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Abstract.
This paper develops a qualitative, logical, theory of induction. It

begins with Hempel’s attempt to produce a “purely syntactical” the-
ory of confirmation and the demise of this attempt as a result of
Goodman’s paradox. Ideas from the informal, pragmatic, solutions
to this paradox proposed by Goodman and Quine are then adopted,
adapted and extended in order to produce a formal, pragmatic the-
ory of induction. According to this theory, induction takes place in
an evolving context of inference; which includes an evolving system
of kinds and, typically, a background theory. The theory is illustrated
by giving a formal solution of Goodman’s paradox, and a further dif-
ficulty raised by Davidson is discussed.

1 INTRODUCTION

In 1943 Hempel proposed a “purely syntactical definition of confir-
mation”, [10]. By “confirmation” he meant a relation between ob-
servation sentences and the conclusions which can reasonably be in-
duced from them. Central to his definition is the idea of the develop-
ment of a hypothesis for a finite class of individuals. Thus, for exam-
ple, the observations� ��� ����� � ����� � �� ��� determine the
class of individuals ��� ��, and the hypothesis ���� ���� ����� is
confirmed by these observations because its development for ��� ��
is the sentence �� ��� � ����� � �� ��� � ����� and this is en-
tailed by the observations. This idea captures an essential feature of
induction, as it requires that all of the stated evidence is taken into ac-
count. Thus, in particular, it is defeasible; if the evidence is extended
to include the observations � ��� � �����, then the development of
the above hypothesis for ��� �� �� is not entailed by the observations,
and so the hypothesis is no longer confirmed by them. Hempel’s defi-
nition of confirmation can thus be seen as a precursor of ideas such as
the closed world assumption and circumscription. It can also be seen
as a pragmatic, or context-dependent, account; where the context of
inference consists of all of the stated evidence, and conclusions are
only appropriate if it is assumed that this is all of the relevant evi-
dence. As an example of the “material adequacy” of his definition,
Hempel argued that it could be used as the basis for a solution to his
“paradox of the ravens”.

However, in 1955 Goodman [9] proposed another, devastating,
paradox which lead to the abandonment of the attempt to produce
a qualitative, logical, theory of induction, and efforts shifted to the
development of quantitative, probabilistic, theories. Goodman asks
us to suppose that all emeralds examined before some future time �
(tomorrow, next Thursday, etc.) have been found to be green. Then
these observations confirm the hypothesis that all emeralds are green,
and hence the prediction that emeralds observed at or after � will be
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green. Now call an object “grue” at time 	 if it is green and 	 is be-
fore � or it is blue and 	 is � or later. Then the observations equally
confirm the hypothesis that all emeralds are grue, and hence the pre-
diction that emeralds observed at or after � will be blue.

Attempts to argue that the predicate ‘grue’ is illegitimate on syn-
tactic grounds are futile. For example, Goodman points out [pp. 79-
80] that it is useless to argue that ‘grue’ is more complex than ‘green’
because complexity is relative to a choice of language; thus, in a
language (“Grublish”?) in which ‘grue’ and ‘bleen’ (blue before � ,
green thereafter) are primitive and ‘green’ is defined as being grue
before � or bleen thereafter, ‘green’ is more complex than grue. Se-
mantic arguments are also futile. For example, Barker and Achinstein
[1] attempt to show that, unlike ‘green’, ‘grue’ is positional. In order
to do so they introduce a certain Mr. Grue, arm him with easel and
sketchpad, and set him the task of representing (now, at some time
	 
 � ) the colour of grass at � . As Mr. Grue believes that grass is
grue, it seems that he should select blue pigment and thus his rep-
resentation of the grass will be a different colour from its present
colour. However Ullian [14] argues that what counts as a concept
is entirely a matter of convention, and that instead of our concept
‘colour’, Mr. Grue could have the concept ‘shmolour’; where an ob-
ject has the shmolour grue at time 	 just in case it is green and 	 is
before � or it is blue and 	 is � or later. He can thus proceed to paint
the grass grue in the belief that it will be the very same shmolour
at � . Ullian concludes: “One extension is as good as another for a
class qua class, no matter how much (or how little) its description
may cut across the boundaries of our ordinary classifications. Unless
we privilege special classes—and logic alone cannot allow us to do
this—there is no hope of distinguishing those extensions which may
be taken as belonging to bona fide predicates”, [pp. 388-9].

Goodman considers induction to be a special case of the prob-
lem of projecting from a given set of cases to others. A lawlike
statement is one that is projectible, that is “capable from receiv-
ing confirmation from an instance of it” [9, p. 83]. And, Goodman
suggests, a statement is projectible if all of the predicates occurring
in it are projectible. The problem is thus to find a means of distin-
guishing between projectible predicates (such as ‘green’) and non-
projectible predicates (such as ‘grue’). He suggests that one way of
doing so is entrenchment. Now, purely as a matter of historical fact,
the predicate ‘green’ has been projected (has featured in projections)
many more times than the predicate ‘grue’ has. Thus ‘green’ is bet-
ter entrenched than ‘grue’, and consequently projections involving
‘grue’ can be ruled out when they conflict with projections involving
‘green’. Goodman concludes that: “the roots of inductive validity are
to be found in our use of language � � � the line between valid and
invalid predictions (or inductions or projections) is drawn upon the
basis of how the world is and has been described and anticipated in
words”, [pp. 120-1].

Quine [12] agrees, but seeks a more fundamental explanation in



the nature of human, and indeed animal, cognition. He suggests that
we sort things into kinds on the basis of an innate sense of similarity:
“A standard of similarity is in some sense innate. This point � � � is a
commonplace of behavioral psychology. A response to a red circle,
if it is rewarded, will be elicited again more readily by a pink ellipse
than by a blue triangle, the red circle resembles the pink ellipse more
than the blue triangle. Without some such prior spacing of qualities,
we could never acquire a habit; all stimuli would be equally alike and
equally different”, [p. 123].

This paper aims to revive “Hempel’s programme”, by proposing a
logical theory of induction which is not susceptible to paradoxes such
as Goodman’s. It develops a model-based pragmatic theory which
draws on Goodman’s notion of entrenchment and Quine’s notion of
kinds. According to the theory, induction takes place in an evolving
context of inference, which includes an evolving system of kinds and,
typically, a background theory. The theory is developed in Section 2.
By way of illustrated by giving a formal solution to Goodman’s para-
dox in Section 3, and a further difficulty raised by Davidson is dis-
cussed in Section 4.

2 SIMILARITY, KINDS, AND INDUCTION

The theory of induction is defined in a language called the Second-
order Temporal Calculus (�� 	). This language will be introduced
informally here, but a formal account can be found in [2].
�� 	 is based on Kleene’s strong three-valued language [11]

which, when interpreted epistemically, can be seen as providing a
means for doing Classical reasoning with partial information. Ac-
cordingly, the truth conditions for the propositional fragment yield a
Boolean truth value whenever possible. Thus the sentence�� is true
if � is false, is false if � is true, and is undefined otherwise. Simi-
larly the sentence � � 
 is true if � and 
 are both true, is false if
either is false, and is undefined otherwise. Further connectives can
be defined as in Classical logic; for example, � 
 
 is defined as
������
�. In order to increase the expressivenessof Kleene’s lan-
guage the undefined operator � is added; thus the sentence �� states
that � is undefined, that � is neither true nor false. Then Æ� can be
defined as �� 
 �, �� as �� 
 ��, �� 
 as �� 
��
, and � � 


as ���� � ��
� 
 ��Æ� � �Æ
� 
 ��� � �
�. Thus Æ� states that
� is not false, �� states that � is not true, � � 
 is true if 
 is
true or � is not, and � � 
 states that � and 
 are equivalent (are
both true, or both false, or both undefined). The first-order extension
follows Kleene. Atomic sentences are interpreted using partial func-
tions; thus an atomic sentence of the form ����� � � � � ���, may be
true, false or undefined in a model. And a universally quantified sen-
tence ��
 is true if every instance of 
 is true, false if one instance
is false, and is undefined otherwise. As in Classical logic, ��
 is
defined as ����
 .

In order to represent time, a temporal index is added to each atomic
sentence of the underlying language. Thus the first-order atomic sen-
tence ����� � � � � ����	� should be understood as stating that the rela-
tion � holds for the objects denoted by the terms � �� � � � � �� at time
point 	. It is assumed that time consists of points and that it is discrete
and linear.

Finally, the language is extended to the second-order; by adding
second-order relations and permitting quantification over first-order
relations. The interpretation of a second-order formula ��
 proceeds
in two stages: a first-order relation symbol (rather than a first-order
relation) is substituted for each free occurrence of � in 
 , this re-
lation symbol is then interpreted in the process of interpreting the
atomic formulas in 
 and relative to their temporal indices.

The second-order features of �� 	 are used to define similarity,
kinds and induction, and the axioms for these are listed in Table 1.

Table 1. Axioms for similarity, kinds and induction.

����� �� �� ���QSpace������� ���� ����� � � �� ��� ����� ������ (1)

����� ��Similar1�������� �

���� � � � �������

� ����� �� � ��� �������

� �QPred��� ��� ������ ���� ���������� (2)

����� �� 	� ��Similar��� ������

�� � ��		� � Similar1��� �����

� �	 � ��
 Similar��� 	������� (3)

��� ��Kind�� ���� � �� Similar��� ������ (4)

��� ���Kind�� ����� �AffK�� ������ Kind�� ���� ��� (5)

���
� ��Proj���
�����

�Kind�� ����� Kind�
����

� ����� � ��� �������� 
���������� (6)

���
� ���Proj���
����� �AffP���
������ Proj���
���� ��� (7)

Beginning with quality spaces, Axiom ��� states that no object
has two different qualities (occupies two distinct regions in a quality
space) simultaneously.Thus the second-order formula QSpace����	�
states that � is a quality space at time 	 and the (first-order) formula
���� ���	� states that object � has the quality in region � of � at 	;
for example, QSpace�Colour��	� and Colour������	� state respec-
tively that, at 	, Colour is a quality space and that the colour of object
� is � .

Similarity is defined by axioms ��� and ���. Axiom ��� states that
all � ’s, past and present, are similar with respect to quality space �
(are Similar1 in �) iff they all have (or had when� ) the same quality
in �. Thus similarity in this sense is a historical, intensional, notion,
involving both the present and the past extensions of� . In the axiom,
the second-order predicate QPred is used to relate predicates with the
qualities that they predicate. The formula QPred��� ��� ��	� states
that, at time 	, the � of � is � (where � is a quality space, � is an ob-
ject and � is a predicate); for example QPred�Colour� ��Green��	�
states that, at 	, the colour of � is green. It is necessary to relate �
and � in this way in view of the subsequent definition of kinds. Ax-
iom ��� merely extends the definition of similarity to a non-empty
list of qualities. Thus the � ’s are Similar in respect � at time 	 iff
� is a non-empty list of first-order relation symbols each of which
is used to represent a quality space in which the � ’s are Similar1 at
	. (Technically, � is a first-order term, �� denotes the empty list and
����� denotes the list with head� and tail �.)

Kinds are defined in terms of similarity. Thus Axiom �	� states
that the predicate � is (denotes, constitutes) a kind at time 	 if all
� ’s are Similar in some respect �. If � contains a single relation sym-
bol �, then � is said to be a simple kind (as the � ’s have a sin-
gle quality in common; are Similar1 in �), otherwise � is said to
be a complex kind. It is now clear that if the QPred-condition were
dropped from Axiom ���, then Axiom �	� would permit unnatural
kinds; for example, suppose that grue objects are all the same shape
and that some objects are grue after � , then the proposed simplifica-
tion of Axiom ��� would result in Grue being a kind because of the
similarity in shape and despite the dissimilarity in colour.

As the extension of predicates may vary over time, kinds have nat-
ural histories. A kind becomes established or entrenched as a result
of observed regularities and of its use in projections. However a kind
can become defunct at time 	 if it remains a kind but has no new
members at 	; so extinct species can be regarded as permanently de-



funct kinds. A kind can also become defective at 	 if its members are
no longer all alike in what was the defining respect of the kind; for
example we consider that the kind grue becomes defective at � if is
not defunct; as it then contains both green and blue objects.

The final three axioms concern the entrenchment of kinds and
projection. Axiom �
� states that the relation between predicates
� and � is projectible at time 	 iff it is the subkind relation; thus
Proj������	� is true iff � and � are both kinds at 	 and, the exten-
sion of � up to 	 is a subset of that of �. The reason for project-
ing the subkind relation between predicates, rather than projecting
predicates individually, as Goodman and Quine suggest, is discussed
further in Section 4.

Axioms ��� and ��� are the speculative axioms of the theory, and
are used to make predictions on the basis of the current context
of inference. Axiom ��� is the entrenchment axiom. Intuitively, the
second-order atom AffK�� ��	� states that the kind denoted by the
predicate � is affected at time 	; that is, that there is reason to doubt
its persistence beyond 	. So the axiom states that if � is a kind at 	
and it is not true that � is affected at 	, then � remains a kind at 	
�.
This axiom is intended to be interpreted pragmatically: its interpre-
tation should take account of the current context of inference, and it
should be interpreted positively (rather than contrapositively) when-
ever possible. Thus, given Kind�� ��	�, the entrenchment assump-
tion �AffK�� ��	� should be made, and the axiom used to conclude
Kind�� ��	
 �� whenever it is consistent to do so.

Axiom ��� is the projection axiom. Again intuitively, the second-
order atom AffP������	� states that the projectibility of the sub-
kind relation between � and � is affected at 	; that is, that there
is reason to doubt that the relation can be projected beyond 	. So the
axiom states that if the subkind relation between � and � holds 	
and it is not true that its projectibility is affected at 	, then the re-
lation holds at 	 
 �. This axiom is also intended to be interpreted
pragmatically; its interpretation should take the current context of
inference into account, and it should be interpreted positively when-
ever possible. Thus, given Proj������	�, the projection assumption
�AffP������	� should be made and the axiom used to conclude
Proj������	
 �� whenever doing so is consistent.

As Quine remarks, entrenchment, projection, and induction are in-
timately related: “We revise our standards of similarity or of natural
kinds on the strength � � � of second-order inductions. New groupings,
hypothetically adopted at the suggestion of a growing theory, prove
favorable to inductions and so become “entrenched”. We newly es-
tablish the projectibility of some predicate, to our satisfaction, by
successfully trying to project it. In induction, nothing succeeds like
success”, [12, pp. 128-9]. This should be reflected in the formal the-
ory, with inductive inferences arising from the combined effect of the
entrenchment and projection axioms. However, if these axioms are
to be combined, it is necessary to have a strategy for resolving con-
flicts between them. Conflicts arise when the consequents of a pair
of instances of the axioms are inconsistent, thereby forcing a choice
between the assumptions in their antecedents. Quine remarks that
“every reasonable expectation depends on similarity” [12, p. 124],
and a general principle seems to be that predictions which accord
with the established system of kinds should be preferred to those
which violate it. Thus a projection which further entrenches a kind,
or which leaves a kind defunct, should be preferred to a projection
which makes a kind defective. Consequently, preference should be
given to entrenchment assumptions, with the effect that, in cases of
conflict, applications of the entrenchment axiom should take prece-
dence over applications of the projection axiom. The entrenchment
axiom should thus play a significant role in constraining projection

assumptions. Note that the proposed strategy for conflict resolution
differs from the one proposed by Goodman in that it is based on sim-
ilarity rather than the historical use of language. One upshot is that it
can be used to resolve conflicts between two equally entrenched (in
Goodman’s sense) predicates, as the formal treatment of his paradox
in the next section shows.

The theory of induction, �� , consists of the axioms ����� � � � �
����, and any theory which contains � � will be called an induction
theory. In order to enforce the intended interpretation of induction
theories, a formal pragmatics is needed. As suggested, an induction
theory should be interpreted chronologically: given the context of
inference at time 	, the axioms of �� should be used in order to ex-
tend the context to time 	 
 �. Moreover, as suggested, in case of
conflict, preference should be given to entrenchment over projection.
These effects can be realized by defining the class of preferred mod-
els of a given induction theory, in which the theory is interpreted as
intended, and then defining an inductive entailment relation on the
basis of these models; in short, by defining a preference logic [13].

So, let � and � � be �� 	 models which differ only on the inter-
pretation of first-order and second-order relations, and the relations
AffK and AffP. Then � is inductively preferred (�-preferred) to � �

(written � �� � �) iff there is a time point 	 such that � and � �

agree for any earlier time point and:

� at least one more first-order atom is defined (is either true or false)
in � � at 	, or

� � and � � agree on the interpretation of all of the above atoms
and at least one more AffK atom is defined in � � at 	, or

� � and � � agree on the interpretation of all of the above atoms
and at least one more AffP atom is defined in � � at 	, or

� � and � � agree on the interpretation of all of the above atoms
and at least one more second-order atom is defined in � � at 	.

A model� is said to be an �-preferredmodel of a theory� iff �
is a model of � and there is no model� � of � such that � � �� � .
An induction theory � inductively entails (�-entails) a sentence �
(written � ��� �) iff all �-preferred models of � are also models of
�.

The preferred models of an induction theory are those in which
defined atoms are minimized chronologically according to type. At
each time point in such a model the present facts (the first-order liter-
als which follow from the interpretation of the theory at earlier time
points) are fixed before any inductive assumptions are made about
the future. This has the desired effect that speculating about the fu-
ture cannot change the present. Then inductive assumptions are made
in the priority order defined; entrenchment assumptions before pro-
jection assumptions. Finally, any remaining second-order literals are
minimized.

3 GOODMAN’S PARADOX

As an example of the theory at work, a formal solution to Goodman’s
paradox is now developed. The solution is presented as an imaginary
example of robot induction. It is assumed that the robot is equipped
with a high-level vision system, such as the one developed by Ull-
man [15], and that the robot performs high-level symbolic reasoning
in �� 	 . The details of the vision system are unimportant. All that is
assumed is that this system is capable of classifying objects accord-
ing to their colour and shape, and of reporting its conclusions to the
high-level reasoning system using atomic sentences of �� 	 . Thus,
specifically, it is assumed that the vision system employs the quality
spaces Colour and Shape, and that its reports are sentences such as



Colour�������� �, which states that object� has colour�� at time
� . The high-level reasoning system, henceforth simply “the robot”,
is thus assumed to have the axioms listed in Table 2.

Table 2. Axioms for Goodman’s paradox.

�
UNA���� ��� ��� (8)

��� ��QSpace�Colour�����QSpace�Shape����� (9)

�����Green�������

QPred�Colour� ��Green���� � Colour���������� (10)

�����Blue�������

QPred�Colour� ��Blue����� Colour���������� (11)

�����Grue�������

QPred�Colour� ��Grue���� �

��� � 
 �Green�������
 �� � 
 � Blue��������� (12)

�����Emerald�������

QPred�Emerald� �� Shape����� Shape���� ������ (13)

UNA���� � � � � �� � (14)


 � ��
����

���

�Shape���� ������� Colour���� ������� (15)

Shape��� � ����
 � (16)

Axiom ��� states that the names �� , etc., refer uniquely; the no-
tation UNA���� � � � � ��� is adopted as a convenient abbreviation for
the set ��� �� �� � ��� �� � ���� � � � � ��� and � � � 
 � � ��.
Axiom ��� states that, from time � onwards, Colour and Shape are
quality spaces. The next four axioms, represent the robot’s use of
language. Thus, for example, Axiom ���� represents the robot’s use
of the predicate Green for objects of colour �� , and Axiom ����
represents its use of the predicate Grue. The final three axioms rep-
resent the robot’s observations. Thus, in view of the earlier axioms,
the robot observes a different green emerald at each time point be-
tween � and � � �, and a further emerald of unknown colour at time
� . However, given the background theory ����� � � � � ����� and the
observations ���	�� � � � � ��
��, the robot can use the theory of in-
duction, �� , to infer that the emerald observed at � is green. It can
then conclude that all emeralds are green, and that it is not the case
that all emeralds are grue.

Proposition 1. Let �� � �� � ����� � � � ��
��. Then:

�� ��� ��� 	�Emerald����	�� Green����	��

� ���� 	�Emerald����	�� Grue����	���

Proof. In any �-preferred model� of �� it follows by the chrono-
logical minimization of (first- and second-order) atomic sentences
that no atomic sentence with temporal index 	 
 � is true. It is also
clear that, at each successive time point � such that � � � � � � �,
each object �� examined at � is classified as being green, grue, and
an emerald at � (axioms ����� ����� ����� ����). Moreover, it follows
from the chronological minimization of first-order atoms that noth-
ing else is established as having any of these properties at �. Conse-
quently, as time progresses, the predicates Green, Grue and Emerald
become entrenched as kinds (axioms ���� �	�� ����� ����� ����), and
the following sentences are true in � :

Kind�Emerald��� � ���

Kind��������� � ���Kind�Grue��� � ���

��� 	 � � � ��Emerald����	�� Green����	���

��� 	 � � � ��Emerald����	�� Grue����	���

Up to time ��� the pragmatic axioms ��� and ��� play no signifi-
cant part in the reasoning; instancesof these axioms with antecedents
which refer to time points before � � � have been trivially satisfied.

However a conflict arises at � � � when it comes to
predicting the colour of object �� , which, by axioms ����
and ��
�, is an emerald. It follows from the displayed sen-
tences and Axiom �
� that both Proj�Emerald�Green��� �
�� and Proj�Emerald�Grue��� � �� are true in � . But,
the projection assumptions �AffP�Emerald�Green��� � �� and
�AffP�Emerald�Grue��� � �� cannot both be true in � . For then
it would follow from axioms �
� and ��� that Green��� ��� � and
Grue��� ��� � would be true in � , which would result in a contra-
diction. By Axiom ����, Blue��� ��� � would be true, so, by Ax-
iom ���� Colour��� � ����� � would be true. Axioms ���, ��� and
��� would give �Colour��� � ����� �, which with Axiom ���� gives
�Green��� ��� �.

Moreover, if �AffP�Emerald�Grue��� � �� were true in � ,
then this assumption would result in the kind Grue becoming de-
fective at � . For it would follow (as above) that Grue��� ��� �
would be true, with the result that (as above) Colour��� � ����� �
would be true. But as (for instance) Green������� is true, it fol-
lows from Axiom ���� that Colour���� ������ would be true. So
it would follow from axioms ���, ���, ���, ����, ���� and ����
that �Colour���� ������, and �Colour��� � ����� � would be true.
By chronological minimization of first-order atoms there would
be no other � such that Colour���� ����� and Colour��� � ���� �
were both true. Hence, by Axiom ���, �Similar1�Grue�Colour��� �
would be true. Moreover, it would follow by chronological minimiza-
tion of second-order atoms that QPred��� �� �Grue��� � would be
undefined for any value of � other than Colour. So it would follow
by Axiom ��� that ��� Similar1�Grue� ���� � would be true. Con-
sequently, it would follow from Axiom �	� that �Kind�Grue��� �
would be true. So it would follow from the contrapositive of Ax-
iom ��� that AffK�Grue��� � �� would be true.

On the other hand �Aff �Emerald�Green��� � �� can be true in
� along with both �AffK�Green��� � �� and �AffK�Grue��� � ��.
In particular, Green��� ��� � is consistent with Kind�Grue��� �, as
Grue has no new members at � .

Now, as � is an �-preferred model, AffK atoms are minimized
before AffP atoms at ���. So the assumptions�AffK�Green������,
�AffK�Grue��� � �� and �AffP�Emerald�Green��� � �� are true in
� . So it follows (as above) that Green��� ��� � is true in � , and
consequently the following sentences are true in � :

Kind�Emerald��� ��Kind��������� ��Kind�Grue��� ��

���Emerald����� � � Green����� ���

����Emerald����� � � Grue����� ���

It is clear from the last of these sentences that the second of the
conjuncts to be proved is true. It is also clear now that the first con-
junct to be proved is true; as, by chronological minimization, no
emeralds are observed after � . �

The formal argument illustrates the need to maximize entrench-
ment assumptions (to minimize AffK atoms) before maximizing pro-
jection assumptions (minimizing AffP atoms) at each time point,
thereby giving preference to the entrenchment axiomx over the pro-
jection axiom.

The paradox can be restated in formalized Grublish, with Grue and
Bleen defined in terms of the Colour predicate, and Green defined
in terms of Grue, Bleen and time point � . However, as induction
depends on similarity and kinds rather than syntactic simplicity, the
intended conclusions would still follow.



4 DAVIDSON’S DIFFICULTY

Davidson [3] asks us to consider the following hypothesis:

�� All emeroses are gred;

which states that “everything that is examined before 	 and is an
emerald (or else is a rose) is green if examined before 	 (or else is
red)” [p. 225]. He continues: “If �� is lawlike, it is a counterexam-
ple to Goodman’s analysis � � � and one that would seem to cut pretty
deep. Goodman’s tests for deciding whether a statement is lawlike
depend primarily on how well behaved its predicates are, taken one
by one; thus for Goodman �� comes out doubly illegal. What ��

suggests, however, is that it is a relation between the predicates that
makes a statement lawlike, and it is not evident that this relation can
be defined on the basis of the entrenchment of individual predicates”,
[pp. 225-6].

But is �� lawlike? If, Davidson suggests, we suppose that the fol-
lowing two hypotheses are true and lawlike:

�� All emeralds are green. �� All roses are red.

Then �� is true, and we have good reason to believe it.
Nevertheless, Goodman replies [8], it need not follow that �� is

lawlike. The fact that �� is entailed by two hypotheses which are
confirmed by their positive instances does not imply that � � is con-
firmed by its positive instances: “ however true � � may be, it is un-
projectible in that positive instances do not in general increase its
credibility; emeralds found before 	 to be green do not confirm � �”,
[p. 328]. However, Davidson counters: “The positive instances of � �

are gred emeroses, and if they are examined before 	 they are also
green emeralds examined before 	. But green emeralds examined be-
fore 	 do not tell us anything about the colour of roses examined
after 	. Unfortunately, if this were a good argument, it would also
show that �� is not lawlike, for the positive instances of �� exam-
ined before 	 would be nothing but gred emeroses examined before
	; and what can they tell us about the colour of emeralds after 	?”,
[p. 226].

Given the theory of induction developed in this paper, it seems that
this dispute can be resolved as follows. Davidson is right in claiming
that lawlikeness cannot be determined by considering the projectibil-
ity of its predicates “taken one by one”, and that “it is a relation
between the predicates that makes a statement lawlike”. However,
Goodman is right in claiming that �� is not lawlike because it “is
unprojectible in that positive instances do not in general increase its
credibility”.

The idea of projecting the subkind relation in the projection axiom,
Axiom ���, arose in response to Davidson’s objection, and suggests
the following definition: call a statement lawlike iff it is of the form
��� 	�� ����	�� �����	��, or is logically equivalent to a statement
of this form, and �	Proj������	� is true. The truth of a lawlike state-
ment depends on the subset relation holding between its antecedent
and consequent, its lawlikeness depends on the fact that the subset
relation is also a subkind relation. So if we assume that the pred-
icates ‘gred’ and ‘emerose’ are, like ‘grue’, both defined relative to
some fixed future time point � , then�� is only lawlike if we suppose
that no gred emeroses are examined at � or subsequently. If a gred
emerose (a red rose) is observed at � , then the kind ‘gred emerose’
becomes doubly defective at � ; becausegred emeroses examined be-
fore � differ in both colour and shape from the gred emerose which
is observed at � . So, while �� and �� are always projectible, ��

would cease to be projectible at � and would be revealed as an acci-
dental generalization. Thus it seems that positive instances of a hy-
pothesis can only confirm it while the subkind relation holds.

5 CONCLUDING REMARKS

A great deal of work has been done on induction and machine learn-
ing; see, for example, [5, 7]. However, I believe that this is the first
attempt to revive Hempel’s programme and produce a logical account
of induction which is not susceptible to Goodman’s paradox. A more
extensive treatment of this work is given in [2], including a discus-
sion of the logical properties of the theory, in terms of Hempel’s logi-
cal conditions of adequacy for confirmation [10] and Flach’s rational-
ity postulates for induction [4], and an extension to include common
sense reasoning about change and inertia.

Recent work by Gärdenfors [6] develops Quine’s notion of quality
spaces into conceptual spaces, and proposes that natural kinds form
convex regions in such spaces; although, as ever, Mr. Grue has his
own idea of shmonvex regions, etc. The theory proposedhere appears
to complement Gärdenfors’ work. While he develops richer defini-
tions of kinds at what he calls the conceptual level (which roughly
corresponds our robot’s classifying colours and shapes), this paper
has developed a theory of induction at what he calls the symbolic
level.

This paper has dealt with representation. In future work the direct
model-building implementation of the underlying theory of events
[16] will be extended to the rest of the theory of induction, making
actual robot induction of the kind envisaged here possible.
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