
A Temporal Planning System for Durative Actions of
PDDL2.1

Antonio Garrido
�

and Maria Fox
�

and Derek Long
�

Abstract. Many planning domains have temporal features that can
be expressed using durations associated with actions. Unfortunately,
the conservative model of actions used in many existing temporal
planners is not adequate for some domains which require more ex-
pressive models. Level 3 of PDDL2.1 introduces a model of dura-
tive actions that includes local conditions and effects to be satisfied
at different times during the execution of the actions, thereby giv-
ing the planner greater freedom to exploit concurrent actions. This
paper presents a temporal planning system which combines the prin-
ciples of Graphplan and TGP in order to plan with such actions.
Although the system is consequently more complex than TGP, the
experimental results demonstrate it remains feasible as a way to deal
with durative actions.

1 INTRODUCTION

Temporal planners appearing in the recent literature, such as
parcPLAN, TGP or TP4 [3, 8, 5] have demonstrated some success
in dealing with actions with duration. These planners have adopted
a conservative model of actions that is a modest extension of that
used by non-temporal planners, which means that two actions cannot
overlap in any way if they have conflicting preconditions or effects.
This makes it possible to produce reasonable plans in some planning
domains, but there exist other domains that require a richer model of
actions and in which better quality plans can be found.

The new version of PDDL, called PDDL2.1 [4], provides a level
3 with a model of durative actions which subsumes the conserva-
tive model of actions. Level 3 allows actions to overlap even when
their preconditions or effects refer to the same propositions. This pa-
per presents a Temporal Planning SYStem (from now on TPSYS)
to manage the model of durative actions proposed in level 3 of
PDDL2.1. TPSYS is based on a three-stage process, which com-
bines the ideas of Graphplan [1] and TGP [8] to deal with such
durative actions. Hence, the main contributions of this paper are:

� An analysis of how durative actions can be managed in a Graph-
plan-based approach.� An explanation of how a compact temporal graph can be gener-
ated, without no-op actions and delete-edges.� An extension of the mutual exclusion reasoning to manage
PDDL2.1 durative actions, based on the work of TGP.� A description of the plan extraction stage and the way it obtains
the plan of optimal duration (in terms of the makespan).� Some experimental results showing the importance of the mutex
reasoning in richer models of actions, as indicated in [8].

�
Universidad Politecnica de Valencia, Spain, email: agarridot@dsic.upv.es�
University of Durham, UK, email: � maria.fox, d.p.long � @dur.ac.uk

2 MOTIVATION

Unlike PDDL, PDDL2.1 allows the modelling of temporal planning
domains to achieve a fuller exploitation of concurrency. This entails a
more precise modelling of the state transitions undergone by different
propositions within the durative interval of the action. In particular,
the traditional preconditions of the starting point of the action need
not necessarily be maintained throughout the interval. There may be
preconditions of the final effect of the action that can be achieved
concurrently with the action rather than maintained throughout the
duration of the action. Hence, it becomes necessary to distinguish in-
variant from non-invariant conditions depending on whether they can
be affected during the interval of execution or not. Moreover, there
might be initial effects of the starting point that can be exploited by
concurrent actions. All these distinctions give rise to quite sophisti-
cated opportunities for concurrent actions in a PDDL2.1 plan.

Let us consider the action fly(plane,origin,destination). This ac-
tion requires the proposition at(plane,origin) to be true before ex-
ecuting the action, and asserts the propositions � at(plane,origin)
and at(plane,destination) at the end of the action. This implies that
the location of the plane is inaccessible until the end of the action,
preventing concurrent actions (for instance, those that require the
plane not to be in the origin) from being executed in parallel with
fly(plane,origin,destination). However, as presented in [4], this may
exclude many valid plans. In PDDL2.1 this can be avoided by assert-
ing � at(plane,origin) as an initial effect.

In addition, if we want to know that an aircraft is flying dur-
ing the action fly, it would be enough to assert the proposition fly-
ing(plane) as an initial effect and � flying(plane) as a final effect. In
the conservative model the durative action equivalent to this fly ac-
tion would not represent the fact of flying due to the inability to ex-
press the proposition flying(plane) and � flying(plane) as initial and
final effects, respectively. Therefore, it is impossible to work with ac-
tions which require this proposition, such as a possible action refuel-
during-flight.

3 ACTION MODEL AND TERMINOLOGY

Durative actions can require more conditions to be guaranteed for
the success of the action than traditional actions of PDDL. Durative
actions not only have effects that hold at their conclusions but also
effects to be asserted immediately after the actions start.

Definition 1 (Components of a durative action) Let � be a dura-
tive action which starts at time 	 and ends at time
 , being executed
through the interval � 	
���
�� . The components of � are the following:

� Conditions. The three types of local conditions of a durative ac-
tion are: i) ����������� , the set of conditions to be guaranteed at the

start of the action; ii) ������� , the set of invariant conditions to be
guaranteed over the execution of the action; and iii) !������� � , the
set of conditions to be guaranteed at the end of the action.� Duration. The duration of the action is a positive value repre-
sented by "#�%$'&)(.� Effects. The two types of effects of a durative action are: i)
�* !+,+ �.-0/ ��12��� �43 �*"5
76 ��8 , with the positive and negative
effects respectively to be asserted at the start of the action; and ii)
 9 !+,+7� -:/ 91;����� 3 9"5
76<� 8 , with the positive and negative
effects respectively to be asserted at the end of the action.

Durative actions entail an important difficulty: there exist some
effects (�* !+,+ �) which can be obtained before the action � ends.
Hence, it might be possible that an initiated action could not end be-
cause its end conditions (#������� �) are not satisfied in the future. In
that case, all the start effects (and the actions which are dependent
on them) should be invalidated. We call these kind of actions condi-
tional actions because they are provisional until their end conditions
are guaranteed, and we define them as:

Definition 2 (Conditional action) An action � is a conditional ac-
tion if =>�* !+,+ �@?-BADC�E =F !������� �G?-HADC holds. In this way, the set
of propositions �* !+,+7� of a conditional action � only becomes valid
when all propositions in !��������� are satisfied.

Conditional actions occur in domains in which durative actions
are required precisely for some effect achieved through the duration
of execution of an action (it is bounded by that duration). Such ini-
tial effects cannot be exploited as end effects because they do not
persist beyond the end of the action. For example, in a logistics do-
main the plane is flying only during the action fly, so the initial effect
flying(plane) cannot be exploited beyond the end of the fly action.
Furthermore, the successful termination of a durative action must be
confirmed even if a goal is achieved before the end of its durative
interval. This is because durative actions promise to terminate ini-
tiated actions in a stable state. If anything in the plan prevents this
stable termination then the plan must be considered invalid. Richer
specifications might allow one to consider exogenous events [8] and
conditions/effects which come to play at a specific time point and
must persist only over finitely bounded intervals [2], but PDDL2.1
does not support this yet.

Definition 3 (Conditional proposition) A proposition I is condi-
tional if all the actions / �KJ 8 which achieve I are conditional and
they have not yet ended their execution.

Intuitively, if I is only achieved by conditional actions / �LJ 8 , I will
be conditional until at least one action � J ends successfully, which
implies both �M���������ON and !����������N are satisfied. Once this hap-
pens, I is valid (no longer conditional).

Figure 1 shows the definition of the durative actions board and fly
in a simple logistics domain. According to Definition 1, the actions
have at start and over all conditions with the conditions to be satis-
fied just at the beginning of the action and during all its execution,
respectively. Analogously, the at start and at end effects are the ef-
fects to be asserted at the beginning and the end of the execution of
the action.

At first sight an extension of a Graphplan-based planner to deal
directly with (level 3) durative actions would seem quite easy. How-
ever, it implies important changes in the way the temporal graph is
generated and in the way the search for a plan is performed. All these
new requirements are presented in the next section.

(:durative-action board
:parameters (?p - person ?a - aircraft

?c - city)
:duration (= ?duration (boarding-time ?c))
:condition (and (at start (at ?p ?c))

(at start (free ?a))
(over all (at ?a ?c)))

:effect (and (at start (not (at ?p ?c)))
(at start (not (free ?a)))
(at end (in ?p ?a))))

(:durative-action fly
:parameters (?a - aircraft ?c1 ?c2 - city)
:duration (= ?duration (fly-time ?c1 ?c2))
:condition (and (at start (at ?a ?c1)))
:effect (and (at start (not (at ?a ?c1)))

(at end (at ?a ?c2))))

Figure 1. Definition of board and fly in level 3 of PDDL2.1.

4 THE TEMPORAL PLANNING SYSTEM

In TPSYS, a temporal planning problem is specified as the 4-tuple
/QPSR7TQU5TWV2R�TYX[Z\�O]K8 , where P�R and V2R represent the initial and final
situation, respectively. U represents the set of durative actions in the
planning domain. Time is modelled by & (and their chronological
order. X^Z\�O] stands for the maximum duration allowed by the user.
Although this bound is not defined in PDDL2.1 and it could be dif-
ficult to be decided, it allows the user a good way to constrain the
goals deadline and the makespan of the plan as in [2].

TPSYS is executed in three consecutive stages. After the first
stage, the second and the third stages are executed in an interleaved
way until a plan is found or the duration exceeds X Z_�O] .

4.1 First stage: static mutex reasoning

Graphplan-based planners identify binary mutual exclusion rela-
tions between actions and between propositions. As with TGP,
TPSYS needs to calculate action-action, proposition-action and
proposition-proposition mutex relationships. Since proposition-
proposition mutex appears as a consequence of action-action mu-
tex, this first stage only calculates the action-action and proposition-
action static mutex relationships. These mutex relationships are static
because they only depend on the definition of the actions and they al-
ways hold. Therefore, there is no reason to postpone their calculation
to the next stages, thereby speeding up the second and third stages.
The process of calculating the mutex relationships is complicated
by the semantics of PDDL2.1, which embodies a more permissive
mutual exclusion relation than the languages of other temporal plan-
ners such as TGP. In particular, the strong mutex of the conserva-
tive model of actions must be modified to allow durative actions to
be applied in parallel even in cases in which they refer to the same
propositions.

There exist four action-action mutex situations. Situation 1 (at
start) represents the mutex in which actions cannot start at the same
time because start effects are contradictory or start effects and start
conditions are conflicting. Situation 2 (at end) represents the mutex
in which actions cannot end at the same time because end effects are
contradictory or end effects and end conditions are conflicting. Situa-
tion 3 (at end-start) represents the mutex in which two actions cannot
end and start at the same time, i.e. the actions cannot meet, because
the end effects of one action conflict with the start conditions or ef-
fects of the other action. This mutex (which does not appear in TGP)
might seem a stronger requirement than is really required, but it takes
account of the fact that simultaneity can never be relied upon in the
real world — it cannot be guaranteed that the action requiring the at
start condition will definitely happen after the achievement of that

condition at execution time. However, TPSYS takes the correctness-
preserving assumption of including an epsilon (`%acb) between the
action which ends and the action which starts to avoid this mutex
and to make easier the implementation of the algorithm. Finally, sit-
uation 4 (during) represents the mutex in which one action cannot
start or end during the execution of the other because the start or end
effects of the former are conflicting with the invariant conditions of
the latter.

The proposition-action mutex relationships are also calculated in
the first stage. As demonstrated in [8], when actions have different
duration in a Graphplan-based approach, mutex between proposi-
tions and actions help in the deduction of more inconsistencies be-
tween propositions when actions are executed in parallel.

Definition 4 (Static pa-mutex) A proposition I is statically mutex
with action � iff Id$ / ��"5
76 �;3 !"5
76 �e8 .

4.2 Second stage: extension of the temporal graph

The second stage performs the extension of the temporal graph. The
temporal graph consists of a directed, layered graph which alternates
temporal levels of propositions and actions, represented by f\g hji and
1!g hji respectively. The levels are chronologically ordered by their in-
stant of time, by means of a label k which represents the instant of
time in which propositions are present and actions can start or end.

4.2.1 Requirements in the extension of the temporal graph

The extension of the temporal graph contains some subtle details due
to the local conditions and effects of durative actions. Each temporal
level k needs to be divided into two parts, end-part and start-part, in
which the following action-action (1;1 g hji mutex), proposition-action
(f^1!g hji mutex) and proposition-proposition (f^f_g hji) mutex relation-
ships are calculated. We use the notation 1�1 g hji , f^1 g hji and f^f g hji to
represent the mutex relationships that hold at time k . These mutex
relationships are temporary and can disappear in time, in contrast
with the notation 1;1 and f^1 that represent the static mutex rela-
tionships which always hold. The actions which end (start) at action
level 1 g hji are stored in 1 g hji lnm�o (1 g hji R h �Op h). Analogously, the proposi-
tions achieved as end (start) effects are stored in f\g hji lWm�o (f_g hji R h �Op h).

On one hand, the mutex relationships to be calculated in the
end-part are 1�1 g hji lnm�o7q,lWm�o , f^1 g hji lWm�o7q,lnm�o and f^f g hji lWm�o7q,lnm�o . On
the other hand, the mutex relationships to be calculated in the
start-part are 1�1!g hji R h �Op hrq R h �Op h , 1�1!g hji lnm�o7q R h ��p h , f^1!g hji R h �Op hrq R h �Op h ,
f^f_g h<i lWm�o�q R h �Op h and f^f_g h<i R h ��p h>q R h ��p h . The reason for breaking down
these mutex relationships into end-part and start-part lies in keeping
their calculus simpler, as can be seen in the following definitions:

Definition 5 (1�19g hji lWm�o7q,lWm�o) Two actions � TYs are end-end mu-
tex at time k if one of the following holds: i) � TYs are
1�1 lWm�o7q,lWm�o , ii) !������� �tT #�������eu are f^f g hji lWm�o7q,lnm�o , or iii) � TWs
are 1�19g hrqwv*x yOz|{*}
~ {*�Y�<i R h �Op hrq R h �Op h .
Definition 6 (f^1 g hji lWm�o�qwlWm�o) Let I be a proposition and � be an
action. For each action s J which achieves I at k , let � J g hji be the
condition under s J is mutex with the persistence of I at time k , i.e.
� J g hji - ��=�I TWs J are f^1 CL� =�I T !������� u N are f^f g hji lWm�o7q,lWm�o C � . Propo-
sition I and action � are end-end mutex at time k if the following
condition holds: � J � � J g hji E =�� TYs J are 1�1 g hji lnm�o7q,lWm�o C � .
Definition 7 (f^f g h<i lWm�o�qwlWm�o) Let I TY� be two propositions and
/ � J 8�T�/OsY�D8 be the sets of actions which achieve I and � at time k ,

respectively. Propositions I TW� are end-end mutex at time k if both of
the following conditions hold: i) � s �'� I TWs � are f^1 g hji lnm�o7q,lWm�o , and
ii) �w�KJ � �KT �KJ are f^19g hji lWm�o7q,lWm�o .
Definition 8 (1�1!g hji R h �Op hrq R h �Op h) Two actions � Tns are start-start mu-
tex at time k if one of the following holds: i) � TWs are 1;1[R h �Op hrq R h �Op h ,
or ii) ����������� T ���������eu are f^f g hji R h �Op hrq R h �Op h .
Definition 9 (1�1 g hji lWm�o�q R h �Op h) Two actions � (ending at k) and s
(starting at k) are end-start mutex at time k if one of the follow-
ing holds: i) � TYs are 1�1 lWm�o7q R h �Op h , or ii) !������� �tT �M�������eu are
f^f g hji lWm�o7q,lWm�o .
Definition 10 (f^1 g hji R h �Op hrq R h �Op h) Let I be a proposition and � be
an action. For each action s J which achieves I at k , let � J g h<i be
the condition under s J is mutex with the persistence of I at time k ,
i.e. � J g hji - ��=�I TYs J are f^1 C�� =�I T ���������eu N are f^f_g hji R h �Op hrq R h �Op h C � .
Proposition I and action � are start-start mutex at time k if the fol-
lowing condition holds: � J � � J g h<i E =�� TYs J are 1�1 g hji R h �Op hrq R h �Op h C � .
Definition 11 (f^f g hji lWm�o�q R h �Op h) Let I be a proposition first achieved
at time k by the set of actions / �tJ 8 which end at k . Analogously, let
� be another proposition first achieved at k by the set of actions /OsQ�
8
which start at k . Propositions I TY� are end-start mutex at time k if the
following condition holds: �w�tJ TYs �!� �KJ TQs � are 1;1 g h<i lWm�o�q R h �Op h .
Definition 12 (f^f g hji R h �Op hrq R h �Op h) Let I TY� be two propositions and
/ �KJ 8DT�/7s � 8 be the sets of actions which achieve I and � at time k ,
respectively. Propositions I TW� are start-start mutex at time k if both
of the following conditions hold: i) � sQ� � I TWsY� are f^1 g h<i R h ��p h>q R h ��p h ,
and ii) �w�tJ � �KT �KJ are f^1!g hji R h �Op hrq R h �Op h .

Intuitively, 1;1!g hji mutex relationships represent the impossibility
of two actions ending, starting or abutting together at the same time
k . f^1 g h<i mutex represents the impossibility of having a proposition
and an action starting or ending at time k . f^f g h<i mutex represents
the impossibility of having two propositions together at time k . The
calculus of the mutex relationships provides very useful information
which can be used to improve search efficiency by pruning invalid
combinations of actions, propositions and propositions/actions.

An important point to take into account when dealing with dura-
tive actions in a Graphplan-based approach is the condition to finish
the extension of the temporal graph. In TGP, this condition holds
once all the propositions of the final situation are non pairwise mu-
tex. However, conditional actions assert at start effects which might
satisfy goals in the final situation before these actions end. This im-
plies that the temporal graph extension might end in a level in which
it is impossible to find a feasible plan because one of the proposi-
tions in the final situation is still conditional. Therefore, it is nec-
essary to propagate some additional heuristic information about the
validity of the propositions achieved in the temporal graph. In this
case, the same disjunctive reasoning on propositions of Graphplan
can be applied to the instants of time at which the propositions stop
being conditional.

Definition 13 (End time of a conditional proposition) Let I be a
conditional proposition and / �KJ 8 the set of conditional actions which
achieve I . In the proposition level f\g hji (at time k), the end time in
which I stops being conditional, ����� lWhj� (the maximum end time con-
ditional) is calculated as �5���S=�� J C , where � J is defined as:

� ������=����7� lWhj� =>�M���������ON C�� "#�ON T ���7� lWhj� =F !���������ON C�T k C , if I is
achieved in an end-part of the graph.� ������=����7� lWhj� =>�M������� � N C�� " � N T k C , if I is achieved in a start-part
of the graph.

4.2.2 Algorithm for the extension of the temporal graph

Figure 2 shows the algorithm for the temporal graph extension with
the modifications presented above. Starting at time k - b , the al-
gorithm generates new proposition and action levels (end-part and
start-part), calculating all the mutex relationships. ���^����I actions
and delete-edges are not stored in the graph. The extension continues
until the propositions in the final situation are achieved and they are
not conditional. If the maximum time allowed by the user X Z_�O] is
exhausted, the algorithm returns ’Failure’.

k - b
while =�k)� X v*�W C�E = V R is not satisfied in f g hji CYE

= V2R has not conditional propositions) do
forall ¡G� J T 	 J T k¢a which can end at 1 g h<i lWm�o do
1 g h<i lWm�o - 1 g hji lnm�o 3 �KJ
f g hji lWm�o - f g hji lWm�o 3 91;����� N
Generate start-part mutex

forall ¡ s � T k T
 � a which can start at 1!g h<i R h ��p h do
1 g h<i R h ��p h - 1 g hji R h �Op h 3'sW�
f_g hji R h �Op h - fMg hji R h �Op h 3 �*1;���euF£
Generate end-part mutex

k - next level in the Temporal Graph

Figure 2. Algorithm for the temporal graph extension.

Lemma 1 (The extension of the temporal graph is complete) If
the temporal graph extension ends at time k , the algorithm generates
all the necessary temporal levels (at which actions can end or start)
between time b and k .

Proof The proof is direct by definition of the algorithm. The al-
gorithm generates all the actions /OsQ�
8 whose �M������� u £ hold in
each temporal level. Since each action level contains all the actions
present in the previous action levels —analogously for the proposi-
tion levels—, once one action s � appears this action will appear in all
the following levels in which sY� could end and start. ¤

4.3 Third stage: extraction of a plan

The third stage performs the extraction of an optimal plan, as an
acyclic flow of actions, through the temporal graph. Now, durative
actions allow different ways to achieve propositions, not only by their
at end effects but also by their at start effects. Consequently, plan-
ning a durative action commits a plan to satisfying the start, invariant
and end conditions. This breaks the traditional right to left direction-
ality of Graphplan or TGP as shown in the following example.

Let k be a time at which a proposition I must be satisfied during
the extraction of a plan. Let us suppose that action � achieves I at k
as a start effect (Id$¥�*12���e�). If � has end conditions, they will have
to be satisfied at time kW¦ - k � " � , forcing the algorithm to revisit a
previously visited point of time kW¦�a@k .

Figure 3 shows the algorithm for the plan extraction. It uses two
structures, one queue §����K6�	�¨2�
�*��kn©n	7+Lª formed by pairs ¡«I T k5a
with the goal proposition I to be satisfied at time k , and one list f^6j�e�
formed by ¡:�KJ T 	7J T
7J�a 3-tuples with the planned action �tJ ex-
ecuted in � 	 J ���
 J � . §����t6�	�¨2�
�¬�ekn©r	�+Lª is initialized with the proposi-
tions of the final situation to be satisfied at the instant of time at which
the temporal graph extension has finished. f^6j�e� is initially empty.

While §����K6�	�¨2�
�*��kn©n	7+Lª is not empty, the algorithm dequeues a pair
¡­I T k¢a to be satisfied. Note that now, I could be already satisfied at
time k because actions are planned in different points of time and not
always in a right to left order. If I is not already satisfied at time k in
f^6<�K� , actions that satisfy I at time k are selected in a backtracking
point. All actions / �tJ 8 which are compatible with f^6j�e� must be con-
sidered for completeness. If action �LJ is not mutex with f^6j�e� , then
� J is planned updating the structures f^6j�e� and §����K6�	�¨2�D�¬��kW©r	7+Lª
with �KJ and its start, invariant and end conditions, respectively. Fi-
nally, if §����K6�	�¨;�
�¬��kW©r	7+Lª gets empty, the optimal plan is found.
Otherwise, the algorithm repeats the second and third stages, search-
ing for a plan from a later temporal level, in a way similar to the
interleaved search and construction process of Graphplan.

§����K6�	�¨2�D�¬��kW©r	7+Lª -®V R at the end time of second stage
f^6<�K� -¯A
while =>§����K6�	�¨2�
�*��kn©n	7+Lª ?-¯ADC do

Dequeue ¡­I T k)a from §����t6�	�¨2�
�¬�ekn©r	�+Lª
if ¡°I T k)a is not already satisfied in f^6j�e�

Select ¡@�KJ T 	OJ T
�J�a which satisfies I at k and
compatible with f^6j�e�

f^6<�K� - f^6j�e� 3 ¡@� J T 	 J T
 J a
§����K6�	�¨2�D�¬��kW©r	7+Lª - §����K6�	�¨2�D�¬��kW©r	7+Lª 3 �M������� � N

3 �������ON 3 !���������ON

Figure 3. Algorithm for the plan extraction.

Lemma 2 (The extraction of a plan is a complete process)

Proof The proof is trivial due to the fact that the algorithm consid-
ers all the possible actions (backtracking point) which satisfy each
proposition I from §����K6�	�¨2�
�*��kn©n	7+Lª . ¤
Theorem 1 (Optimality of the algorithm) The first plan the algo-
rithm extracts is a plan of optimal duration.

Proof By contradiction, let ± h be the first plan (of duration k) the
algorithm extracts. We assume this plan is not optimal, so we deduce
that there exists a plan ±9¦<h�² (of duration kW¦�¡³k) which has not been
found and is optimal. This implies one of the following cases: i) the
temporal level kW¦ has not been generated in the second stage, or ii) the
temporal level kW¦ has been generated but the extraction stage has not
considered the plan ± ¦ h�² . The first case is false by Lemma 1 which
claims the completeness of the temporal graph extension, and the
second case is also false by Lemma 2 which claims the completeness
of the plan extraction stage. This contradicts the initial choice of the
existence of ± ¦<h�² , and therefore ± h is a plan of optimal duration. ¤

5 EXPERIMENTAL RESULTS

We have adapted some of the traditional domains of PDDL, such as
logistics, blocksworld, zeno-travel, etc., to the model of durative ac-
tions of PDDL2.1 to perform some experiments. Direct comparison
between TPSYS and some planners such as Sapa [2] or TP4 [5]
is difficult because they handle resources and even non-admissible
heuristics which cannot guarantee the optimal solution. However, we
want to do direct comparison in the immediate future. Therefore, we
compare TPSYS with TGP to demonstrate that the algorithm pre-
sented here remains feasible when dealing with traditional temporal

planning problems. The tests were censored after 60 seconds. The
results of the tests obtained in a 64 Mb. memory Celeron 400 MHz.
can be seen in Table 1.

The results show that TPSYS behaves well enough in all the prob-
lems. Although the model of durative actions entails more mutex re-
lations to calculate and a larger space of search, the performance of
TPSYS follows the same order of magnitude of TGP. The most im-
portant differences appear in the problems att-log3 and big-bull2, in
which TGP is clearly better than TPSYS. The reason relies on the
higher number of instantiations in time (higher branch factor) that
TPSYS has to carry out.

Problem TPSYS TGP
att-log0 0.42 0.02
att-log1 0.44 0.05
att-log2 0.47 0.06
att-log3 14.10 2.65
bulldozer-prob 0.88 0.55
big-bull1 0.58 0.80
big-bull2 14.31 2.15
gripper2 0.03 0.03
gripper4 0.17 0.13
gripper6 6.88 4.53
monkey1-test 0.20 0.17
monkey2-test 0.63 0.75
tower2 0.02 0.03
tower4 0.28 0.45
tower6 2.52 3.60
zeno-travel1 0.01 0.01
zeno-travel2 0.02 0.01
zeno-travel3 0.02 0.01

Table 1. Comparison of TPSYS and TGP (results are in seconds).

6 RELATED WORK AND DISCUSSION

The last decade has seen many attempts at dealing with temporal
planning. ZENO [7] uses a causal link framework with continuous
change but it is relatively slow. The parcPLAN approach [3] handles
a rich set of temporal constraints, instantiating time points in a simi-
lar way to TPSYS. TGP [8] introduces a complex mutual exclusion
reasoning which is very valuable in temporal environments. The crit-
ical difference between TGP and TPSYS is based on several points.
First, TPSYS calculates the static mutex relationships in a prepro-
cessing stage which allows the speed up of subsequent stages. Sec-
ond, TGP uses a more compact temporal graph in which actions and
propositions are only annotated with the first level at which they ap-
pear. This vastly reduces the space costs but it increases the complex-
ity of the search process. In contrast, TPSYS uses a more informed
temporal graph which reduces the overhead during search. Third, the
mutex reasoning is managed in TGP by means of a collection of tem-
poral formulae, whereas TPSYS calculates the mutex relationships
level by level in a way that is more similar to Graphplan. Finally,
TPSYS uses a richer model of actions which implies: i) fewer con-
straints on the execution of the actions, ii) new requirements in the
planning algorithm, and iii) a significantly larger search space. Sapa
[2] is a metric temporal planner which uses a model of actions similar
to PDDL2.1, but it does not perform mutex propagation as our sys-
tem. Sapa scales up quite well, but it uses non-admissible heuristics

which cannot guarantee the optimal plan. TP4 [5] uses admissible
heuristic search to handle actions with time and resources, but it as-
sumes a conservative model of actions.

7 CONCLUSIONS AND FUTURE WORK

As far as we know, the optimal temporal planning system described
in this paper represents one of the first attempts to manage level 3 du-
rative actions of PDDL2.1 in a Graphplan-based approach. Briefly,
the main contributions of the paper have been the description of:

� The new components of level 3 durative actions based on [4] and
the mutual exclusion relationships they entail.� The new requirements of the temporal graph extension and the
way in which the mutex relationships can be calculated.� The modifications needed during the plan extraction. We have pre-
sented how the plan is found through the temporal graph breaking
the traditional right to left directionality of Graphplan and TGP.

The algorithm still has some limitations. According to our experi-
ments, the algorithm does not scale up to large problems with many
actions and propositions due to the calculus of the mutual exclu-
sion relationships. Moreover, the performance of the second and third
stages degrades when the duration of the actions is wildly different,
in particular when the greatest common divisor of the durations is 1.
For this reason, the areas of future work are focused on the inclu-
sion of memoization [1] and some of the CSP techniques presented
in [6], which have already been tested in TGP and have proved very
promising as a way of improving the behaviour of the plan extraction
stage. We also want to extend TPSYS to handle additional features
of level 3 of PDDL2.1, such as numeric conditions and effects and
inequality relations on conditions.

Additionally, our immediate research consists of the analysis and
comparison of other temporal planning approaches such as those pre-
sented in the recent international planning competition, associated
with AIPS 2002, using the new benchmark temporal planning do-
mains.

8 Acknowledgements

This work has been partially supported by the Spanish MCyT under
project DPI2001-2094-C03-03, and by the Universidad Politecnica
de Valencia under projects 20010017 and 20010980.

REFERENCES
[1] A.L. Blum and M.L. Furst, ‘Fast planning through planning graph anal-

ysis’, Artificial Intelligence, 90, 281–300, (1997).
[2] M.B. Do and S. Kambhampati, ‘Sapa: a domain-independent heuristic

metric temporal planner’, in Proc. ECP-01, (2001).
[3] A. El-Kholy and B. Richards, ‘Temporal and resource reasoning in plan-

ning: the parcPLAN approach’, in Proc. ECAI-96, pp. 614–618, (1996).
[4] M. Fox and D. Long, ‘PDDL2.1: an extension to PDDL for expressing

temporal planning domains’, Technical report, University of Durham,
UK, (2001).

[5] P. Haslum and H. Geffner, ‘Heuristic planning with time and resources’,
in Proc. ECP-01, (2001).

[6] S. Kambhampati, ‘Planning graph as (dynamic) CSP: Exploiting EBL,
DDB and other CSP techniques in graphplan’, Journal of Artificial Intel-
ligence Research, 12, 1–34, (2000).

[7] J. Penberthy and D. Weld, ‘Temporal planning with continuous change’,
Proc. 12th Nat. Conf. on AI, (1994).

[8] D.E Smith and D.S. Weld, ‘Temporal planning with mutual exclusion
reasoning’, in Proc. IJCAI-99, pp. 326–337, (1999).

