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Abstract. The concept of argumentation may be used to give aln fact, such a notion of acceptability can be defined in a number of
formal semantics to a variety of assumption based reasoning fomways depending on which attacks we allow the proponent and oppo-
malisms. In particular, various argumentation semantics have beeament to use.
proposed for logic programming with default negation. For extended Normal logic programs do not have negative conclusions, which
logic programming, i.e. logic programming with two kinds of nega- means that we cannot use rebuts. Thus both opponents can only
tion, there arise a variety of notions of attack on an argument, anthunch undercuts on each other's assumptions. Extended logic pro-
therefore a variety of different argumentation semantics. grams [10, 2, 20], on the other hand, introduce explicit negation,
The purpose of this paper is to shed some light on these varioushich states that a literal is explicitly false. As a result, both under-
semantics, and examine the relationship between different semantiasuts and rebuts are possible forms of attack; there are further varia-
We identify a number of different notions of attack for extended logictions depending on whether any kind of counter-attack is admitted. A
programs, and compare the resulting least fixpoint semantics, definedriety of argumentation semantics arise if one allows one notion of
via acceptability of arguments. We investigate the validity of the co-attack as defence for the proponent, and another as attack for the op-
herence principle, and notions of consistency for these semantics. ponent. The aim of this paper is to examine the relationships between
and properties of these different argumentation semantics. In partic-
1 Introduction ular, we would like to relate different existing argumentation seman-
Argumentation has attracted much interest in the area of Al. On th#&cs [6, 16], and find an argumentation semantics which is equivalent
one hand, argumentation is an important way of human interactiofo the well-founded semantics for extended logic programs [2].
and reasoning, and is therefore of interest for research into intelligent The paper is organised as follows: First we define arguments and
systems. Application areas include automated negotiation via argurotions of attack and acceptability. The relationships between the fix-
mentation [15, 14, 17] and legal reasoning [16]. On the other handpoint semantics resulting from the different notions are examined in
argumentation provides a formal model for various assumption base@ection 4. In Sections 5, we examine some properties of these seman-
(or non-monotonic, or default) reasoning formalisms [3, 4]. In partic-tics regarding consistency, and the coherence principle which relates
ular, various argumentation based semantics have been proposed fplicit and default negation.
logic programming with default negation [3, 7], some of them equiv- .
alent with well-known semantics for normal logic programs such a2 EXtended LP and Argumentation
the stable model semantics [9], or the well-founded semantics [8]. We summarise the definitions of arguments for extended logic pro-
Argumentation semantics are elegant since they can be capturéffams, and define various notions of attack between arguments.
in an abstract framework [7, 3, 19, 12], for which an elegant theory

of attack, defence, acceptability, and other notions can be developea;l Arguments

without recourse to the concrete instance of the reasoning formalisff€finition 1 Anobjective literals an atomA or its explicit negation

at hand. This framework can then be instantiated to various assump- e define-—L = L. Adefault literalis of the formnot L where

tion based reasoning formalisms. Similarly, a dialectical proof theoryl IS @n objective literal. Aiteralis either an objective or a default lit-
can be defined for an abstract argumentation framework, and then aff@!- Anextended logic progrars a (possibly infinite) set of rules of
plied to any instance of such a framework [7, 11]. heformLo — L1, ..., Lin, n0t Lint1, - .., 10t Lipsn(m,n > 0),

In general, an argument is a proof which may use a set of where eacll; is an objective literal < i < m+n). Forsuch arule
defeasible assumptions. Another arguméhmay have a conclu- "+ We call Lo theheadof the rule head(r), and Ly, . ..., not Limn
sion which contradicts the assumptions or the conclusiont ahd ~ thebodyof the rule,body(r).
thereby B attacks A. There are two fundamental notions of such
attacks:undercutand rebut [16] or equivalentlyground-attackand
reductio-ad-absurdum attagk]. We will use the terminology of un-
dercuts and rebuts. Both attacks differ in that an undercut attacks
premise of an argument, while a rebut attacks a conclusion.

So, given a logic program we can define an argumentation semathefinition 2 Let P be an extended logic program. Angumentor
tics by iteratively collecting those arguments which are acceptable t® i 5 finite sequencel = [r1,...r,] of ground instances of rules
a proponent, i.e. they can be defended against all opponent attacks ’
21n[3, 6], an argumeris a set of assumptions; the two approaches are equiv-
I Deptartment of Computing, City University, London EC1V OHB, UK, alent in that there is an argument with a conclusloiff there is a set of
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Our definition of an argument for an extended logic program is
based on [16]. Essentially, an argument is a partial proof, resting on
a number ofassumptiongsi.e. a set of default literaksNote that we
§o not consider priorities of arguments, as used e.g. in [16, 19].




r; € P such that 1. for every < ¢ < n, for every objective literal
L; in the body of; there is ak > i such thathead(rr) = L;. 2. No

two distinct rules in the sequence have the same head. The head of a attacks=a =uUr

rule in A is called aconclusionof A, and a default literalnot L in |

the body of a rule ofd is called anassumptiorof A. defeats=d =uU (r —u™")
/ \

_The restrl_ctlon to minimal arguments is not essential, but conve- undercuts— strongly attacks= sa = (uUr) — u~"
nient, since it rules out arguments constructed from several unrelated — _—

arguments. Generally, one is interested in the conclusions of an argu-
ment, and wants to avoid having rules in an argument which do not

contribute to the desired conclusion. Figure 1. Hasse diagramme for notions of attack

strongly undercuts= su = u — u~!

2.2 Notions of Attack
Th two fund tal noti f attackd hich inval- - - . . .
| here are wo funcamental notions ot attae er_cutw ich Inva This diagram in Fig. 1 contains the notions of attack used in [6,
idates an assumption of an argument, egtulit, which contradicts a s . . .
16], plusstrongly attackshich is a natural intermediate notion be-

conclusion of an argument [6, 16]. From these, we may define furthetrweenstron ly undercutend defeats Undercuts are present in all
notions of attack, by allowing either of the two fundamental kinds of oy P

attack, and considering whether any kind of counter-attack is aIIoweéhe nothns of attack, since they are fg_ndamental when deallng V\.”th
. ) . default literals. In the absence of priorities, rebuts are symmetric, i.e.
or not. We will now formally define these notions of attacks.

if A rebutsB, B also rebuts4, while undercuts are not symmetric in
Definition 3 Let A; and A, be arguments. 14; undercutsd, if ~ 9eneral.

there is an objective literal. such thatL is a conclusion of4; and
not L is an assumption ofl. 2. A; rebutsA; if there is an objective
literal L such thatl is a conclusion of4; and—L is a conclusion of
A,. 3. Ay attacksA, if A; undercuts or rebutsls. 4. A; defeatsA,

if A; undercutsAs, or A; rebutsA, and A, does not undercudl; .
5. A; strongly attacksds if A; attacksA» and A, does not undercut
Aj. 6. Ay strongly undercutsd; if A; undercutsA, and A, does
not undercutA;.

3 Acceptability and Justified Arguments
Given the above notions of attack, we can deploy them to define the
acceptability of an argument. Basically, an argument is acceptable if
it can be defended against any attack. Depending on which particu-
lar notion of attack we use as defence and which for the opponent’s
attacks, we obtain a host of acceptability notions.
Acceptability forms the basis for our argumentation semantics,
which is defined as the least fixpoint of a function, which collects
The notions ofundercutand rebut and hencattack are funda-  &ll acceptable arguments. Tteastfixpoint is of particular interest
mental for extended logic programs [6, 16]. The notiordefeatis  [16, 6], because it provides a canonical fixpoint semantics and it can
used in [16], along with a notion adtrict defeat i.e. a defeat that ~P€ constructed inductively.
is not cognter-defeated. For ar_guments Wit.hOl.Jt prior_ities, _rebuts Befinition 6 Letx andy be notions of attack. Let be an argument,
symmetrlcal, and therefqre strict defeat coincides v_wt_h strict u_nderélnd S a set of arguments. The# is z/y-acceptable wrtS if for
cut, |.e.'an. under.cut th.at is not counter-ur?dercut. Similarly, strict at-every argument such that(B, A) €  there exists an argument
tack coincides with strict undercut. For this reason, we use the term, €'S such that(C, B) € y
strong undercuinstead oftrict undercutand similarly definstrong ’ '
attackto be an attack which is not counter-undercut. We will use the  Based on the notion of acceptability, we can then define a fixpoint
following abbreviations for these notions of attackor rebutsu for semantics for arguments.
undercutsa for attacksd for defeatssafor strongly attacks, ansu

for strongly undercuts. Definition 7 Let z andy be notions of attack, an& an extended
These notions of attack define for any extended logic program #0gic program. The operatoFp ., : P(Argsp) — P(Argsp) is
binary relation on the set of arguments of that program. defined ag'p ../, (S) = {A | Ais z/y-acceptable wrtS}.

Theset ofz/y-justified argumentss the least fixpoint of p ;..
Definition 4 A notion of attacks a functionz which assigns to each We denote the set af/y-justified arguments byp /. If the pro-
extended logic progran® a binary relationzp on the set of argu- gram P is clear from the context, we omit the subsciipt
ments ofP, i.e.xp C Args3. Notions of attack can be partially For any programP, the least fixpoint exists by the Knaster-Tarski
ordered by defining: C y iff VP :zp C yp fixpoint theorem [18], becausEp ./, is monotone. It can be con-

structed by transfinite induction as follows:
Definition 5 Letz be a notion of attack. Then theverseof z, de-

noted byzr !, is defined ag:z' = {(B, A) | (A, B) € zp}. Top =0
Jotl = Fpasy(Jyy,) fora+1asuccessor ordinal

In this relational notation, Definition 3 can be rewritten@as= J;\/y = Udca IS, for \ a limit ordinal

wUr,d=uU(r—u'),sa=(uUr)—u ' andsu =u—u"! ' '
Then there exists a least ording) such thatr?, ,, (J,9,) = J.9, =

Proposition 1 The notions of attacku, u, sa, d, a of Definition 3 Ty '
are partially ordered according to the following Hasse diagram in
Fo L 4 Relationships of Notions of Justifiability
Proof. Apply set-theoretic lawst — B C A C AUC and(A U This section is devoted to an analysis of the relationship between the
B)-C = (A—-C)U (B - C) (for all setsA, B, and(C), to the different notions of justifiability, leading to a hierarchy of notions of
definitions. =] justifiability illustrated in Figure 3.



First of all, it is easy to see that the least fixpoint increases if we P = P, = P3 =
weaken the attacks, or strengthen the defence. p < mnolg p < nolg p < mnolg
q <+« notp q <+« notp q <+ notr
Proposition 2 Letz’ C z,y C y' be notions of attack, thes, ;, C P T Zgi;
Jar - -p
Py = Ps = Ps =
Theorem 3 states that it does not make a difference if we allow p <« notq p <« mnot-p -p «— notq
only the strong version of the defence. This is because an argument 4 : "":p -p ~q <« mnotp
need not defend itself on its own, but it may rely on other arguments novp 2
to defend it.
We only give a formal proof for the first theorem; the proofs for Figure 2. Examples

the other theorems are similar, and we provide an intuitive informal
explanation instead.

. Theorem 7 Jyu /0 = Jsu
Theorem 3 Let z O wundercuts and y be notions of attack, and / /d

_ 1 _
sy =y — undercuts™". ThenJy, = Ju/sy. Proof. Every strong undercuB to a su/a-justified argumentd is

attacked by someu/d-justified argumentC (by induction). If C
does not defeatl, then there is some argumebtdefendingC by
defeatingB, thereby also defending againstB. |

We will now present some example programs which distinguish
various notions of justifiability.

Proof. Informally, everyz-attack B to anx/y-justified argument
A is y-defended by some/sy-justified argument' (by induction).
Now if C' wasnhota sy-attack, then it is undercut b, and because
x D undercuts andC'is justified, there existsstrongdefence fol”'
againstB, which is also a defence of the original argumgdragainst

c. Example 1 ConsiderP; in Figure 2. For any notion of attack,

The formal proof is by transfinite induction. By Proposition 2, we We NaveJsu/x = Jea/a = {[p < not g, [q — not p]}, because
have., /., C Ja./,. We prove the inverse inclusion by showing that there is no strong undercut or strong attack to any of the argumgnts.
for all ordinalsa: J:?/y - J;x/sy’ by transfinite induction on.. HOWEVGT,JQ/QC = Jd/:c = Ju/z = (D, because every argument IS
undercut (and therefore defeated and attacked).

Base caser = 0: J,/y = 0 = Jy /sy
Successor ordinabk ~ o+ 1: Let A € J;’/J;l, and(B, A) € z. By Example 2 ConsiderP; in Figure 2. Letz be a n.otion of attack.
definition, there existé’ € J2,, such tha{C, B) € y. By induction ~ ThenJa/z = Ju/. = 0, because every argument is defeated (hence
hypothesisC' € Jg,, . attacked).Jsa/su = Jsassa = {[g < not pl}, becausdq < not p]

If B does not undercu®, then we are done. If, howeves,under- IS the only argument which is not strongly attacked, but it does not
cutsC, then becaus€' € J¢, . , andundercuts C =z, there exists ~ Strongly attack any other argument, /s, = Ju/u = {[-p]}, be-

x /sy’ .
D e J;"/Osy(@)(ao < «) such that(D, B) € sy. It follows that ~ cause there is no undercut ferp], but [-p] does not undercut any
Ae gott other argumentJ, ,, = {[-p],[¢ < not p]}, because there is no
T Te/ey undercut to[—p], and the undercufp — not p] to [¢ «— not p]
Limit ordinal A:  AssumeJ,, C J7,, for all a < A. Then s attacked by—p]. We also havel.a, = {[-p],[qg — not p},
Ji/y = Uaar o7y S Ugenr Jaysy = JQ/Sy a becauselq — not p] is not strongly attacked, and the strong at-

In particular, the previous Theorem states that undercut and stron@ck [p < not g| on [-p] is undercut bylg < not p]. Finally,
undercut are equivalent as a defence, as are attack and strong attagk, ,, = {[-p],[p < not ¢],[¢ < not p|}, because none of the
This may be useful in an implementation, where we may use tharguments is strongly undercut.
stronger notion of defence without changing the semantics, thereby
decreasing the number of arguments to be checked. The followingxample 3 ConsiderPs in Figure 2. Letz be a notion of attack.
Corollary shows that because defeat lies between attack and strodgenJ,,,. = (, because every argument is strongly attacked.

attack, it is equivalent to both as a defence. Jsuju = Jsussu = {[7p]}, because all arguments exceptp]
are strongly undercut, byt-p] does not undercut any argument. And

Corollary 4 Letx D undercuts. ThenJ, ;o = Jy/a = Jz/sa- Juja = Jsussa = Jsusa = {[70], g < not 7], [s — not p|}.

Proof. With Proposition 2 and Theorem 3, we ha¥g, € Joya S Example 4 ConsiderP, in Figure 2. Letz be a notion of attack.

Jossa = Jufa- 0 ThenJy . = Jaj = Jas= = 0, because every argument is under-
cut. Jsu/su = Jsu/sa = Ysa/su = Jsa/sa = {[p < not q}?[q —

Theorem 5 Letz 2 strongly attacks. Thed, /., = Jo/a = Jo/a- not p]} In this case, the strong attacks are precisely the strong un-

dercuts; The argumerltr — not p] is not justified, because the

Proof. Every z-attack B to ax/a-justified argument is attacked ;
strong undercufp — not ¢| is undercut, but not strongly under-

by somez/u-justified argumentC (by induction). IfC' is a rebut,
but not an undercut, then becaudgatrongly attacke”, and because ~ CUb bylg — not pl. Jouju = Jsuta = Jsaju = Joaja = {[p =
« D strongly attacksthere must have been an argument defending’°* q;[q < not p, [r — not p|} Again, undercuts and attacks, and
C by undercutting3, thereby also defending againstB. .str.ong. yndercuts and strong attacks, coincide; but how- not p)
The statement fodefeatsollows in a similar way to Corollary 40 is justified, because non-strong undercuts are allowed as defence.

Theorem 6 J.a/su = Joa/sa Example 5 ConsiderPs in Figure 2. Then/, ,, = 0, because both
o e arguments attack each other, whilg,, = {[-p]}, becausg-p]
The proof is similar to Theorem 5. defeatgp < not —p], but not vice versa.



operator, because they attack either the head of a rule or a default

sufa = su/d literal in the body. O
su/u — ™ su/sa Note also the following observations:
- ~__ _— N 1. The notions ofi/z-, d/x- andsa/z-justifiability are very skepti-
sa/u = sa/d = sa/a su/su u/a=u/d=u/sa cal in that afact p may not be justified, if there is a rulep — B
AN _— ~ / (wherenot p ¢ B) that is notz-attacked. On the other hand this is
sa/su = sa/sa u/su=u/u useful in terms of avoiding inconsistency.
~ — 2. sz /y-justifiability is very credulous, because it does not take into
d/su=d/u=d/a=d/d=d/sa account non-strong attacks, so e.g. the progfam— not q,q «—

| not p} has the justified argumenjis — not ¢] and[g < not p].
a/su=aju=a/a=a/d=alsa
5 The Coherence Principle and Consistency
The coherence principle for extended logic programming [2] states
that “explicit negation implies implicit negation”. If the intended
meaning ofnot L is "“if there is no evidence fol,, assume thal
is false”, and the intended meaning-eL is “there is evidence for
the falsity of L”, then the coherence principle states that explicit evi-
dence is preferred over assumption of the lack of evidence. Formally,
this can be stated as:4fL is in the semantics, themot L is also in
Jsuse = {lp), 4]} the semantics. In an argumentation semantics, we have not defined
what it means for a default literal to be “in the semantics”. This can
easily be remedied, though.

Figure 3. Hierarchy of Notions of Justifiability

Example 6 Consider Ps in Figure 2. Letxz be a notion of at-
tack. ThenJs,,, = Jas» = Jaso = 0, because every argument
is strongly attacked (hence defeated and attacked), while =

Theorem 8 The notions of justifiability are ordered (by set inclu-
sion) according to the Hasse diagram in Figure 3.
Definition 8 Let P be an extended logic program, andandy no-

By definition, Dung’s grounded argumentation semantics [6] is €x+jons of attack, and lef. be an objective literal. Thetd is z/y-
actly a/u-justifiability, while Prakken and Sartor’s semantics [16], if justifiedif there exists ar/y-justified argument foi_.

we disregard priorities, amountsdgsu-justifiability. As corollaries LetnL be a fresh atom, and® = P U {nL « not L}. Then
to Theorem 8, we obtain relationships of these semantics to the other; 1 is «/y-justifiedif [nL < not L] is ax/y-justified argument
notions of justifiability. for P’

Corollary 9 Let Jp be the set of justified arguments according to  Note that becauseiL is fresh, Juyy(P') = Juu(P) or
Dung’s grounded argumentation semantics [6]. Then=J, /., = Joyy(P) = Juyy(P)U{[nL < not L]}.
Jaju="Jdaja=Jaja=Jassa @A Jp C J,/,, forall x#a andy.
Definition 9 A least fixpoint semanticg, ,, satisfies the coherence
Corollary 10 Let Jps be the set of justified arguments according principleif for every objective literalZ, if —L is x/y-justified, then
to Prakken and Sartor's argumentation semantics [16], where allnot L is z/y-justified.
arguments have the same priority. Théps = Jg/su = Jaju =
Jaja = Jaja = Jajsar Jps G Joyy forall z ¢ {a,d} andy, and The following result states that a least fixpoint semantics satisfies

Jps 2 Ja,, for all notions of attacky. the coherence principle exactly if we allow any attack for the defence.

Informally, this is because the only way of attacking a default literal
For normal logic programs, it has been established that the leastot L is by undercut, i.e. an argument fbr and in general, such an

fixpoint argumentation semantics is equivalent to the well-foundedargument can only be attacked by an argument-brby a rebut.

semantics, see e.g. [13]. One of the aims of this paper is to clar- o

ify which notions of attack would be appropriate to obtain a least'"€orem 12 Letz,y € {a,u,d, su, sa}. ThenJ,,, satisfies the

fixpoint argumentation semantics equivalent to the well-founded secoherence principle iffl.. ), = Ju/a-

mantics for extended logic programming [2]. The following theorem

presents the solution Proof. For the “if” direction, we show that for those notions of jus-

tifiability «/y # x/a, the coherence principle does not hold.

Theorem 11 Let P be an extended logic program an®l F'M (P) Con5|d/erP3 in Figure 2. ThenJ,/u(P') = Jou/u(P') =

its well-founded model [2]. TheW FM (P) = {L | there exists a JS“/W(P,) = {[ﬁp]},' Now Consider 7% in Figure 2. Then

u/a-justified argument foiL} U {not L | all arguments forL are sussa(@) = Jsaysa(Q') = {[p < not =p, [7p — not pl}.

attacked by a:/a-justified argumenjt For the “only if” direction, letz be a notion of attack. LeP be an
extended logic program, antlL ax/a-justified literal, i.e. there is an

Proof (Sketch).For the sake of brevity we can only sketch the proof. argumentd = [-~L « Body, ...] and an ordinak s.t. A € J/,.

In [1], the well-founded model is defined as the least fixpoint of the Let A’ = [nL « not L], and(B, A") € z. Because:L is fresh,

operatol'T's, wherel is the Gelfond-Lifschitz operator [9], arid; the only possible attack oA’ is a strong undercut, i.€. is a con-

is the same operator applied to themi-normalversion of the pro-  clusion of B. Then A attacksB, and so[nL «— not L] € ijal.

gram, obtained by addingot —L to the body of each rule with head O

L. The fixpoint is generated by a transfinite sequence of interpreta- Consistency is an important property of a logical system. It states

tions {1, }. We show thatl _alpha corresponds t /o as defined  that the system does not support contradictory conclusions. In clas-

in Def. 7 by showing that undercuts correspond to fheperator,  sical logic “ex falso quodlibet”, i.e. if botdl and—A hold, then any

because they attack default literals and attacks correspond ia the formula holds. In paraconsistent systems [5], this property does not



hold, thus allowing bottA and—A to hold for a particular formula
A, while not supporting any other contradictions.

shown in [6] that the stable argumentation semantics coincides with
the answer set semantics of [10]; a similar result [6] is stated for

A set of arguments is consistent if it does not contain two argu-the well-founded semantics, albeit restricted to the case of normal
ments such that one attacks the other. There are several notions lofjic programs. One aim we achieved with this paper is the defini-
consistency, depending on which notion of attack is considered urtion of an argumentation semantics equivalent to the well-founded

desirable.

Definition 10 Letx be a notion of attack, ané’ an extended logic
program. Then a set of arguments fBris called z-consistent if it
does not contain argumentsand B such that(A, B) € zp.

semantics for extended logic programs [2]. The results concerning
the relationships as depicted in Fig. 3 have been valuable in identi-
fying such a semantics, as well as relating it to existing semantics.
Furthermore the equivalence gf,, andW F'SX allow the use of
the efficient top-down proof procedure for F'SX [1] to compute

) ] ] justified arguments id,, /.
The argumentation semantics of an extended logic program need gyyre research will determine how to adapt this proof proce-
not necessarily be consistent; because of explicit negation, there exigfyre to different argumentation semantics and its relation to dialogue

contradictory programs such &g, —p}, for which there exist sensi-
ble, but inconsistent argument{g)(and[—p] in this case).
A general result identifies cases in which the set of justified argu-

games as defined in [7, 13, 16, 11]. Itis also an open question how the
hierarchy changes when priorities are added as defined in [16, 19].

ments for a program is consistent. It states that if we allow the attacREFERENCES

to be at least as strong as the defence, i.e. if waeptical then the 11
set of justified arguments is consistent.

Theorem 13 Letz Dy be notions of attack, an an extended logic ~ [2]
program. Then the set af/y-justified arguments is-consistent. 3]

Proof. We show thatl;,,, is z-consistent for all ordinals, by trans-

finite induction onc. [4]
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