S≺(T ). We write also ϕ ∈ CKLM (T )
instead of T |∼KLM

≺ ϕ and call the entailment CKLM a KLM pref-
erential entailment, or a KLM entailment for short.

Definition 3.4 A pre-circumscription f (in L) is an extensive (i.e.,
f(T ) ⊇ T for any T ) mapping from T to T. For any subset T of
L, we use the abbreviation f(T ) = f(Th(T )), assimilating a pre-
circumscription to a particular extensive entailment. We write f(ϕ)
for f({ϕ}) = f(Th(ϕ)).

Thus, we call here pre-circumscription any entailment which re-
spects full logical equivalence and which is extensive. By “respects
full logical equivalence”, we mean that, if T 1 and T 2 are two logi-
cally equivalent sets of formulas [i.e. Th(T 1) = Th(T 2)], then (1)
(“left side”) f(T 1) = f(T 2), and (2) (“right side”) T 1 ⊆ f(T ) iff
T 2 ⊆ f(T ). The “right side” is equivalent to “right weakening”: if
T 1 |= ϕ and T 1 ⊆ f(T ), then ϕ ∈ f(T ).

Definition 3.5 An entailment C satisfies (CT), cumulative transitiv-
ity, also known as “cut”, if

for any T ′ ⊆ C(T ), we get C(T ∪ T ′) ⊆ C(T ).

Here is a characterization of KLM entailments:

Property 3.6 [7, 8] Any KLM entailment CKLM is a pre-
circumscription satisfying (CT).

Property 3.7 [13, 9] Any pre-circumscription satisfying (CT) is a
KLM entailment.

Particular KLM models can be considered. The three kinds de-
scribed now originate also from [7], where no special names are
given. Let S = (S, l,≺) be a KLM model.

Definition 3.8 1. If S = P(M) (or equivalently, under the alterna-
tive formulation in terms of theories, S = T) and l = identity,
then S is a simplified (or unlabelled) KLM model.

2. If each l(s) is a singleton in P(M) (or equivalently a complete
theory), then S is a singular KLM model.

3. If S is simplified and singular, then S is a strictly singular KLM
model.

With the unrestricted case, we get then four kinds of models, which
could give rise to four kinds of KLM entailments.

We could without lack of generality restrict our attention to sim-
plified KLM models: in the proof of Property 3.7, we can get a sim-
plified KLM model ([9], this result could also be extracted from an
independent work by Voorbraak [13]). Thus, we do not really need
“states” in KLM models. However, in the case of a singular KLM
model, we generally cannot suppress the states if we want to keep
only singletons in the image l(S) of l (as shown in a simple finite
example in [7, p.193]): we cannot suppress the states without leaving
this attractive particular case2. This feature is a good motivation for
introducing states, but only in the case of singular models. Also we
cannot express any KLM entailment thanks to a singular KLM model
(a small finite counter-example in [7, proof of Lemma 4.5] applies

2 Even in this case, the states can be suppressed, provided we enlarge the
vocabulary of the initial language L in such a way that each different state
gives rise to a different interpretation in the new language: this method is
introduced by Costello (1998) in [3] for the cumulative and finite case



here)3. This means that if we start from a preference relation defined
on a set of copies of sets of interpretations (or equivalently of copies
of theories), then we can find an equivalent relation defined directly
on the set P(M) (or T), but we cannot always define the relation on
the set M of interpretations or even on a set of copies of interpreta-
tions. Thus, we get three kinds of KLM preferential entailments (see
their syntactical characterizations in [11]), instead of four.

A consequence of this reduction to simplified models is that any
singular model is equivalent to a simplified model (generally not sin-
gular), which is not obvious from the definitions.

3.2 Preferential MAK entailment

Makinson considers an entailment more general than its KLM coun-
terpart, with a simpler definition. The price is that this notion leaves
classical consequence altogether, getting a highly non standard pref-
erential entailment in which we can conclude A ∧ B without con-
cluding B, and in which what we conclude fromA∧B is not related
to what we conclude from {A,B}. This can be useful if we want to
extend the notion of preferential entailment to non classical logics.
However, if we want to stay in our good old classical way of rea-
soning, this is rather confusing. In any case, a fair comparison with
KLM definitions needs to equate the ways we want to reason at first.
This is what we will do in Section 4, after giving the definitions now.

Definition 3.9 [8] A MAK model is a triple S = (S, |≡,≺) where S
is a set, the elements of which are called states, ≺ is a binary relation
on S, called a preference relation (till now, this is as in KLM models
Definition 3.1) and where |≡ is any satisfaction relation on S. We
define s|≡ T by s|≡ ϕ for any ϕ ∈ T . We write s|≡≺ ϕ [respectively
s|≡≺ T ] whenever s|≡ ϕ [respectively s|≡ T ] and for no s′ ∈ S
such that s′ ≺ s we have s′|≡ ϕ [respectively s′|≡ T ].

A MAK entailment relation |∼MAK
≺ is defined as follows: For any

set of formulas T ∪ {ϕ}, T |∼MAK
≺ ϕ whenever s|≡ ϕ for all s ∈ S

satisfying s|≡≺ T .
A MAK preferential entailment, or MAK entailment for short,

is an entailment CMAK defined by a MAK entailment relation:
CMAK(T ) = {ϕ ∈ L / T |∼MAK

≺ ϕ}.

The names KLM model and MAK model are from [4]. What makes
this short definition so powerful is that no condition is required
for |≡. This makes the preferential entailment very different from
what we expect for an “entailment”. CMAK is far from being a
pre-circumscription: if T 1 and T 2 are classically equivalent, we do
not know anything about CMAK(T 2) when we know CMAK(T 1).
Moreover, we almost need an extensive description of all the sets
CMAK(T ), since they are not classical theories. If we drop the iden-
tification between a formula and its equivalence class, we can even
consider logics where CMAK(A∧B) is different from CMAK(B ∧
A). However, we get interesting properties:

Property 3.10 [8] MAK entailments are extensive and satisfy (CT).
This implies also idempotence: CMAK(CMAK(T )) = CMAK(T ).

The significance of (CT) for such kind of “entailment” is far from
being as great as when we deal with pre-circumscriptions.

Before making a comparison between MAK and KLM, let us give
a few natural definitions, which extend to (S, |≡) what is usually
done with classical interpretations (M, |=).

3 Again, this limitation can be overcome [10], at least in the finite case: at
the price of a severe modification of the vocabulary of the initial language
L, any KLM preferential entailment can be expressed in terms of a strictly
singular KLM model.

Definitions 3.11 Let (S, |≡,≺) be a MAK model. As in Definition
3.1, for s ∈ S, T ⊆ L, and ϕ ∈ L, S(T ) = {s∈S/s|≡ T } [and
S(ϕ) = S({ϕ})]. We define the entailment Cn|≡ as follows:
Cn|≡(T ) = {ϕ ∈ L/ for any s∈S(T ), s|≡ ϕ}.
We define also, for each s ∈ S: Cn|≡(s) = {ϕ ∈ L / s|≡ ϕ}.

We get (straightforward [4]): Cn|≡ is a Tarski entailment, i.e. it is an
extensive entailment satisfying idempotence (point 1) and monotony
(point 2): for any sets T , T ′ of formulas,

1. T ⊆ Cn|≡(T ) = Cn|≡(Cn|≡(T )).
2. If T ⊆ T ′ then Cn|≡(T ) ⊆ Cn|≡(T ′).

Notice that we get: Cn|≡(T ) =
⋂

s∈S(T )
Cn|≡(s).

We use the same writing Cn|≡ for two different notions (cf Th
in classical logic, Section 2): (a) an entailment defined by Cn|≡(T ),
and (b) a notion of “theory of a state” defined by Cn|≡(s). A justi-
fication for this is that Cn|≡(s) is indeed a theory in the meaning of
Cn|≡: for any s ∈ S, Cn|≡(Cn|≡(s)) = Cn|≡(s).

Proof: Cn|≡(s) ⊆ Cn|≡(Cn|≡(s)) since Cn|≡ is a Tarski en-
tailment. Cn|≡(Cn|≡(s)) =

⋂
s′∈S(Cn|≡(s))

Cn|≡(s′) by defini-

tion of Cn|≡(T ), and s ∈ S(Cn|≡(s)) [i.e. s|≡ Cn|≡(s)], thus
Cn|≡(Cn|≡(s)) ⊆ Cn|≡(s). 2

Here is another result [4]: For any T ⊆ L, Cn|≡(T ) ⊆ CMAK(T ).
Notice that CMAK is not a Tarski entailment: it falsifies monotony.

4 RELATING MAK AND KLM ENTAILMENTS

4.1 The MAK entailments which are KLM ones

MAK notion encompasses KLM notion, as noticed in [8, 4]:

Property 4.1 For each KLM model S = (S, l,≺) (defining a KLM
entailment CKLM ), there exists a MAK model (S, |≡,≺) such that
its associated MAK entailment CMAK is equal to CKLM .

The states and the relation ≺ are unmodified, |≡ is defined by: s|≡ ϕ
whenever l(s) |= ϕ [4]. We get then clearly |∼MAK

≺ =|∼KLM
≺ .

Here is a characterization of the subclass of MAK models which
can be translated into KLM models.

Theorem 4.2 A MAK model S = (S, |≡,≺) gives rise to a MAK en-
tailment CMAK which is equal to some KLM entailment CKLM iff
the MAK entailment CMAK is a pre-circumscription.

Proof: The condition is necessary from Prop. 3.6. MAK entailments
satisfy (CT) from Prop. 3.10, thus Prop. 3.7 gives the result. 2

Thus, what lacks to MAK entailment in order to be a KLM entail-
ment is exactly the full preservation of logical equivalence.

This result is more a characterization of the subclass of the MAK
entailments which can be turned into KLM entailments than a char-
acterization of the subclass of MAK models which can be turned into
KLM models. We will now get an easier and more direct property,
which can be checked directly on the MAK model.

4.2 A subclass of MAK models which are KLM
models

For any KLM entailment, we have Th(T ) ⊆ CKLM (T ). This has
been taken into account in [4] for describing a subclass of the MAK
models which (1) can be turned into KLM models and (2) is pow-
erful enough to give all the KLM entailments. However, in [4], the
description of this subclass is needlessly complex. We will describe
now a simpler and more general subclass satisfying (1) and (2).



Definitions 4.3 1. A MAK model S = (S, |≡,≺) is supra classical
whenever we get Th(Cn|≡(s)) = Cn|≡(s) for any state s in S.
This means that the “world” associated to each state is classically
deductively closed (i.e. is a classical theory).

2. An entailment C is supra classical if it satisfies Th(T ) ⊆ C(T )
for any T ⊆ L.

The first definition is independent of the preference relation ≺.
Voorbraak [13] calls “L-faithful” our supra classical models.

For the second definition, notice that any pre-circumscription is a
supra classical entailment.

Lemma 4.4 If a MAK model S = (S, |≡,≺) is such that the entail-
ment Cn|≡ is supra classical, then S is supra classical.

Proof: (1) Cn|≡(s) ⊆ Th(Cn|≡(s)) since T ⊆ Th(T ).
(2) Th(Cn|≡(s)) ⊆ Cn|≡(Cn|≡(s)) by hypothesis, and we al-

ready know that we have in any case Cn|≡(Cn|≡(s)) = Cn|≡(s),
which establishes Th(Cn|≡(s)) = Cn|≡(s). 2

Lemma 4.5 If a MAK model S = (S, |≡,≺) is supra classical, then
the (Tarski) entailment Cn|≡ and the (preferential) MAK entailment
CMAK defined by S are pre-circumscriptions.

Proof: (1) Let ϕ ∈ Th(T ) and s ∈ S(T ), then ϕ ∈ Cn|≡(s) by
supra classicality of S. Thus, ϕ ∈

⋂
s∈S(T )

Cn|≡(s) = Cn|≡(T ):

Cn|≡ is supra classical. From Cn|≡(T ) =
⋂

s∈S(T )
Cn|≡(s) we

get also Cn|≡(T ) ∈ T since each Cn|≡(s) is in T. Since by Defini-
tion 3.9 we get CMAK(T ) =

⋂
s∈S≺(T )

Cn|≡(s) (where the sub-
set S≺(T ) of S(T ) is defined exactly as in Definition 3.1 for KLM
models), we get a fortiori ϕ ∈ CMAK(T ) ∈ T.

(2) If T 1 and T 2 are two equivalent sets, then, by supra classicality
of S, for each s ∈ S, we have s|≡ T 1 iff s|≡ T 2, i.e. we have
S(T 1) = S(T 2). A fortiori we get then S≺(T 1) = S≺(T 2). Thus
we get Cn|≡(T 1) = Cn|≡(T 2) and CMAK(T 1) = CMAK(T 2)
by the definitions of Cn|≡(T ) and CMAK(T ) respectively. 2

We have established:

Property 4.6 1. A MAK model S=(S, |≡,≺) is supra classical iff
the (Tarski) entailment Cn|≡ that it defines is supra classical, iff
the entailment Cn|≡ is a pre-circumscription.

2. If a MAK model is supra classical, then the (preferential) MAK
entailment CMAK that it determines is a pre-circumscription.

We are now in position to establish our second main result:

Theorem 4.7 1. If a MAK model S is supra classical, then the MAK
entailmentCMAK that it determines is a KLM entailmentCKLM .
Precisely, if S = (S, |≡,≺) is supra classical, there exists a KLM
model S′ = (S, l,≺) with S and ≺ unmodified, such that the MAK
entailment defined by S is the KLM entailment defined by S′.

2. Any KLM preferential entailment CKLM is equal to a MAK en-
tailment defined by a supra classical MAK model.
Precisely, if S=(S,l,≺), there exists a supra classical MAK model
S′ =(S, |≡,≺) with S and ≺ unmodified, such that the KLM en-
tailment defined by S is the MAK entailment defined by S′.

Proof: (1) Theorem 4.2 and Property 4.6-2 give the first sentence.
Let S = (S, |≡,≺) be a supra classical MAK model. We get a

KLM model as follows: keeping S and ≺ unmodified, we define l as
the mapping S → T by taking l(s) = Cn|≡(s). It is immediate to
see that the KLM entailment CKLM is equal to CMAK .

(2) We have a constructive proof already: It suffices to see the
construction given in Property 4.1: it is clear from the definitions
that the MAK model obtained there is supra classical since we have
already noticed that each l(s) in Definition 3.1 can be equated to a
classical theory. 2

Notice that the “cumulative” version of this theorem could also
have been obtained from some results in an earlier independent work
by Voorbraak [13]. Rather strangely, Voorbraak does not enounce
these results, referring to [4] for further results on the subject.

Thus, we get characterization results and constructive passages
simpler and easier than those given in [4]. However, our results are
slightly more general (see why in note 5): the subclass of the MAK
models considered here is slightly greater than the subclass consid-
ered by Dix and Makinson since they consider a strict subclass of
the MAK models which can be “amplified” (in their terms). It is
easy to see, from [4] together with our results, that the class of the
MAK models which can be “amplified” coincide with the class of
the supra classical MAK models. Moreover, our comparison does
not need to consider a third intermediate (betweenCn|≡ andCMAK )
non classical entailment4, which plays an important role in the results
of [4], but which complicates the direct comparison between KLM
and MAK preferential entailments. This simplification comes mainly
from our results about supra classical MAK models. And the condi-
tion that each Cn|≡(s) must be a theory is easily checked, without
the need to compute the associated MAK entailment or to introduce
a third non classical entailment.

If we are concerned only by those MAK entailments which respect
full logical equivalence, we can restrict our attention to a yet nar-
rower class of MAK models. Indeed, we have seen why in this case
we can restrict our attention to the easily described class of supra
classical MAK models. Now, since we can consider only the sim-
plified version of KLM models, our passages between MAK models
and KLM models show that we can also require a unicity of states
condition for MAK models. By “unicity of states”, we mean that, for
any different s, s′ ∈ S, the “worlds” Cn|≡(s) and Cn|≡(s′) corre-
sponding to these two states are different. The class of the supra clas-
sical MAK models satisfying unicity of states is powerful enough to
generate all the MAK entailments which are pre-circumscriptions.
Let us describe now the analogous of the singular and the strictly
singular KLM models in terms of MAK models.

Definition 4.8 A MAK model S = (S, |≡,≺) is classical if the
“worlds” Cn|≡(s) are (classical) complete theories, for any s ∈ S.

Remark 4.9 • A MAK model is supra classical iff the satisfaction
relation |≡ respects the binary connector ∧: for each s ∈ S, we have

s|≡ ϕ1 ∧ ϕ2 iff s|≡ ϕ1 and s|≡ ϕ2. (R∧)

• • A MAK model is classical iff it is supra classical and |≡ respects
the negation ¬:

s|6≡ ϕ iff s|≡ ¬ϕ. (R¬)

Proof: • If each Cn|≡(s) is in T, then, since {ϕ1, ϕ2} ≡ {ϕ1 ∧
ϕ2}, we get {ϕ1, ϕ2} ⊆ Cn|≡(s) iff {ϕ1 ∧ ϕ2} ⊆ Cn|≡(s).
Conversely, let us suppose (R∧). Then, if {ϕi}∈I ⊆ Cn|≡(s) and

4 For readers familiar with [4], let us notice that an immediate consequence of
our results is that, even in the exact framework and formulation considered
in [4, main theorem], the condition (3a) given there (s|≡ ϕ and s|≡ ϕ

′

implies s|≡ ϕ ∧ ϕ
′) is redundant.



{ϕi}i∈I |= ϕ, by compactness of |= there exists a finite J ⊆ I
such that {ϕi}i∈J |= ϕ, i.e.

∧
i∈J

ϕi |= ϕ, i.e.
∧

i∈J
ϕi ≡

(
∧

i∈J
ϕi) ∧ ϕ, thus, by (R∧), ϕ ∈ Cn|≡(s). Remind that we iden-

tify a formula with its equivalence class. Makinson does not always
make this assumption in [8], thus, his original formalism is slightly
more general than the version given in the present text. However,
since with KLM entailments a formula can always be replaced by an
equivalent formula, we must make this assumption when we want to
compare the two formalisms: If this assumption is not made till the
beginning (as in this text), then it must be added, e.g. by requiring in
Definition 4.3-1 that |= is standard. Notice that Definition 4.3-1 as it
stands implies that two formulas equivalent (for |=) are always in the
same sets Cn|≡(s), thus are “equivalent for |≡”.

• • A theory Cn|≡(s) is complete iff [ϕ ∈ Cn|≡(s) iff ¬ϕ /∈
Cn|≡(s)], i.e. iff |≡ satisfies (R¬). 2

A MAK model is classical iff |≡ respects all the logical connectors.
For instance, it is immediate to see that (R∧) and (R¬) imply (R∨):

s|≡ ϕ1 ∨ ϕ2 iff s|≡ ϕ1 or s|≡ ϕ2. (R∨)

Classical MAK models correspond to singular KLM models while
the classical MAK models which respect unicity of states correspond
to the strictly singular KLM models.

4.3 Coming back to the original KLM entailments

This work applies also to cases where special conditions are required
for the models. We think that the simplicity and the naturalness of
our translation is a first serious indication for this. Let us consider
the original definitions.

Definitions 4.10 1. A consistent KLM model, is such that each state
is consistent, meaning that l(s) is consistent.

2. A KLM model S = (S, l,≺) is smooth (stoppered in [8]) if, for
each T ⊆ L and s ∈ S(T ) − S≺(T ), there exists s′ ∈ S≺(T )
such that s′ ≺ s (“minoration by a minimal state”).

[7] considers only the KLM models which are consistent and smooth.
The authors consider that cumulative monotony (CM) [if T ′ ⊆
C(T ), then C(T ) ⊆ C(T ∪ T ′)] is as important as (CT), and they
only care of cumulative entailments, which satisfy (CT) and (CM).
They give the following characterization [7, Theorem 3.25]:

A pre-circumscription C is cumulative iff it is a KLM entail-
ment defined by a smooth and consistent KLM model.

This characterization result also holds without the consistency
condition, which confirms our opinion that, for KLM entailments,
the requirement that l(s) must be consistent is needless5.

We get, with the KLM models as defined here, a first modification
of KLM characterization (the proof is an easy modification of the
proof of the original characterization [7], moreover this result has
already appeared as [8, Observation 3.4.5] and [13, Proposition 5.4]):

A pre-circumscription C is cumulative iff it is a KLM entail-
ment defined by a smooth KLM model.

We can go even further, by requiring that the KLM model is a
simplified KLM model (see the companion paper published under the
same tittle as the present paper in the Workshop NMR 2002, § 4.3).

5 For readers familiar with [4], let us remind that the main theorem of Dix
and Makinson adds to (3a) (see note 4) a “consistency of states” condition
(3b). This condition is necessary because they disallow inconsistent states
in KLM models, following [7]. Since inconsistent states are not a real prob-
lem, this condition, which restricts the class of the MAK models concerned,
can be suppressed without modifying the results about the entailments.

5 CONCLUSION AND PERSPECTIVES

We have shown that the notions of preferential entailment as defined
by Kraus, Lehmann and Magidor and as defined by Makinson are
much closely related than was supposed before. Indeed, these two no-
tions coincide exactly in all the cases where they can coincide, that
is when the underlying logic respects classical equivalence. More-
over, we have shown that a similar result holds also for the respective
models defining the two notions. It was already known that any KLM
model could easily be turned into a MAK model. We have exhibited
a natural subclass of the MAK models which can, exactly as easily,
be turned into a KLM model. The subclass obtained here is slightly
greater, and is much easier to describe, than what was previously
known. And this subclass of models is “complete”: it generates all
the KLM preferential entailments. This subclass is the class of the
MAK models for which all the states have a “classical” behavior:
the set of formulas they satisfy is closed for classical deduction. This
subclass is the most natural class to consider. Indeed, this is the class
such that, for any preference relation ≺, we are certain from the be-
ginning that the MAK preferential entailment generated has a classi-
cal behavior with respect to logical equivalence. Some MAK models
outside this class can give rise to a KLM entailment, but these models
can easily be turned into classically behaved ones.

Our results apply to important particular subclasses of KLM mod-
els: (1) the models which are simplified in that the labelling mapping
l is needless, (2) the “smooth”models (corresponding to cumulative
preferential entailments).

As (non trivial) future work, let us remark that these results should
help further study on the subject, since they show that this kind of
preferential entailment is not as “cumbersome” as it is qualified even
in the founding paper [7]. Even automatic computation could take
advantage from these results, since the models considered here have
nice properties, which, hopefully, could help designing new kinds of
“preferential entailments demonstrators”.
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