Extending FF to Numerical State Variables

Jorg Hoffmann

Abstract. The FF system obtains a heuristic estimate for each state
during a forward search by solving a relaxed version of the planning
task, where the relaxation is to assume that all delete lists are empty.
We show how this relaxation, and FF’s heuristic function, can nat-
urally be extended to planning tasks with constraints and effects on
numerical state variables. First results show that the implementation,
Metric-FF, is competitive with other approaches to numerical plan-
ning, performing well against one of the most recent approaches on
a numerical version of the Logistics domain.

1 Introduction

Four out of five awarded fully automatic planners in the AIPS-2000
planning systems competition were (at least partially) based on the
idea of heuristic search [1]. In particular, the heuristic planner FF [8]
performed best. While in the competition the domains were purely
logical, i.e., STRIPS and ADL formulations, it is clearly important
for real world applications to deal with more expressive constructs,
like temporal actions with numerical resource requirements. As the
language to be used in the AIPS-2002 competition, Maria Fox and
Derek Long have therefore developed PDDL2.1 [5], which amongst
other things incorporates the possibility to define numerical con-
straints and effects on a finite set of numerical state variables.

Some approaches have been made to do planning in more expres-
sive formalisms (e.g. [6, 9, 10, 7]). One of the most recent ones, and
a relative of FF, is the Sapa system, developed by Do and Kamb-
hampati [4]. In FF, a heuristic estimate for a state s during forward
search is obtained by extracting, in Graphplan [2] style, a relaxed
plan that achieves the goals from s, where the relaxation is to assume
that all delete lists are empty (this relaxation has first been proposed
by Bonet et al. [3]). The length of the relaxed plan is taken as the (in-
admissible) heuristic estimate [8]. In Sapa, which handles temporal
actions as well as numerical variables, a temporal relaxed plan based
on the same relaxation is extracted by using a temporal Graphplan
style algorithm. Relaxed planning completely ignores the numerical
part of the task, and heuristics are afterwards applied to estimate the
relaxed plan’s resource consumption [4].

In this work, we explain how the idea of ignoring delete lists as
a relaxation can naturally be extended to tasks with numerical state
variables. Briefly, the idea is to transform the task such that all nu-
merical constraints are monotonic in a certain sense, and then to ig-
nore, in the relaxation, all numerical effects that decrease the value
of a variable. One can then solve the relaxed task, combining the
logical and numerical aspects, by a natural extension of FF’s heuris-
tic function, preserving that function’s theoretical properties. The al-
gorithms are implemented in the Metric-FF planning system, using
the heuristic function in a standard forward state space search. We

1 Institut fiir Informatik, Georges-Kohler-Allee Geb. 52, 79110 Freiburg,
Germany, e-mail: hoffmann @informatik.uni-freiburg.de

1

present some preliminary evaluation of the system on the numeri-
cal Logistics variant introduced for the Sapa planner. Compared with
Sapa, Metric-FF demonstrates superior runtime performance while
finding plans of similar length.

The Metric-FF system is implemented to deal with arbitrary com-
binations of ADL and the numerical framework of PDDL2.1. For
readability, we consider STRIPS tasks only. Section 2 presents the
algorithms used in (original) FF’s heuristic function. Section 3 gives
notations for the numerical framework of PDDL2.1. In Section 4 we
introduce our ideas and algorithms on a restricted form of numeri-
cal constraints and effects, while Section 5 explains how these tech-
niques can be extended to more complex language constructs. Sec-
tion 6 presents the experimental results, and Section 7 concludes and
gives some outlook.

2 FF

We assume that the reader is familiar with STRIPS. By pre(a) we de-
note an action’s precondition, by eff{a)™ the add list and by eff(a)~
the delete list. A task is a triple (A, I, G) of action set, initial state,
and goal set. A sequence of actions is a plan for (A, I, G) if, exe-
cuted in 7, it yields a state that satisifes all goals.

FF performs search in the space of all states that are reachable
from the initial state. For any search state s, the relaxed task to s
is solved. This is defined as (AT, s, G), where A" is the original
action set except that all delete lists are assumed to be empty. Solving
(AT, s,@) is done in Graphplan [2] style, i.e., by first building a
relaxed planning graph and then extracting a plan from it. For ease
of understanding the extended algorithms that we present later, we
show the pseudo-code in Figures 1 and 2.

Py:=s

t:=0

while G Z P; do
Ay ={a € A|pre(a) C P,
Piy1 =P U UaeAt eff(a)

if P,41 = P; then
ail

endwhile
finallayer =t

Figure 1. Building a relaxed planning graph for a state s.

The relaxed planning graph is built as a sequence of proposition-
and action-layers. Proposition layer 0 is the current state, action layer
0 are all applicable actions, whose add lists make up proposition
layer 1, and so on until either the goal or a fixpoint is reached. In
the latter case, the heuristic value to s is set to co. In the former case,
plan extraction is invoked. This is a simple for-next loop from the top
to the bottom layer, making use of a sequence of goal sets G;. The
level of each proposition or action is the first layer where it appears.
All goals are put into the goal sets at their respective layers. The plan

fort:=1,..., finallayer do
G;:={g € G | level(g) =t}
endfor
for t := finallayer,...,1 do
forallg € G; do
select a, level(a) =t — 1,9 € eff(a)+
for all p € pre(a) do
Grever(p)U = {p}
endfor
endfor
endfor

Figure 2. Extracting a relaxed plan.

is extracted by selecting achieving actions at each layer, and inserting
their preconditions into the respective goal sets (which are below the
layer currently worked on, due to the way the graph is built).

The processes have the following theoretical properties, inherited
from Graphplan [2]: if the graph encounters a fixpoint without reach-
ing the goal, then (AT, s, G) is unsolvable; the actions selected by
plan extraction form a plan for (A, s, G). FF’s heuristic value to s is
set to the number of selected actions, i.e., to the length of the relaxed
plan. This heuristic is used in a variation of hill-climbing [8].

3 Numerical State Variables

As said, we consider an extension of STRIPS with numerical con-
straints and effects. We briefly introduce notations for the PDDL2.1
framework defined by Fox and Long [5]. All sets are assumed to be
finite if not said otherwise.

All constructs are based on a set P of propositions and a set V' of
variables. For notational reasons, we say V = {vl, ..., 0"} A state
s is a pair s = (p(s),v(s)) where p(s) C P is a set of propositions
and v(s) = (v'(s),...,v™(s)) € Q" isa vector of rational numbers
(the obvious semantics being that p(s) are the true propositions, and
v*(s) is the value of v*).

An expression is an arithmetical expression over V' and the ra-
tional numbers, using the operators +, —, *, and /. A numerical
constraint is a triple (exp, comp, exp') where exp and exp’ are ex-
pressions, and comp € {<,<,=,>,>} is a comparator. A nu-
merical effect is a triple (v*, ass, exp) where v* € V is a variable,
ass € {:=,4 =,— =,* =,/ =} is an assingment operator, and
exp is an expression (the effect right hand side). A condition is a
pair (p(con),v(con)) where p(con) C P is a set of propositions
and v(con) is a set of numerical constraints. An effect is a triple
(p(ef)T, plef)™, v(eff)) where p(ef)™ C P and p(eff)~ C P are
sets of propositions, and v(eff) is a set of numerical effects such that
i # j for all (v*,ass, exp), (v, ass’, exp’) € v(eff). An action a is
a pair (pre(a), eff(a)) where pre(a) is a condition and eff{a) is an
effect.

The result of executing an action a in a state s is result(s,a) =
eff{a)(s) if s |= pre(a), undefined otherwise. s |= pre(a) holds iff
p(pre(a)) C p(s) and all numerical constraints in v(pre(a)) are met
in s; a constraint (exp, comp, exp’) is met in s if the value of exp in
s stands in relation comp to the value of exp’ in s. eff{a)(s) is the
state s” where p(s’) = p(s) \ p(effla))™ U p(effla))™ and v(s') is
the value vector that results from applying all numerical effects in
v(eff(a)), leaving unaffected values unchanged; applying a numeri-
cal effect (v*, ass, exp) means to update the value of v* in s with the
value of exp in s, using the asignment operator ass.

A planning task is a tuple (P, V, A, I, G) where P and V are the
propositions respectively variables used, A is a set of actions, [is a

2 We ignore, for readability reasons, the possibility given in Fox and Long’s
original language that a variable can have an undefined value until it is
assigned one. Our methododology can be easily extended—and is in fact
implemented—to deal with this case.

state, and G is a condition. A sequence of actions (a1, ...,an) € A"
is a plan if the result of iteratively applying the sequence to I yields
a state s such that s = G.

In our algorithmic framework, we make distinctions between dif-
ferent degrees of expressivity that we allow in numerical constraints
and effects, i.e., between different numerical languages. A numerical
language is a tuple (Cons, Eff-ass, Eff-rh) where Cons is a possibly
infinite set of numerical constraints, Eff-ass is a set of assingment
operators, and Eff-rh is a possibly infinite set of expressions. A task
(P,V, A, I,G) belongs to a language if all used constraints, assing-
ment operators, and effect right hand sides are members of the re-
spective sets. °

4 A Restricted Language

We first introduce our heuristic function for a restricted numerical
language. This simplifies the notation of the algorithms, and clarifies
the intuition behind our approach. Our implementation of the heuris-
tic function for more expressive languages is a straightforward exten-
sion of the simple algorithms described in this section. The language
we consider is the following:

({(v*, comp, c) | v* variable, comp € {>,>},c € Q},
{+ = :},
{c|ceQc>0})

That is, we allow constraints only to check if a variable is greater
(greater or equal) than a constant, and restrict effects to increase or
decrease the value of a variable by a positive constant. We name tasks
that belong to this language restricted tasks.

FF’s heuristic function can be very naturally extended to the above
numerical language. To understand why that is so, let us go back to
STRIPS for a moment. In the STRIPS setting, we relax the planning
task by ignoring the delete lists. In effect, applying relaxed actions
increases the number of true propositions in the state monotonically.
As it is always preferable to have more propositions true, the relaxed
task is easier to solve than the original task.

The crucial notion here is that of monotonicity: the relaxed actions
are monotonic in that they only increase the number of true proposi-
tions; this simplifies the task because the preconditions of all actions
(as well as the goal) are monotonic in that they are negation-free,
i.e., if they are fulfilled in a state s then they will be fulfilled in any
superstate s’ D s.

Now reconsider our restricted numerical language above. What
we do is, we extend the concept of (propositional) monotonicity to
a concept of numerical monotonicity, meaning increasing values of
variables. As for the numerical constraints, they are already mono-
tonic in our restricted language: we compare (the values of) variables
to constants by > or > comparators, so a constraint that is fulfilled
in a state s will also be fulfilled in any state s’ where v*(s') > v*(s)
for all ¢. As for the numerical effects, they either increase or decrease
the value of a variable by a positive constant, so we can make the
actions monotonic by ignoring the decrease effects. *

In combination with the propositional relaxation, the relaxed task
is thus derived from ignoring all delete- and decrease-effects. The
algorithm that builds a relaxed planning graph is depicted in Figure 3.

3 In the definition of linear tasks that we give later, the allowed expressions
depend on the structure of the planning task; so for formal precision Cons
and Eff-rh would need to be functions from planning tasks into sets of con-
straints respectively expressions. The above notation yields a more readable
presentation, while its meaning should be intuitively clear.

4 We remark that Do and Kambhampati [4] make a few notes that seem to go
into the same direction, but don’t explore this further.

P-0=:3 s, yuiznﬂ'l(wazi
while p(G) Z P; or (v%, > [>], ¢) € v(G), riga*]c do
Ai:={a € A |p(pre(a)) C P,)
V(v", > [>], c) & P8dré(a)) : maz®
=P 4U UllEAt p(eﬂ(a))+

1maz’

c
4G AL (v =) € efft)
or ipahazneed’ then

Vol T
if Pt.-f-l =
Vov' : maz';
fail — 1%+
endif
ti=t+1
endwhile
finallayer =t

Figure 3. Building a relaxed planning graph for a state s, in our restricted
numerical language.

Our idea, like in FF, is to solve the relaxed task for each search
state s, and take relaxed solution length as a heuristic estimate.
The algorithm in Figure 3 decides relaxed solvability, and can be
used to extract a relaxed plan. Let us explain the algorithm. It ex-
tends FF’s relaxed planning graph for STRIPS to our restricted lan-
guage. Reconsider Figure 1. The extension is that, in addition to the
proposition- and action-layers, we propagate a value maz? for each
variable ¢ through the layers ¢ of the graph, denoting the maximum
value v* can have after applying ¢ time steps of relaxed actions. The
maxo values are just the values of the variables in s. The goal is
reached at layer ¢ when the propositional goal is contained in P, and
all numerical constraints can be met according to the max; values.
Likewise, for an action to be applied in layer ¢, its propositional as
well as numerical preconditions must be possible according to P; and
the maz; values. The next proposition layer is obtained as before by
adding the union of the respective add lists; the next max values are
obtained by adding the sum of the respective increasing effects (in
Figure 3, note that the constant ¢ in the sum denotes the right hand
sides of the effects increasing v*). The graph reaches a fixpoint when
there are no new propositions, and the max values of all variables
have either not improved, or are already more than is needed: we de-
fine maxneed® as the maximum over all constants ¢ such that there
is a constraint v* > [>]c in the task (the maximum over an empty set
being —o0).

Proposition 1 Given a restricted planning task (P, V, A, I, G), and
a state 8. If the algorithm depicted in Figure 3 fails, then the relaxed
task to s is unsolvable.

With the graph being in a fixpoint, no layer will ever reach the
goals; if there was a relaxed plan of length ¢ then the goals would be
reached in layer ¢ + 1; finished by contradiction.

We will see below that the opposite direction of Proposition 1 also
holds, i.e., the relaxed planning graph reaches the goals if and only if
the relaxed task is solvable. As we want to use the relaxed planning
graph for computing a heuristic estimate to each search state, it is of
crucial importance to us how much time we need for the computa-
tion.

Proposition 2 Given a restricted planning task (P, V, A, I, G), and
a state s. The algorithm depicted in Figure 3 terminates in time poly-
nomial in the size of the task and the number of time steps built.

Trivially, building a single relaxed graph layer is polynomial; in
fact, it involves only a single sweep over the action set, checking
for precondition inclusion and the status of numerical preconditions.
This can efficiently be implemented in a manner similar to the orig-
inal FF implementation [8]. More tricky is the question how many

layers need to be built. The number can be exponential: imagine the
tasks where some variable must be greater than z, and can be incre-
mented only by 1; relaxed plan length is linear in z, i.e., exponential
in a non-unary encoding of x. For a unary encoding, the number of
time steps is polynomial. Generally, the number is polynomial in the
size of the plan (equal to the number of parallel time steps). °

If the relaxed planning graph could not reach the goals then we set
our heuristic value to oo, as is justified by Proposition 1. Otherwise,
we extract a relaxed plan by the algorithm depicted in Figure 4.

fort:=1,..., finallayer do
p(Gi) ={g € p(G) | level(g) =t})
v(Gy) = {(v*, > [>],¢) € v(Q) | level(v*, > [>],c) =1}
endfor
for t := finallayer,...,1 do
forall g € p(G:) do
select a, level(a) =t — 1,9 € p(eﬁ(a))+
forall p € p(pre(a)), (v, > [>], ¢) € v(pre(a)) do
p(Glc‘ucl(p))U = {P}

UG yerwi, >[>1,e))Y = {(v*,>[>],0)}
endfor
endfor
for all (v*, > [>],¢c) € v(G:) do
while maz do
sele:?a%ﬁez(a) =t 1, (v} +=,¢) € v(efa))
!
c:=c—¢cC
/* introduce a’s preconditions as above */
endwhile

v(Gy-1)U = {(v', > [>],0)}
endfor
endfor

Figure 4. Extracting a relaxed plan for our restricted language.

The similarity to the original FF algorithm in Figure 2 is closer
than the size of Figure 4 suggests. The extension is merely that we
now additionally introduce numerical goals and subgoals (vi, >[>
], ¢) requiring that the value of variable v* is greater or equal (greater)
than constant ¢ at some graph layer. The numerical goals must be in-
troduced for the goal constraints and for the numerical preconditions
of actions; they are achieved through the selection of appropriate ac-
tions with increase effects. In more detail: the level of a numerical
goal (v*,> [>],c) is the smallest ¢ such that mazi > [>]c holds;
the numerical goals and the numerical preconditions of selected ac-
tions are inserted into the respective numerical goal sets; ¢ a numer-
ical goal (v*,> [>],¢) at a layer ¢ is achieved by selecting actions
directly below in the graph that increase v by ¢’, and substracting
¢’ from c, until the goal can be achieved one layer earlier. The latter
loop terminates due to the way we build the relaxed planning graph:
if mazi > [>]c then mawzi_y > [>]¢" where ¢’ is the result of
substracting all increase effects ¢’ in layer £ — 1 from c.

Proposition 3 Given a restricted planning task (P,V, A, I,G), and
a state s for which the algorithm depicted in Figure 3 terminates
positively. The actions selected by the algorithm depicted in Figure 4
form a plan for the relaxed task to s.

By selecting actions that achieve the propositional and numerical
goals at each layer ¢, we guarantee that, after executing (the relaxed
version of) the actions selected at the layers below, all these goals

5 One can decide relaxed solvability in polynomial time by doing a kind
of look-ahead for the numerical variables each time a proposition layer is
equal to the previous one. We did not yet explore that direction in depth as
it seems difficult to actually compute a relaxed plan based on that informa-
tion; also, it is unclear how relevant the possible exponentiality is in tasks
that are not especially constructed to provoke it. Addressing the issue is a
topic for future work.

6 When inserting a numerical goal for v* it is checked whether such a goal is
already in the respective goal set; if so, the stronger of both is taken.

are fulfilled, no matter in which order the actions selected at a single
layer are arranged. So arranging the selected actions at each layer in
an arbitrary order yields a relaxed plan to the task. ’

5 Linear Tasks

We so far have a heuristic function for tasks in the restricted nu-
merical language. Changing perspective, what we really want is a
heuristic function for tasks with arbitrary numerical constraints and
effects. In this work, we have restricted ourselves to a language where
the monotonicity property—on which our relaxation and algorithms
for the restricted language are built—can be achieved. We consider
what we call the language of linear tasks. Let us define what this is.
Given a planning task (P, V, A, I, G). A variable v* € V is a task
constant if v* is not affected by the effect of any action in A. An
expression is a task constant if all variables occuring in it are task
constants. Note that a task constant can be replaced by a rational
number. An expression is linear if: for all sub-expressions (exp *
exp'), either exp or exp’ is a task constant; and for all sub-expressions
(exp/exp'), exp is a task constant. The class of linear tasks is:

({(exp,comp, exp) | exp, exp’ linear expression, comp arbitrary},
{::, —+ =, — :}’
exp | exp linear expression
P!

That is, we restrict ourselves to linear expressions, and the as-
signment operators :=, + =, and — = (we will say some words
on more expressive languages in the outlook). Linear tasks can be
brought into a normal form where all constraints, and effects whose
right hand side depends on variables, are monotonic (in the sense ex-
plained below). The language is the following, which we refer to as
the language of linear normal form, or LNF tasks:

({(Ejexcj x0, > [>],¢) | & >0},
{=+=h .
{EjeXcJ xv' +c|cd >0})

Here our constraints compare weighted sums of variables (X C
{1,...,n}) to constants via > or > comparators, with all weights in
the sum being positive (negative weights can be translated by intro-
ducing inverse variables, as described below). The only assingment
operations are := and + = (:= will be treated as a special case in
our algorithms; we get rid of — = only for notational simplicity: this
operator can be translated to + = by multiplying the right hand side
with (—1), see below). Effect right hand sides are positive weighted
sums plus a constant (again, negative weights being translated). As
all weights are positive, we have the following monotonicity proper-
ties. The constraints are monotonic (just like before) in that, if ful-
filled in a state s, they will also be fulfilled in any state s’ where
v*(s") > v*(s) for all 4. The effect right hand sides are monotonic in
that, given states s and s’ as above, their value in s is greater than,
or equal to, their value in s.

For relaxation, we will make the actions monotonically increasing
simply by ignoring those effects that decrease the value of the af-
fected variable. More on this later. First, we show how a linear task
can be transformed into an LNF task.

5.1 LNF Transformation

We start with an arbitrary linear task. Our first steps are the following:
replace (exp, =, exp’) constraints with (exp, <,exp’) and (exp, >

7 In fact, the algorithms can be viewed as a relaxed version of the Resource-
IPP system [9].

,exp’); replace (exp, <, exp') with (exp’, >, exp) and (exp, <, exp’)
with (exp’, >, exp); replace (exp, > [>], exp’) with (exp — exp’, >

[>],0); replace decreasing effects (v', — =, exp) with (v*,+ =
, (—1) * exp). We end up with the following language:

({(exp, > [>],0) | exp linear expression},
{::: + :}a
{exp | exp linear expression})

In the next step, we normalize all linear expressions to weighted
sums (by replacing task constants with rational numbers, then sum-
ming up the occurences of each variable). ® We end up with:

({(Zjex @ 0", 2 [>]e) | & #0},
{=+=h .
{(Xjexd xv' +e| #0})

The only difference to LNF is now that the weights ¢/ can have
negative values (redundant variables with weight 0 are ignored). To
get rid of negative weights, we now perform the only non-trivial step
of the transformation. We introduce, for each variable v® that has a
negative weight ¢ < 0 in some sum, a new variable —v* that al-
ways takes on the inverse value of v*. We can then replace v* in
the respective sum with —v*, and multiply its weight with (—1).
We set the initial value of —v* to (—1) * v*(I). For each effect
(= [+ =], iex ¢ x v + ¢) we introduce the new effect
(=v*, = [+ =], Zjex(—l) *¢? %17 4 (—1) *¢). Note that the new
effects can introduce new negative weights (—1) ¢’ ; however, if the
negative value of the respective variable v7 is already translated into
the inverse counterpart —v’ then we can use the counterpart with the
positive weight ¢’ ; each varable needs to be translated at most once.
Upon termination, the task is in LNF.

5.2 LNF Relaxed Planning Graphs

The algorithms for restricted tasks, which we have presented in detail
in Section 4, can easily be extended to LNF tasks. We do not give full
details here, but describe how we have implemented the extension.

First, we need to define what exactly our relaxation is. As said
before, we want to ignore all effects that decrease the value of a vari-
able. This can however depend on the state in which an action is exe-
cuted (as an example, the effect (v, + =, v7) is increasing in states
s where v(s) > 0 but decreasing where v’ (s) < 0). So we can
not “statically” relax a task by ignoring parts of its specification. In-
stead, our relaxation is “dynamic”: we relax the state transition func-
tion result into the function result™ that applies only the positive
propositional effects, and only those numerical effects that increase
the value of the respective variable (note that in STRIPS and our re-
stricted language this comes down to exactly the relaxations we have
used before). The relaxed task can be solved by a straightforward
implementation of relaxed planning graphs.

Building a relaxed planning graph is done analogous to the algo-
rithm in Figure 3. To deal with weighted sums, we introduce new
artificial variables: one artificial variable for each constraint where at
least two variables are compared to a constant (|X| > 1), and one
artificial variable for each effect right hand side that depends on at
least one variable (|X'| > 0)—the other cases belong to the restricted
langugage. The initial values of all artificial variables are set to the

8 We also move the constant parts of constraint left hand sides back to the
right hand sides—algorithmically, comparing to an arbitrary constant or to
0 does not make any difference.

values of the respective weighted sums in the state at hand. The graph
for the non-artificial variables is built based on the + = effects ex-
actly like before, where the effect right hand side values at action
layer ¢ are determined by inserting the respective max; values into
the respective weighted sums, and effects with a negative right hand
side are ignored. Each time a proposition layer ¢ 4 1 is built, two
additional steps are carried out. To take care of := effects, for each
variable v* we determine the maximum := effect right hand side (on
v*) that is yet in the graph; if that value is higher than maxi+1 then
maxi_i_l is replaced with the higher value. As for the artificial vari-
ables, once the max 41 values of all non-artificial variables are de-
termined, their max:+1 values are set to the value of the respective
weighted sums, when inserting the max:41 values for all variables.
As before, the graph reaches its fixpoint when there are no propo-
sitional changes, and all (artificial and non-artificial) variables have
either not changed, or have reached their maxneed value.
Extending relaxed plan extraction, Figure 4, from a graph that
has reached the goals can be done as follows. If a numerical goal
(XCjex ¢ % v7, > [>],¢) for an artificial variable shall be inserted

into layer ¢, then insert the goals (vj , 2 mam{) for all j € X. This
way the weighted sum takes on the maximum possible value, which
is guaranteed to be enough (in fact one could use heuristics here to
make the goal requirements for v/ weaker). If a numerical goal shall
be achieved at some layer, and there is a := effect below whose value
is high enough, then select the respective action. If an effect is se-
lected whose right hand side is an artificial variable v, then—in addi-
tion to the respective action’s preconditions—introduce a numerical
goal requiring that v takes on its max value.

Say we are given an LNF planning task (P, V; A, I, G), and a state
s. If building the relaxed planning graph for s fails then the relaxed
task to s is unsolvable—just like before, encountering the fixpoint
implies that the goals won’t be reached in any layer, but the existence
of arelaxed plan of length ¢ implies reaching the goals in layer ¢ 4 1.
The other way round, just like before the actions selected by plan
extraction form a relaxed plan for s, in an arbitrary linearization—by
supporting the numerical goals in the way we do, we guarantee that
all variables have at least as high values as we require; finished by
monotonicity of constraints and effect right hand sides, and by the
fact that result™ ignores all effects that decrease variable values.

6 Results

As said, we use relaxed plan length as a heuristic estimate in forward
state space search. The search algorithm we use currently is a stan-
dard weighted A, where the weight (of the heuristic function) can
be set as an option. We present some preliminary evaluation by run-
ning the planner against Sapa on a collection of numerical Logistics
tasks where trucks and planes use (continuous amounts of) fuel and
can be refueled at airports. The (temporal) domain and a suite of 9
tasks have been introduced with Sapa [4]. For Metric-FF, we have
created a non-temporal version of the domain. The original suite is
easily solved by both planners, which is why we have randomly gen-
erated tasks with increasing numbers of cities and packages. We ran
both planners on a Linux workstation with 128 M Byte memory run-
ning at 850 MHz. Sapa uses a weighted A* search with weight 5,
so we have used the same weight in Metric-FF. See the data in Fig-
ure 5, showing runtime (in seconds), number of evaluated states, and
plan length (i.e., number of steps) for both planners, against increas-
ing number of cities (#c) and packages (#p). Metric-FF demonstrates
clearly superior runtime performance (on the task with 5 cities and 6
packages, Sapa ran out of memory), while both systems find plans of

roughly similar length. It should be noted, however, that Sapa is im-
plemented in Java while Metric-FF is implemented in C. Also, Sapa
finds concurrent plans while Metric-FF’s plans are purely sequential.
Looking at the number of evaluated states, Metric-FF is still superior,
but far less than the runtime values suggest.

task Metric-FF Sapa

#c #p time states steps time states steps
2 2 0.01 66 4 0.48 124

2 3 0.02 178 12 1.48 307 12
2 4 0.03 397 28 3.06 515 27
3 3 0.03 185 10 1.78 275 10
3 4 0.03 232 16 4.16 487 18
3 5 0.12 1097 17 13.32 1461 17
4 4 0.09 474 21 15.50 1234 24
4 5 0.17 863 30 26.78 1675 32
4 6 0.19 1172 33 23.75 1596 30
5 5 0.17 827 23 27.16 1557 25
5 6 0.33 1388 43 - - -
5 7 0.66 2179 49 1 193.73 6702 60
Figure 5. Results on our random numerical Logistics suite.

7 Conclusion and Outlook

We have presented an extension of FF’s heuristic function to a lan-
guage including numerical constraints and effects over linear func-
tions of numerical state variables. The approach is natural in that
it generalizes the concepts of FF’s original heuristic function, pre-
serving the function’s theoretical properties. Using the heuristic in
a standard weighted A* algorithm, the implementation Metric-FF is
competitive with Sapa in a variant of the Logistics domain.

Based on the presented work, the author has—between sub-
mission deadline and final version deadline—extended FF’s
other heuristic techniques [8] to numerical state variables.
The resulting system took part in the AIPS-2002 competi-
tion, achieving excellent results. See the competition web-page at
http://www.dur.ac.uk/d.p.long/competition.html
for more information.

Presumably, the presented heuristic techniques can easily be ex-
tended to durational constructs—the obvious approach would be to
combine temporal Graphplan algorithms with the numerical Graph-
plan algorithms used here. Designing, implementing, and evaluating
such a planning system is an open topic for future work.

REFERENCES

[1] Fahiem Bacchus, ‘The AIPS’00 planning competition’, The Al Maga-
zine, 22(3), 47-56, (2001).

[2] Avrim Blum and Merrick Furst, ‘Fast planning through planning graph
analysis’, Artificial Intelligence, 90(1-2):279-298, 1997.

[3] Blai Bonet, Gabor Loerincs, and Héctor Geffner, ‘A robust and fast ac-
tion selection mechanism for planning’, in Proc. AAAI-97, pp. 714-719.
MIT Press, (July 1997).

[4] Minh. B. Do and Subbarao Kambhampati, ‘Sapa: A domain-independent
heuristic metric temporal planner’, in Proc. ECP-01, pp. 109-120.

[S] Maria Fox and Derek Long. PDDL2.1: An extension to PDDL for ex-
pressing temporal planning domains, 2001. Unpublished Manuscript.

[6] M. Ghallab and H. Laruelle, ‘Representation and control in IxTeT, a tem-
poral planner’, in Proc. AIPS-94, pp. 61-67, Chicago, IL, (1994). AAAI
Press, Menlo Park.

[7] Patrick Haslum and Héctor Geffner, ‘Heuristic planning with time and
resources’, in Proc. ECP-01, pp. 121-132.

[8] Jorg Hoffmann and Bernhard Nebel, ‘The FF planning system: Fast plan
generation through heuristic search’, Journal of Artificial Intelligence
Research, 14, 253-302, (2001).

[9] Jana Koehler, ‘Planning under resource constraints’, in Proc. ECAI-98,
pp- 489-493, Brighton, UK, (August 1998). Wiley.

[10] Ioannis Refanidis and Ioannis Vlahavas, ‘Heuristic planning with re-
sources’, in Proc. ECAI-00, pp. 521-525, Berlin, Germany, (August
2000). Wiley.

