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Abstract 
We present a Network-based Truth Maintenance System 
(NTMS) for problem solvers based on Bayesian belief 
network (BN) technology. BN technology has been proven to 
be effective in various domains, e.g. assessing battlefield 
situations, such as the enemy’s likely point of interdiction. 
Nodes and links in a BN capture semantic relationships 
among various domain related concepts. In the absence of 
firmer knowledge, default assumptions provide the beliefs of 
some nodes in a BN. Before posting incoming evidence into 
a BN node, a truth maintenance procedure is invoked to 
check for information consistency between the node’s current 
expected state and the new observed state. In case of 
inconsistency, the truth maintenance procedure revises some 
default assumptions, by isolating those nodes causing 
inconsistency, via a sensitivity analysis procedure that 
exploits the strengths of BN causal dependency. We have 
applied our approach for trustworthy situation assessment in 
the context of a military Stability and Support Operation 
(SASO) scenario. 

1 INTRODUCTION 
We begin by presenting a small example that shows how 
inconsistency detection can potentially help make a trustworthy 
situation assessment, and the valuable contribution a suitable Truth 
Maintenance System (TMS) (Doyle, 1979; Forbus and de Kleer, 
1993) can make in that context. 

Suppose a knowledge base captures a simple causal rule 
between sensors and objects, which states that the presence of an 
enemy vehicle at a particular location will cause generation of 
signals from various sensors placed at that location. Now suppose 
that such a signal is received from a sensor covering the particular 
area. In the absence of any other knowledge, we assume by default 
that our sensors are functional. The inference engine concludes 
that an enemy vehicle is present in the area and adds this 
information to the active knowledge base. Subsequently, more 
reliable information is received, in the form of images of the area, 
which show conclusively there are no enemy vehicles in the area. 
This information would then be added to the knowledge base. 
Now, however, the added report is inconsistent with the earlier 
report suggesting the presence of an enemy vehicle. Consequently, 
it will be necessary to revise some of the earlier beliefs. The truth 
maintenance procedure should identify the incorrect default 
assumption that the sensor is functional and revise this assumption 
in the active knowledge base, preventing any further use of the 
evidence produced by the faulty sensor. 

Our proposed Network-based Truth Maintenance System 
(NTMS) is specifically geared for any problem solver based on 
Bayesian belief network (BN) technology (Pearl, 1986; Lauritzen 
and Spiegelhalter, 1988). BN technology has been proven to be 

very effective, and we have applied it in a variety of domains for 
decision aiding, including battlefield situation assessment (Das et 
al, 2002), and spacecraft health determination (Das and Grecu, 
2000), as it possesses a variety of theoretical and practical 
advantages relative to other approaches in dealing with the issues 
of uncertain inferencing, computational tractability, and causal and 
diagnostic reasoning. The nodes of a BN denote the variables 
representing concepts such as vehicle, sensor, and report, and the 
links denote causal relationships between the variables. The three-
step procedure for our approach to truth maintenance consists of 
inconsistency detection via distance measure, inconsistency 
isolation via network sensitivity analysis, and inconsistency 
recovery via the adjustment of default assumptions. 

Researchers have proposed other types of truth maintenance 
systems (TMS) over the years (Forbus and de Kleer, 1993): 1) 
Belief Maintenance Systems (BMS) (Falkenhainer, 1988; Ramoni, 
1994); 2) Justification-Based Truth Maintenance Systems (JTMS); 
3) Assumption-Based Truth Maintenance Systems (ATMS) (de 
Kleer, 1986); 4) Logic-Based Truth Maintenance Systems 
(LTMS). But our proposed NTMS offers several advantages for its 
1) graphical representation that is more general than simple 
sentences in Boolean logic; 2) computational tractability of 
evidence propagation which avoids logical theorem proving; and 
3) generalized reasoning which supports both deductive and 
abductive reasoning. 

The rest of the paper is organized as follows. Some background 
in BN technology and network sensitivity analysis is presented in 
Section 2. The proposed truth maintenance approach is discussed 
in Section 3, including an application to trustworthy situation 
assessment in the context of an implemented SASO scenario. We 
conclude in Section 4 with some remarks on our future research 
and development plans. 

2 BACKGROUND 

2.1 Bayesian Belief Networks (BN) 
A Bayesian belief network (Pearl, 1988; Jensen, 1996) is a 
graphical, probabilistic knowledge representation of a collection of 
variables describing some domain. The nodes of the belief network 
denote the variables and the links denote causal relationships 
between the variables. The topology encodes the qualitative 
knowledge about the domain. Conditional probability tables 
(CPTs) encode the quantitative details (strengths) of the causal 
relationships. The belief network of Figure 1 encodes the 
relationships over the domain consisting of the binary variables, 
Injury, Rain, Game, Transport, Electricity, and Commentary; its 
topology captures the commonsense knowledge that: 

1. Rain causes Transport disruption 
2. Rain causes Electricity failure 



3. Game causes running Commentary on the radio 
4. Injury and Rain prevent Game from being played 

As shown in Figure 1, the CPT specifies the probability of each 
possible value of the child variable conditioned on each possible 
combination of parent variable values. For example, the 
probability of getting sunburn given that clouds are present is 0.1, 
whereas the probability of getting sunburn given clear skies is 0.7. 
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Figure 1: Simple Bayesian Belief Network (BN) 

The structure of a belief network encodes other information as 
well. Specifically, the lack of links between certain variables 
represents a lack of direct causal influence, that is, they indicate 
conditional independence relations. This belief network encodes 
many independence relations, for example, 

1. Electricity ⊥ Transport  Rain 
2. Commentary ⊥ { Rain, Electricity }  Game 

where ‘⊥’ is read ‘is independent of’ and ‘’ is read ‘given.’ Once 
the value of Rain is known, the value of Transport adds no further 
information about Electricity. Similar conditional independence 
assertions hold for other variables. 
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Figure 2: Software model for Figure 1 

Figure 2 shows an implementation of the network in Figure 1 on 
in-house software. The panel on the right hand side (of the larger 
child window) is the actual network of Figure 1, and the panel on 
the left hand side shows the current beliefs of the nodes. Evidence 
for Electricity has been posted to the network. 

When new evidence is posted to a variable in a belief network, 
that variable updates its own belief vector and then sends out 
messages indicating updated predictive and diagnostic support 
vectors to its children and parent nodes respectively. The messages 
are used by the other nodes, which update their own belief vectors, 
and also propagate their own updated support vectors. In the case 

of polytrees, the separation of evidence yields a propagation 
algorithm (Pearl, 1988) in which update messages need only be 
passed in one direction between any two nodes after the posting of 
evidence. The algorithm has been extended to the more general 
case of directed acyclic graphs (DAGs), e.g. see (Jensen, 1996). 

2.2 Network Sensitivity Analysis 
To isolate groups of nodes that may be causing inconsistency, we 
apply a technique known as sensitivity analysis to belief networks. 
Sensitivity analysis (Jensen, 1996) helps determine which evidence 
is most relevant to the state of a particular network node. Our 
approach is as follows. Suppose we have a set of battlefield 
reports, constituting evidence e, which has already been posted to 
the appropriate nodes of a BN, for assessing a battlefield situation. 
Now, incoming evidence causes inconsistency at a particular node, 
and we need to determine which subsets of evidence e are relevant 
to, and support or contradict, the state of the inconsistent node. In 
other words, we find those evidentiary nodes that have the most 
effect upon the state of the inconsistent node. 

To illustrate the concept of sensitivity analysis on the BN in 
Figure 1, we have a set e of evidence, consisting of eI, eT, and eE, 
representing respectively no injury, no transport disruption, and 
the presence of electricity. Symbolically, we have: 
  eI: Injury = No, ¬eI: Injury = Yes 
  eT: Transport = Yes, ¬eT: Transport = No 
  eE: Electricity = Yes, ¬eE: Electricity = No 
Initially, with no evidence posted, we have: 
  p(Commentary = Yes) = 0.43 
When we post the full set e, the network shows that  
  p(Commentary = Yes | eI, eT, eE) = 0.84 
suggesting a high likelihood of finding a running radio 
commentary on the game. But actual report suggests no radio 
commentary at all, i.e. we receive evidence indicating a low 
likelihood of commentary, e.g. we might receive p(Commentary = 
Yes) = 0.2. We therefore have a serious discrepancy between the 
network’s predicted value (0.84) and the actual value of 
Commentary (0.2). 
 Using sensitivity analysis, we will try to find a minimal subset 
of the evidence causing the discrepancy, and therefore to be 
retracted, to bring the state of the node Commentary to neutral. 
This simple approach lets us optimize over a state space of just 
2**3 = 8 subsets. 
 One possibility is to focus on all evidence, and retract it; this 
results in the probability noted above, i.e.: 
  p(Commentary = Yes) = 0.43 or  
  p(Commentary = No) = 0.57 
Another possibility is to retract none of our evidence; this was also 
calculated above, i.e.: 
  p(Commentary = Yes | eI, eT, eE) = 0.84 or  
  p(Commentary = No | eI, eT, eE) = 0.16 
The sensitivity results of retracting one piece of evidence at a time 
are the following: 
  p(Commentary = No | eI, eT) = 0.21 (retracting eE) 
  p(Commentary = No | eI, eE) = 0.26 (retracting eT) 
  p(Commentary = No | eT, eE) = 0.27 (retracting eI) 
Therefore, none of the above three yields a neutral state for the 
node Commentary. Retracting two pieces of evidence at a time 
gives the following sensitivity results: 
  p(Commentary = No | eI) = 0.48 (retracting eT, eE) 



  p(Commentary = No | eT) = 0.32 (retracting eI, eE) 
  p(Commentary = No | eE) = 0.36 (retracting eI, eT)  
Therefore, after checking all possibilities, the sensitivity analysis 
identifies the evidence subset {eT, eE}; retracting this subset 
brings the state of Commentary to almost neutral. 
 This kind of search for the right subset that accounts for almost 
all the change is the central theme of sensitivity analysis. Note that 
not only can we retract our evidence, it can also be further revised. 
For example, after retracting eE, one could postulate a new value 
for electricity, e.g. Electricity = No. This would result as 
p(Commentary = No | eI, eT, ¬eE) = 0.58, bringing the node 
commentary close to a neutral state. We may also consider using 
finer granularity in our adjustments, at the expense of further 
enlarging the search space. 
 Formally, the measure of sensitivity analysis at a node is the 
variance of its belief, that is, expected change squared of the 
beliefs of the node, taken over all of its states, due to a finding at 
other nodes (Jensen, 1996). To illustrate our in-house 
implementation of sensitivity analysis, Figure 2 also shows the 
results of the sensitivity analysis carried out on the network, where 
Commentary is the query variable, and Game, Rain, Injury, and 
Transport are the finding variables. 

Note that sensitivity analysis is highly context dependent, in 
that its results vary significantly with the evidence that has been 
posted. Moreover, evidence in which we are more confident (e.g. 
p(X=Yes)=0.9 for a binary variable X) has less effect upon the 
target node, hence will show up near the bottom of the list. 

2.3 Truth Maintenance via Sensitivity Analysis 
A belief network helps make predictions and decisions based on 
available observations and some default assumptions. For example, 
in the context of the example network of Figure 1, one can predict 
the status of the game based on observations such as transportation 
status, player injury, electricity supply, and so on. All the desired 
evidence may not be available when one needs to make predictions 
and decisions, therefore one must make some default assumptions. 
The a priori probabilities of some variable states can guide 
construction of the default assumption set. 
 For example, usually there is no player injury and one can 
assume the probability distribution (Yes = 0.1, No = 0.9) for Injury 
as a default. Note that unlike a traditional logic-based truth 
maintenance system (Reiter, 1980), default assumptions in our 
environment are probabilistic. With the default assumptions for 
Injury and Rain as (Yes = 0.1, No = 0.9), and with real evidence 
indicating certainty of the electricity supply (Yes = 1.0, No = 0.0), 
the network infers the probability distribution of Game is (Yes = 
0.91, No = 0.09). Therefore, one can predict that the game is 
almost certainly going to be held. Consequently, there is a high 
likelihood of running commentary, which is reflected in the 
probability distribution (Yes = 0.82, No = 0.18) of Commentary. 
 Suppose, however, that no radio commentary is heard during 
the scheduled time of the game. This evidence is inconsistent with 
the current state of the node Commentary in the network, i.e. there 
is substantial difference (e.g. can be measured by means of 
Euclidean distance) between the current predicted state and the 
observed evidence. Instead of simply posting the contradictory 
evidence and letting the beliefs propagate as per usual, we 
interpret this situation to mean that our default assumptions need 
revision; we attempt to revise the set of defaults to be more 

consistent with the evidence observed. In the context of our 
example, i.e. we to revise the default assumptions for variables 
Injury and Rain so as to be more consistent with the fact that there 
is no running commentary. 
 We will use sensitivity analysis on the network with hypothesis 
h as “Commentary = No”. We will try to make simple, minimal 
revisions to our default assumptions, which will bring the state of 
the node Commentary to a neutral level (almost equal distribution 
of the states Yes and No) suitable for propagating evidence. It is 
important to note that we are not trying to match the incoming 
value for Commentary at this point, i.e. we are not trying to 
‘explain’ the discrepancy by adjusting our default assumptions to 
match reality.  Rather, we are attempting only to revise the default 
assumptions so that the discrepancy is tolerable, and a neutral level 
of Commentary will suffice as it indicates that we merely don’t 
know its current value. For simplicity, we will use low granularity 
in revising our defaults. Moreover, we want to make the minimal 
number of revisions to our default assumptions that will 
accomplish this, as we subscribe to the heuristic that simpler 
reasons for problems are more likely to be the correct reasons.   
 At this point the total evidence e posted to the network consists 
of the default assumptions for Injury and Rain, and the observed 
evidence for Electricity: 
  Injury: (Yes = 0.1, No = 0.9) 
  Rain: (Present = 0.1, Absent = 0.9) 
  Electricity: (Yes = 1.0, No = 0.0) 
This gives us 2**2 = 4 options for revising the two default 
assumptions in e: 
1. The default or “do nothing” option of not making any revisions.  

This we of course reject immediately because it’s equivalent to 
accepting the inconsistent state. 

2. e1 : revise Injury to (Yes = 0.9, No = 0.1), i.e. a high probability 
of injury 

3. e2 : revise Rain to (Present = 0.9, Absent = 0.1), i.e. a high 
probability of rain 

4. e12 : revise both Injury and Rain to (Yes = 0.9, No = 0.1), i.e. 
high probabilities of both injury and rain 

 In the process of revising our default assumptions we want to 
ensure that the revision is minimal. For example, the last option e12 
subsumes both e1 and e2. Therefore, if we can bring down the 
probability distribution of the variable Commentary to a level 
consistent with the observed value by either e1 or e2 then we should 
not pursue e12. We have the following results: 
  p(Commentary = No | e1) = 0.36 
  p(Commentary = No | e2) = 0.60 
  p(Commentary = No | e12) = 0.73 
Clearly, e1 alone cannot bring the network to a consistent state, 
whereas e2 is enough if the evidence of no running commentary is 
close to 0.6, and e12 may be appropriate for higher certainty of no 
commentary. Note the sensitivity analysis results shown in Figure 
2 reflects the first two revision options that the node Rain has 
higher influence on the node Commentary than the node Injury. 
 Note we can generalize the algorithm to cases where the 
variables are not boolean, using our sensitivity analysis procedure 
to approximate a uniform belief distribution.  We can also use finer 
granularity in our search (i.e. check more than just absolute belief 
levels) for more accurate results, at the expense of more 
computation time. 



3 NTMS FOR SITUATION AWARENESS 

3.1 Belief Networks for Situation Awareness 
We have applied our truth maintenance approach to military 
scenarios, for maintaining consistent BN states so as to ensure 
trustworthy situation assessments, such as “Enemy will interdict at 
NAI 2”. This kind of assessment is based on observation of low-
level enemy activities such as communication and reconnaissance. 
Each belief network is constructed to assess a specific high-level 
situation in the form of the commander’s priority intelligence 
requirement (PIR). Before posting incoming evidence at a belief 
network node, a truth maintenance procedure is invoked to detect 
information inconsistency between the node’s current state and the 
state of the evidence to be posted. In the case of inconsistency, the 
truth maintenance procedure isolates the nodes that are causing 
inconsistency, based on the causal network dependency. The 
proposed NTMS thus incrementally maintains only consistent BN 
states. 
 BNs related to a SASO (Stability And Support Operation) 
scenario were constructed in a knowledge elicitation session with 
our subject matter experts. These belief networks were designed to 
answer the PIRs as described above. A portion of the BN used to 
answer the last PIR, related to the enemy’s interdiction at a 
specified location by its special police force (SPF) and is shown 
below in Figure 3. 
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Figure 3: Belief net for Enemy Interdiction 

The upper half of the BN of Figure 3 represents doctrinal 
knowledge. The nodes and links encode information allowing one 
to infer where the enemy would interdict according to its doctrine, 
which represents background knowledge that makes an event or a 
situation likely whenever a set of general criteria is satisfied. In 
effect, doctrinal knowledge does not include observations or 
intelligence reports about the site per se. 

For example, a location considered by the enemy adequate to 
place an obstacle, and therefore provides high-value for the 
obstacle, if it has low vulnerability, high collateral damage, and 
high intrinsic value. This is encoded by the portion of the BN in 
Figure 3 that includes the top three nodes and their common child. 
Also, a location where enemy activity level has been observed 
earlier, and is a likely avenue of approach (AA) for the Blue 

forces, and provides a high value for an obstacle, is likely to be 
used for interdiction by the enemy. This is encoded by the portion 
of the BN in Figure 3 that includes the three nodes of the second 
row from the top and their common child. 
 The lower right part of the BN in Figure 3 is focused on 
observations or INTEL reports. Observations of reconnaissance, 
theft, and communication activities at a certain location are strong 
indications of a likely interdiction location. When new evidence is 
posted to the Recon node based on intelligence reports, the 
likelihood of enemy interdiction at that location will increase, 
which in turn will increase the likelihood of the enemy’s theft and 
communication activities at that location. 
 Enemy activity is detectable by various types of sensors, 
including signal intelligence (SIGINT) and electronic intelligence 
(ELINT) sensors. Enemy activity at a location with a sensor 
produces a tactical report (TACREP). The portion of the BN 
labeled ‘Sensor’ in Figure 3 shows that both SIGINT and ELINT 
produce reports upon detection of the enemy’s communication 
activities. If all sensors are functional, and the enemy is truly 
present, then reports should be produced by each sensor at the 
location. If the enemy is absent then no sensor should produce 
reports. The CPT associated with the node labeled ‘Consistent?’ is 
constructed to reflect this relationship between the two nodes 
TACREP SIGINT and TACREP ELINT, in a manner similar to 
user-defined integrity constraints in databases (Das, 1992). For 
example, high likelihood for a SIGINT report and low likelihood 
for an ELINT report together cause a possible inconsistency. 
Evidence sent by battlefield intelligence sources is propagated 
through the network of Figure 3 to answer the PIR.  

3.2 Belief Revision and Truth Maintenance 
We illustrate truth maintenance and consistency checking, 
focusing on the portion of the network in Figure 3 labeled 
‘Sensor’. 
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Figure 4: Network with sensor defaults posted 

The SIGINT and ELINT sensors are by default assumed 
functional, so we post evidence: 
  Sensor_SIGINT: (Functional = 0.95, Damaged =0.05) 
  Sensor_ELINT: (Functional = 0.95, Damaged = 0.05) 

Figure 4 shows the state of the network after the propagation of 
this evidence. Note the current belief state (Yes=0.98, No=0.02) of 
Consistent assures consistency amongst the sensor reports. Now 
suppose we receive a tactical report generated by the SIGINT 



sensor, confirming enemy communication activity at the location. 
This results in the propagation of evidence: 
  TACREP_SIGINT: (Yes=0.99, No=0.01). 
However, for whatever reason (it’s late, or lost, or something else), 
we do not receive a tactical report from the ELINT sensor, 
resulting in the propagation of evidence 

 TACREP_ELINT: (Yes=0.01, No=0.99). 
Figure 5 shows the resulting network state, a concern due to the 

changed belief state of Consistent from (Yes=0.98, No=0.02) to 
(Yes=0.79, No=0.21). Our goal now is to raise the belief of the 
state Yes of the node Consistent to a level above 0.9. We perform 
sensitivity analysis with respect to Consistent, to isolate nodes that 
have high influence on it. 
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No ELINT report received
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Figure 5: Network inconsistency on sensor evidence 

 Figure 6 shows sensitivity analysis on the node Consistent. Of 
the top three nodes, only the state of Sensor_ELINT was assumed 
by default, suggesting its revision.  

Node with default assumption

Node with default assumption

Node with default assumption
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Figure 6: Sensitivity analysis for node Consistent 

There are now two ways to revise the default assumptions: 
1. The state of the ELINT sensor is unknown, so retract its default 

assumption, to get a belief state of: 
  Sensor_ELINT: (Functional = 0.5, Damaged = 0.5) 
2. The state of the ELINT sensor is damaged, so reverse the initial 

default assumption, i.e. post: 
  Sensor_ELINT: (Functional = 0.1, Damaged = 0.9) 

After revising the default assumption for the new belief that the 
sensor is damaged, the beliefs of Consistent become (Yes=0.98, 
No=0.02), suggesting excellent consistency in the network. 

4 CONCLUSION 
We have presented a probabilistic approach to truth maintenance, 
specifically for problem solvers based on BN technology. 
Knowledge base updates are translated into evidence and 
propagated into the networks for the purpose of detection, 
isolation, and recovery from inconsistency. The underlying truth 
maintenance procedure uses a BN sensitivity analysis exploiting 
strengths of the causal dependencies. We demonstrated our 
approach for situation assessment in the context of a SASO 
scenario. 
 Our follow-on work focuses on all three sub-areas of truth 
maintenance. For inconsistency detection, we are developing a 
more precise metric that is context sensitive. For isolation, we are 
developing an improved sensitivity analysis scheme that considers 
the influence of combinations of nodes on the target. Finally, for 
recovery, we are developing a minimal way of readjusting default 
assumptions before posting incoming evidence. 
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