
Notions of Attack and Justified Arguments
for Extended Logic Programs

Ralf Schweimeier and Michael Schroeder1

Abstract. The concept of argumentation may be used to give a
formal semantics to a variety of assumption based reasoning for-
malisms. In particular, various argumentation semantics have been
proposed for logic programming with default negation. For extended
logic programming, i.e. logic programming with two kinds of nega-
tion, there arise a variety of notions of attack on an argument, and
therefore a variety of different argumentation semantics.

The purpose of this paper is to shed some light on these various
semantics, and examine the relationship between different semantics.
We identify a number of different notions of attack for extended logic
programs, and compare the resulting least fixpoint semantics, defined
via acceptability of arguments. We investigate the validity of the co-
herence principle, and notions of consistency for these semantics.

1 Introduction
Argumentation has attracted much interest in the area of AI. On the
one hand, argumentation is an important way of human interaction
and reasoning, and is therefore of interest for research into intelligent
systems. Application areas include automated negotiation via argu-
mentation [15, 14, 17] and legal reasoning [16]. On the other hand,
argumentation provides a formal model for various assumption based
(or non-monotonic, or default) reasoning formalisms [3, 4]. In partic-
ular, various argumentation based semantics have been proposed for
logic programming with default negation [3, 7], some of them equiv-
alent with well-known semantics for normal logic programs such as
the stable model semantics [9], or the well-founded semantics [8].

Argumentation semantics are elegant since they can be captured
in an abstract framework [7, 3, 19, 12], for which an elegant theory
of attack, defence, acceptability, and other notions can be developed,
without recourse to the concrete instance of the reasoning formalism
at hand. This framework can then be instantiated to various assump-
tion based reasoning formalisms. Similarly, a dialectical proof theory
can be defined for an abstract argumentation framework, and then ap-
plied to any instance of such a framework [7, 11].

In general, an argumentA is a proof which may use a set of
defeasible assumptions. Another argumentB may have a conclu-
sion which contradicts the assumptions or the conclusions ofA, and
therebyB attacksA. There are two fundamental notions of such
attacks:undercutand rebut [16] or equivalentlyground-attackand
reductio-ad-absurdum attack[6]. We will use the terminology of un-
dercuts and rebuts. Both attacks differ in that an undercut attacks a
premise of an argument, while a rebut attacks a conclusion.

So, given a logic program we can define an argumentation seman-
tics by iteratively collecting those arguments which are acceptable to
a proponent, i.e. they can be defended against all opponent attacks.

1 Deptartment of Computing, City University, London EC1V 0HB, UK,
{ralf,msch}@soi.city.ac.uk

In fact, such a notion of acceptability can be defined in a number of
ways depending on which attacks we allow the proponent and oppo-
nent to use.

Normal logic programs do not have negative conclusions, which
means that we cannot use rebuts. Thus both opponents can only
launch undercuts on each other’s assumptions. Extended logic pro-
grams [10, 2, 20], on the other hand, introduce explicit negation,
which states that a literal is explicitly false. As a result, both under-
cuts and rebuts are possible forms of attack; there are further varia-
tions depending on whether any kind of counter-attack is admitted. A
variety of argumentation semantics arise if one allows one notion of
attack as defence for the proponent, and another as attack for the op-
ponent. The aim of this paper is to examine the relationships between
and properties of these different argumentation semantics. In partic-
ular, we would like to relate different existing argumentation seman-
tics [6, 16], and find an argumentation semantics which is equivalent
to the well-founded semantics for extended logic programs [2].

The paper is organised as follows: First we define arguments and
notions of attack and acceptability. The relationships between the fix-
point semantics resulting from the different notions are examined in
Section 4. In Sections 5, we examine some properties of these seman-
tics regarding consistency, and the coherence principle which relates
explicit and default negation.

2 Extended LP and Argumentation
We summarise the definitions of arguments for extended logic pro-
grams, and define various notions of attack between arguments.

2.1 Arguments
Definition 1 Anobjective literalis an atomA or its explicit negation
¬A. We define¬¬L = L. Adefault literalis of the formnot Lwhere
L is an objective literal. Aliteral is either an objective or a default lit-
eral. Anextended logic programis a (possibly infinite) set of rules of
the formL0 ← L1, . . . , Lm, not Lm+1, . . . , not Lm+n(m,n ≥ 0),
where eachLi is an objective literal (0 ≤ i ≤ m+n). For such a rule
r, we callL0 theheadof the rule,head(r), andL1, . . . , not Lm+n

thebodyof the rule,body(r).

Our definition of an argument for an extended logic program is
based on [16]. Essentially, an argument is a partial proof, resting on
a number ofassumptions, i.e. a set of default literals.2 Note that we
do not consider priorities of arguments, as used e.g. in [16, 19].

Definition 2 LetP be an extended logic program. Anargumentfor
P is a finite sequenceA = [r1, . . . rn] of ground instances of rules

2 In [3, 6], an argumentis a set of assumptions; the two approaches are equiv-
alent in that there is an argument with a conclusionL iff there is a set of
assumptions from whichL can be inferred. See the discussion in [16].

ri ∈ P such that 1. for every1 ≤ i ≤ n, for every objective literal
Lj in the body ofri there is ak > i such thathead(rk) = Lj . 2. No
two distinct rules in the sequence have the same head. The head of a
rule inA is called aconclusionofA, and a default literalnot L in
the body of a rule ofA is called anassumptionofA.

The restriction to minimal arguments is not essential, but conve-
nient, since it rules out arguments constructed from several unrelated
arguments. Generally, one is interested in the conclusions of an argu-
ment, and wants to avoid having rules in an argument which do not
contribute to the desired conclusion.

2.2 Notions of Attack
There are two fundamental notions of attack:undercut, which inval-
idates an assumption of an argument, andrebut, which contradicts a
conclusion of an argument [6, 16]. From these, we may define further
notions of attack, by allowing either of the two fundamental kinds of
attack, and considering whether any kind of counter-attack is allowed
or not. We will now formally define these notions of attacks.

Definition 3 Let A1 andA2 be arguments. 1.A1 undercutsA2 if
there is an objective literalL such thatL is a conclusion ofA1 and
not L is an assumption ofA2. 2.A1 rebutsA2 if there is an objective
literal L such thatL is a conclusion ofA1 and¬L is a conclusion of
A2. 3.A1 attacksA2 if A1 undercuts or rebutsA2. 4.A1 defeatsA2

if A1 undercutsA2, or A1 rebutsA2 andA2 does not undercutA1.
5.A1 strongly attacksA2 if A1 attacksA2 andA2 does not undercut
A1. 6.A1 strongly undercutsA2 if A1 undercutsA2 andA2 does
not undercutA1.

The notions ofundercutand rebut, and henceattack are funda-
mental for extended logic programs [6, 16]. The notion ofdefeatis
used in [16], along with a notion ofstrict defeat, i.e. a defeat that
is not counter-defeated. For arguments without priorities, rebuts are
symmetrical, and therefore strict defeat coincides with strict under-
cut, i.e. an undercut that is not counter-undercut. Similarly, strict at-
tack coincides with strict undercut. For this reason, we use the term
strong undercutinstead ofstrict undercut, and similarly definestrong
attackto be an attack which is not counter-undercut. We will use the
following abbreviations for these notions of attack.r for rebuts,u for
undercuts,a for attacks,d for defeats,sa for strongly attacks, andsu
for strongly undercuts.

These notions of attack define for any extended logic program a
binary relation on the set of arguments of that program.

Definition 4 A notion of attackis a functionx which assigns to each
extended logic programP a binary relationxP on the set of argu-
ments ofP , i.e. xP ⊆ Args2

P . Notions of attack can be partially
ordered by definingx ⊆ y iff ∀P : xP ⊆ yP

Definition 5 Let x be a notion of attack. Then theinverseof x, de-
noted byx−1, is defined asx−1

P = {(B,A) | (A,B) ∈ xP }.

In this relational notation, Definition 3 can be rewritten asa =
u∪ r, d = u∪ (r− u−1), sa = (u∪ r)− u−1, andsu = u− u−1.

Proposition 1 The notions of attacksu, u, sa, d, a of Definition 3
are partially ordered according to the following Hasse diagram in
Fig 1.

Proof. Apply set-theoretic lawsA − B ⊆ A ⊆ A ∪ C and(A ∪
B) − C = (A − C) ∪ (B − C) (for all setsA, B, andC), to the
definitions. 2

attacks= a = u ∪ r

defeats= d = u ∪ (r − u−1)

ffffffffff
WWWWWWW

undercuts= u

VVVVVVVVV strongly attacks= sa = (u ∪ r)− u−1

iiiiii

strongly undercuts= su = u− u−1

Figure 1. Hasse diagramme for notions of attack

This diagram in Fig. 1 contains the notions of attack used in [6,
16], plusstrongly attackswhich is a natural intermediate notion be-
tweenstrongly undercutsand defeats. Undercuts are present in all
the notions of attack, since they are fundamental when dealing with
default literals. In the absence of priorities, rebuts are symmetric, i.e.
if A rebutsB,B also rebutsA, while undercuts are not symmetric in
general.

3 Acceptability and Justified Arguments
Given the above notions of attack, we can deploy them to define the
acceptability of an argument. Basically, an argument is acceptable if
it can be defended against any attack. Depending on which particu-
lar notion of attack we use as defence and which for the opponent’s
attacks, we obtain a host of acceptability notions.

Acceptability forms the basis for our argumentation semantics,
which is defined as the least fixpoint of a function, which collects
all acceptable arguments. Theleastfixpoint is of particular interest
[16, 6], because it provides a canonical fixpoint semantics and it can
be constructed inductively.

Definition 6 Letx andy be notions of attack. LetA be an argument,
and S a set of arguments. ThenA is x/y-acceptable wrt.S if for
every argumentB such that(B,A) ∈ x there exists an argument
C ∈ S such that(C,B) ∈ y.

Based on the notion of acceptability, we can then define a fixpoint
semantics for arguments.

Definition 7 Let x and y be notions of attack, andP an extended
logic program. The operatorFP,x/y : P(ArgsP) → P(ArgsP) is
defined asFP,x/y(S) = {A | A is x/y-acceptable wrt.S}.

Theset ofx/y-justified argumentsis the least fixpoint ofFP,x/y.
We denote the set ofx/y-justified arguments byJP,x/y. If the pro-
gramP is clear from the context, we omit the subscriptP .

For any programP , the least fixpoint exists by the Knaster-Tarski
fixpoint theorem [18], becauseFP,x/y is monotone. It can be con-
structed by transfinite induction as follows:

J0
x/y = ∅
Jα+1
x/y = FP,x/y(Jαx/y) for α+ 1 a successor ordinal

Jλx/y =
⋃
α<λ J

α
x/y for λ a limit ordinal

Then there exists a least ordinalλ0 such thatFx/y(Jλ0
x/y) = Jλ0

x/y =
Jx/y.

4 Relationships of Notions of Justifiability
This section is devoted to an analysis of the relationship between the
different notions of justifiability, leading to a hierarchy of notions of
justifiability illustrated in Figure 3.

First of all, it is easy to see that the least fixpoint increases if we
weaken the attacks, or strengthen the defence.

Proposition 2 Letx′ ⊆ x, y ⊆ y′ be notions of attack, thenJx/y ⊆
Jx′/y′ .

Theorem 3 states that it does not make a difference if we allow
only the strong version of the defence. This is because an argument
need not defend itself on its own, but it may rely on other arguments
to defend it.

We only give a formal proof for the first theorem; the proofs for
the other theorems are similar, and we provide an intuitive informal
explanation instead.

Theorem 3 Let x ⊇ undercuts and y be notions of attack, and
sy = y − undercuts−1. ThenJx/y = Jx/sy.

Proof. Informally, everyx-attackB to anx/y-justified argument
A is y-defended by somex/sy-justified argumentC (by induction).
Now if C wasnot a sy-attack, then it is undercut byB, and because
x ⊇ undercuts andC is justified, there exists astrongdefence forC
againstB, which is also a defence of the original argumentA against
C.

The formal proof is by transfinite induction. By Proposition 2, we
haveJx/sy ⊆ Jx/y. We prove the inverse inclusion by showing that
for all ordinalsα: Jαx/y ⊆ Jαx/sy, by transfinite induction onα.

Base caseα = 0: Jx/y = ∅ = Jx/sy.

Successor ordinalα ; α+ 1: LetA ∈ Jα+1
x/y , and(B,A) ∈ x. By

definition, there existsC ∈ Jαx/y such that(C,B) ∈ y. By induction
hypothesis,C ∈ Jαx/sy.

If B does not undercutC, then we are done. If, however,B under-
cutsC, then becauseC ∈ Jαx/sy, andundercuts ⊆ x, there exists
D ∈ Jα0

x/sy(∅)(α0 < α) such that(D,B) ∈ sy. It follows that

A ∈ Jα+1
x/sy.

Limit ordinal λ: AssumeJαx/y ⊆ Jαx/sy for all α < λ. Then

Jλx/y =
⋃
α<λ J

α
x/y ⊆

⋃
α<λ J

α
x/sy = Jλx/sy 2

In particular, the previous Theorem states that undercut and strong
undercut are equivalent as a defence, as are attack and strong attack.
This may be useful in an implementation, where we may use the
stronger notion of defence without changing the semantics, thereby
decreasing the number of arguments to be checked. The following
Corollary shows that because defeat lies between attack and strong
attack, it is equivalent to both as a defence.

Corollary 4 Letx ⊇ undercuts. ThenJx/a = Jx/d = Jx/sa.

Proof. With Proposition 2 and Theorem 3, we haveJx/a ⊆ Jx/d ⊆
Jx/sa = Jx/a. 2

Theorem 5 Letx ⊇ strongly attacks. ThenJx/u = Jx/d = Jx/a.

Proof. Everyx-attackB to ax/a-justified argumenta is attacked
by somex/u-justified argumentC (by induction). IfC is a rebut,
but not an undercut, then becauseB strongly attacksC, and because
x ⊇ strongly attacks, there must have been an argument defending
C by undercuttingB, thereby also defendingA againstB.
The statement fordefeatsfollows in a similar way to Corollary 4.2

Theorem 6 Jsa/su = Jsa/sa

The proof is similar to Theorem 5.

P1 =
p ← not q
q ← not p

P2 =
p ← not q
q ← not p
¬p

P3 =
p ← not q
q ← not r
r ← not s
s ← not p
¬p

P4 =
p ← not q
q ← not p
r ← not p

P5 =
p ← not ¬p
¬p

P6 =
¬p ← not q
¬q ← not p
p
q

Figure 2. Examples

Theorem 7 Jsu/a = Jsu/d

Proof. Every strong undercutB to a su/a-justified argumentA is
attacked by somesu/d-justified argumentC (by induction). IfC
does not defeatA, then there is some argumentD defendingC by
defeatingB, thereby also defendingA againstB. 2

We will now present some example programs which distinguish
various notions of justifiability.

Example 1 ConsiderP1 in Figure 2. For any notion of attackx,
we haveJsu/x = Jsa/x = {[p ← not q], [q ← not p]}, because
there is no strong undercut or strong attack to any of the arguments.
However,Ja/x = Jd/x = Ju/x = ∅, because every argument is
undercut (and therefore defeated and attacked).

Example 2 ConsiderP2 in Figure 2. Letx be a notion of attack.
ThenJd/x = Ja/x = ∅, because every argument is defeated (hence
attacked).Jsa/su = Jsa/sa = {[q ← not p]}, because[q ← not p]
is the only argument which is not strongly attacked, but it does not
strongly attack any other argument.Ju/su = Ju/u = {[¬p]}, be-
cause there is no undercut to[¬p], but [¬p] does not undercut any
other argument.Ju/a = {[¬p], [q ← not p]}, because there is no
undercut to[¬p], and the undercut[p ← not p] to [q ← not p]
is attacked by[¬p]. We also haveJsa/u = {[¬p], [q ← not p]},
because[q ← not p] is not strongly attacked, and the strong at-
tack [p ← not q] on [¬p] is undercut by[q ← not p]. Finally,
Jsu/x = {[¬p], [p ← not q], [q ← not p]}, because none of the
arguments is strongly undercut.

Example 3 ConsiderP3 in Figure 2. Letx be a notion of attack.
ThenJsa/x = ∅, because every argument is strongly attacked.
Jsu/u = Jsu/su = {[¬p]}, because all arguments except[¬p]

are strongly undercut, but[¬p] does not undercut any argument. And
Ju/a = Jsu/sa = Jsu/a = {[¬p], [q ← not r], [s← not p]}.

Example 4 ConsiderP4 in Figure 2. Letx be a notion of attack.
ThenJu/x = Jd/x = Ja/x = ∅, because every argument is under-
cut.Jsu/su = Jsu/sa = Jsa/su = Jsa/sa = {[p ← not q], [q ←
not p]} In this case, the strong attacks are precisely the strong un-
dercuts; The argument[r ← not p] is not justified, because the
strong undercut[p ← not q] is undercut, but not strongly under-
cut, by[q ← not p]. Jsu/u = Jsu/a = Jsa/u = Jsa/a = {[p ←
not q], [q ← not p], [r ← not p]} Again, undercuts and attacks, and
strong undercuts and strong attacks, coincide; but now[r ← not p]
is justified, because non-strong undercuts are allowed as defence.

Example 5 ConsiderP5 in Figure 2. ThenJa/x = ∅, because both
arguments attack each other, whileJd/x = {[¬p]}, because[¬p]
defeats[p← not ¬p], but not vice versa.

su/a = su/d

su/u

kkkkk
su/sa

RRRR

sa/u = sa/d = sa/a

ttt
su/su

SSSSSSS
lllll
u/a = u/d = u/sa

@@

sa/su = sa/sa

JJJ kkkkk
u/su = u/u

RRRR ~~

d/su = d/u = d/a = d/d = d/sa

SSSS lll

a/su = a/u = a/a = a/d = a/sa

Figure 3. Hierarchy of Notions of Justifiability

Example 6 ConsiderP6 in Figure 2. Letx be a notion of at-
tack. ThenJsa/x = Jd/x = Ja/x = ∅, because every argument
is strongly attacked (hence defeated and attacked), whileJu/x =
Jsu/x = {[p], [q]}.

Theorem 8 The notions of justifiability are ordered (by set inclu-
sion) according to the Hasse diagram in Figure 3.

By definition, Dung’s grounded argumentation semantics [6] is ex-
actlya/u-justifiability, while Prakken and Sartor’s semantics [16], if
we disregard priorities, amounts tod/su-justifiability. As corollaries
to Theorem 8, we obtain relationships of these semantics to the other
notions of justifiability.

Corollary 9 Let JD be the set of justified arguments according to
Dung’s grounded argumentation semantics [6]. ThenJD =Ja/su=
Ja/u=Ja/a=Ja/d=Ja/sa andJD (Jx/y for all x 6=a andy.

Corollary 10 Let JPS be the set of justified arguments according
to Prakken and Sartor’s argumentation semantics [16], where all
arguments have the same priority. ThenJPS = Jd/su = Jd/u =
Jd/a = Jd/d = Jd/sa, JPS (Jx/y for all x 6∈ {a, d} and y, and
JPS) Ja/y for all notions of attacky.

For normal logic programs, it has been established that the least
fixpoint argumentation semantics is equivalent to the well-founded
semantics, see e.g. [13]. One of the aims of this paper is to clar-
ify which notions of attack would be appropriate to obtain a least
fixpoint argumentation semantics equivalent to the well-founded se-
mantics for extended logic programming [2]. The following theorem
presents the solution.

Theorem 11 Let P be an extended logic program andWFM(P)
its well-founded model [2]. ThenWFM(P) = {L | there exists a
u/a-justified argument forL} ∪ {not L | all arguments forL are
attacked by au/a-justified argument}.

Proof (Sketch).For the sake of brevity we can only sketch the proof.
In [1], the well-founded model is defined as the least fixpoint of the
operatorΓΓs, whereΓ is the Gelfond-Lifschitz operator [9], andΓs
is the same operator applied to thesemi-normalversion of the pro-
gram, obtained by addingnot ¬L to the body of each rule with head
L. The fixpoint is generated by a transfinite sequence of interpreta-
tions {Iα}. We show thatI alpha corresponds toJαu/a as defined
in Def. 7 by showing that undercuts correspond to theΓ operator,
because they attack default literals and attacks correspond to theΓs

operator, because they attack either the head of a rule or a default
literal in the body. 2

Note also the following observations:
1. The notions ofa/x-, d/x- andsa/x-justifiability are very skepti-
cal in that afact p may not be justified, if there is a rule¬p ← B
(wherenot p 6∈ B) that is notx-attacked. On the other hand this is
useful in terms of avoiding inconsistency.
2. sx/y-justifiability is very credulous, because it does not take into
account non-strong attacks, so e.g. the program{p ← not q, q ←
not p} has the justified arguments[p← not q] and[q ← not p].

5 The Coherence Principle and Consistency
The coherence principle for extended logic programming [2] states
that “explicit negation implies implicit negation”. If the intended
meaning ofnot L is “if there is no evidence forL, assume thatL
is false”, and the intended meaning of¬L is “there is evidence for
the falsity ofL”, then the coherence principle states that explicit evi-
dence is preferred over assumption of the lack of evidence. Formally,
this can be stated as: if¬L is in the semantics, thennot L is also in
the semantics. In an argumentation semantics, we have not defined
what it means for a default literal to be “in the semantics”. This can
easily be remedied, though.

Definition 8 LetP be an extended logic program, andx andy no-
tions of attack, and letL be an objective literal. ThenL is x/y-
justified if there exists ax/y-justified argument forL.

Let nL be a fresh atom, andP ′ = P ∪ {nL ← not L}. Then
not L is x/y-justified if [nL ← not L] is ax/y-justified argument
for P ′.

Note that becausenL is fresh, Jx/y(P ′) = Jx/y(P) or
Jx/y(P ′) = Jx/y(P) ∪ {[nL← not L]}.

Definition 9 A least fixpoint semanticsJx/y satisfies the coherence
principle if for every objective literalL, if ¬L is x/y-justified, then
not L is x/y-justified.

The following result states that a least fixpoint semantics satisfies
the coherence principle exactly if we allow any attack for the defence.
Informally, this is because the only way of attacking a default literal
not L is by undercut, i.e. an argument forL, and in general, such an
argument can only be attacked by an argument for¬L by a rebut.

Theorem 12 Let x, y ∈ {a, u, d, su, sa}. ThenJx/y satisfies the
coherence principle iffJx/y = Jx/a.

Proof. For the “if” direction, we show that for those notions of jus-
tifiability x/y 6= x/a, the coherence principle does not hold.

ConsiderP3 in Figure 2. ThenJu/u(P ′) = Jsu/u(P ′) =
Jsu/su(P ′) = {[¬p]}. Now ConsiderP5 in Figure 2. Then
Jsu/sa(Q′) = Jsa/sa(Q′) = {[p← not ¬p], [¬p← not p]}.
For the “only if” direction, letx be a notion of attack. LetP be an
extended logic program, and¬L ax/a-justified literal, i.e. there is an
argumentA = [¬L← Body, . . .] and an ordinalα s.t.A ∈ Jαx/a.

LetA′ = [nL ← not L], and(B,A′) ∈ x. BecausenL is fresh,
the only possible attack onA′ is a strong undercut, i.e.L is a con-
clusion ofB. ThenA attacksB, and so[nL ← not L] ∈ Jα+1

x/a .
2

Consistency is an important property of a logical system. It states
that the system does not support contradictory conclusions. In clas-
sical logic “ex falso quodlibet”, i.e. if bothA and¬A hold, then any
formula holds. In paraconsistent systems [5], this property does not

hold, thus allowing bothA and¬A to hold for a particular formula
A, while not supporting any other contradictions.

A set of arguments is consistent if it does not contain two argu-
ments such that one attacks the other. There are several notions of
consistency, depending on which notion of attack is considered un-
desirable.

Definition 10 Let x be a notion of attack, andP an extended logic
program. Then a set of arguments forP is calledx-consistent if it
does not contain argumentsA andB such that(A,B) ∈ xP .

The argumentation semantics of an extended logic program need
not necessarily be consistent; because of explicit negation, there exist
contradictory programs such as{p,¬p}, for which there exist sensi-
ble, but inconsistent arguments ([p] and[¬p] in this case).

A general result identifies cases in which the set of justified argu-
ments for a program is consistent. It states that if we allow the attack
to be at least as strong as the defence, i.e. if we aresceptical, then the
set of justified arguments is consistent.

Theorem 13 Letx⊇y be notions of attack, andP an extended logic
program. Then the set ofx/y-justified arguments isx-consistent.

Proof. We show thatJαx/y isx-consistent for all ordinalsα, by trans-
finite induction onα.
Base caseα = 0: Trivial.
Successor ordinalα ; α+ 1: AssumeA,B ∈ Jα+1

x/y and(A,B) ∈
x. Then there existsC ∈ Jαx/y such that(C,A) ∈ y ⊆ x. Then by
induction hypothesis, becauseC ∈ Jαx/y, thenA 6∈ Jαx/y. Because
A ∈ Jα+1

x/y , there existsD ∈ Jαx/y such that(D,C) ∈ y ⊆ y.
This contradicts the induction hypothesis, so we have to retract the
assumption and conclude thatJα+1

x/y is x-consistent.

Limit ordinal λ: AssumeA,B ∈ Jλx/y and(A,B) ∈ x. Then there

existα, β < λ s.t.A ∈ Jαx/y andB ∈ Jβx/y. W.l.o.g. assume that

α ≤ β. Then becauseJαx/y ⊆ Jβx/y, we haveA ∈ Jβx/y, contradict-

ing the induction hypothesis thatJβx/y is x-consistent. 2

The following example shows that, in general, the set of justified
arguments may well be inconsistent.

Example 7 ConsiderP = {q ← not p. p. ¬p.} ThenJu/a =
{[q ← not p], [p], [¬p]}, and [p] and [¬p] rebut each other, and[p]
strongly undercuts[q ← not p].

6 Conclusion and Further Work
We have identified various notions of attack for extended logic pro-
grams. Based on these notions of attack, we defined notions of ac-
ceptability and least fixpoint semantics. These fixpoint semantics
were related by establishing a lattice of justified arguments, based on
set inclusion. In particular, we identified an argumentation semantics
Ju/a equal to the well-founded semantics for logic programs with
explicit negation,WFSX [2], and established thatJD ⊆ JPS ⊆
Ju/a = WFSX, whereJD andJPS are the least fixpoint argumen-
tation semantics of Dung [6] and Prakken and Sartor [16]. Finally,
we identified a sufficient and necessary criterion for when a least
fixpoint semantics satisfies the coherence principle, and a sufficient
criterion for a fixpoint semantics to be consistent.

There have been some results [7, 13] showing that certain argu-
mentation semantics for normal logic programs coincide with well-
known semantics such as the stable model semantics [9] or the well-
founded semantics [8]. For extended logic programs, it has been

shown in [6] that the stable argumentation semantics coincides with
the answer set semantics of [10]; a similar result [6] is stated for
the well-founded semantics, albeit restricted to the case of normal
logic programs. One aim we achieved with this paper is the defini-
tion of an argumentation semantics equivalent to the well-founded
semantics for extended logic programs [2]. The results concerning
the relationships as depicted in Fig. 3 have been valuable in identi-
fying such a semantics, as well as relating it to existing semantics.
Furthermore the equivalence ofJu/a andWFSX allow the use of
the efficient top-down proof procedure forWFSX [1] to compute
justified arguments inJu/a.

Future research will determine how to adapt this proof proce-
dure to different argumentation semantics and its relation to dialogue
games as defined in [7, 13, 16, 11]. It is also an open question how the
hierarchy changes when priorities are added as defined in [16, 19].

REFERENCES
[1] J. J. Alferes, C. V. Daḿasio, and L. M. Pereira, ‘A logic programming

system for non-monotonic reasoning’,Journal of Automated Reason-
ing, 14(1), 93–147, (1995).

[2] J. J. Alferes and L. M. Pereira,Reasoning with Logic Programming,
(LNAI 1111), Springer-Verlag, 1996.

[3] A. Bondarenko, P.M. Dung, R.A. Kowalski, and F. Toni, ‘An abstract,
argumentation-theoretic approach to default reasoning’,Artificial Intel-
ligence, 93(1-2), 63–101, (1997).

[4] C.I. Ches̃nevar, A.G. Maguitman, and R.P. Loui, ‘Logical models of
argument’,ACM Computing Surveys, 32(4), 337–383, (Dec 2000).

[5] C. Damasio and L. Pereira,Handbook of Defeasible Reasoning and Un-
certainty Management Systems, volume 2, chapter A Survey on Para-
consistent Semantics for Extended Logic Programs, 241–320, Kluwer,
1998.

[6] P. M. Dung, ‘An argumentation semantics for logic programming with
explicit negation’, inProc. of Intl. Conf. on Logic Programming, pp.
616–630. MIT Press, (1993).

[7] P. M. Dung, ‘On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games’,
Artificial Intelligence, 77(2), 321–357, (1995).

[8] A. Van Gelder, K.A. Ross, and J.S. Schlipf, ‘The well-founded seman-
tics for general logic programs’,Journal of the ACM, 38(3), 620–650,
(July 1991).

[9] M. Gelfond and V. Lifschitz, ‘The stable model semantics for logic
programming’, in5th International Conference on Logic Programming,
eds., R. A. Kowalski and K. A. Bowen, 1070–1080, MIT Press, (1988).

[10] M. Gelfond and V. Lifschitz, ‘Logic programs with classical negation’,
in Proc. of ICLP90, pp. 579–597. MIT Press, (1990).

[11] H. Jakobovits and D. Vermeir, ‘Dialectic semantics for argumentation
frameworks’, inProc. of Intl. Conf. on Artificial Intelligence and Law,
pp. 53–62, (1999).

[12] H. Jakobovits and D. Vermeir, ‘Robust semantics for argumenta-
tion frameworks’,Journal of Logic and Computation, 9(2), 215–261,
(1999).

[13] A.C. Kakas and F. Toni, ‘Computing argumentation in logic program-
ming’, Journal of Logic and Computation, 9, 515–562, (1999).

[14] S. Kraus, K. Sycara, and A. Evenchik, ‘Reaching agreements through
argumentation: a logical model and implementation’,Artificial Intelli-
gence, 104(1-2), 1–69, (1998).

[15] S. Parsons, C. Sierra, and N. Jennings, ‘Agents that reason and negotiate
by arguing’,Journal of Logic and Computation, 8(3), 261–292, (1998).

[16] H. Prakken and G. Sartor, ‘Argument-based extended logig program-
ming with defeasible priorities’,Journal of Applied Non-Classical Log-
ics, 7(1), (1997).

[17] M. Schroeder, ‘An efficient argumentation framework for negotiating
autonomous agents’, inProc. of Modelling Autonomous Agents in a
Multi-Agent World MAAMAW99. LNAI1647, Springer-Verlag, (1999).

[18] A. Tarski, ‘A lattice-theoretical fixpoint theorem and its applications’,
Pacific Journal of Mathematics, 5, 285–309, (1955).

[19] G.A.W. Vreeswijk, ‘Abstract argumentation systems’,Artificial Intelli-
gence, 90(1–2), 225–279, (1997).

[20] G. Wagner,Vivid Logic – Knowledge-Based Reasoning with Two Kinds
of Negation, volume LNAI 764, Springer–Verlag, 1994.

