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Abstract. In recent years, it is increasingly recognised that ac-
tion planning in real-world domains requires an accurate treatment
of uncertainty. Partially-observable Markov decision processes and
related decision-theoretic models have been found to provide pow-
erful frameworks for studying this type of planning. Within these
frameworks, plans are often expressed as trees or graphs. However,
for various reasons it is often more convenient to express plans as
collections of decision rules. For instance, domain experts are often
able to formulate a number of reliable decision rules that could serve
as a starting point in finding an optimal plan. This paper investigates
the representation of decision-theoretic plans as sets of symbolic de-
cision rules. It is shown under which conditions such plans are inter-
nally consistent, coherent, and complete.

1 INTRODUCTION

Over the last decade, planning research in AI has showed increas-
ing attention for action planning under uncertainty using decision-
theoretic principles, ordecision-theoretic planningfor short [1, 2].
Partially-observable Markov decision processes (POMDPs) are gen-
erally regarded as the most powerful formal framework for this type
of planning, although other formalisms have been suggested as well
(e.g. [3]). A notable field of application for decision-theoretic plan-
ning is clinical medicine[8, 10]: action planning under uncertainty
with imperfect information is an important task for the doctor who
is treating a patient over a prolonged period of time. This situation
occurs for instance in intensive care units where patients are moni-
tored from hour to hour, but also in the management of chronically
ill patients who regularly visit their doctor.

Given the specification of a decision-theoretic planning problem,
the computational problem is to find aplan that maximises the ex-
pected value of a predefined utility function. Such a plan prescribes,
for any possible sequence of past actions and observations, the op-
timal decision (action choice); the prescribed choices are thus con-
tingent upon what is known from the past. Popular ways to express
such plans arepolicy treesandplan graphs[5, 6]. In these trees and
graphs, the nodes are labelled with prescribed actions and the arcs
represent possible observations. The plan is executed by following
the arcs that correspond to the actual observations and choosing the
actions along the path. Regardless of the plan representation used,
however, the task of computing an optimal decision-theoretic plan is
highly complex.

Plan representations such as trees and graphs have a number of
drawbacks. First, they do not show how much information is actu-
ally needed to make optimal decisions. Sometimes, it is sufficient
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to take into account only recent observations and neglect all other
information, while at other times it is necessary to consider long se-
quences of past actions and observations to guarantee the best choice
[7]. Second, if there exist regularities across a large number of sita-
tions (“always choose actiona when you make observationϕ”) this
will also remain obscured in a policy tree. And third, they often do
not allow for easy communication with domain experts.

In domains like clinical medicine, where human experts possess
specialized knowledge to solve decision problems, it is generally the
case that many reliable decision rules can be formulated by these ex-
perts. An example rule could be “For this type of patient, try medical
therapy, and if no improvements are seen within 3 months, submit
the patient to surgery.” However, these rules often cover only part
of the problem domain, consisting of the frequent and easy prob-
lem cases, and not the hard and rare cases. One would like to solve
decision-theoretic planning problems by supplementing a given set
of such decision rules provided by domain experts, to obtain a plan
that covers the entire problem domain. With the incorporated expert
knowledge, it should be possible to solve problems of larger size than
is currently possible.

In this paper, we investigate the representation of decision-
theoretic plans as sets of symbolic decision rules. The formal frame-
work will be multivariate POMDPs; after introducing our notations
(Section 2), we define a symbolic language of planning expessions
and define this type of plan representation (Section 3). Then, it is
shown which types of internal inconsistency and incoherence may
occur in such plans (Section 4), and under which conditions our rep-
resentation formulates a complete plan (Section 5). In the discussion
(Section 6), we evaluate the representation using the results that have
been obtained, and give a brief comparison with related work.

2 PRELIMINARIES

2.1 Multivariate POMDPs

Let X = {x1, . . . ,xm} be a set of random variables that jointly
describe that state of a stochastic dynamic system. We useX = X,
whereX = {x1, . . . , xm} is a set of values, to denote thatxi = xi,
i = 1, . . . , m. The setX is called avalue setof X; the set of all
value sets ofX is writtenΩX. In a POMDP model overX, the dy-
namic system described byX is controlled by a planning agent. To
this end, he may choose, at specific time points, actions from a pre-
defined setA. These actions induce changes to the system’s state, and
provide the agent with observations. At each time point, a reward is
received by the planning agent, depending on the current state and
action choice.



Definition 1 (POMDP model) A partially-observable Markov deci-
sion process modeloverX is a 5-tupleM = (T, A, p, o, r), where

• T = {0, 1, . . . , N} is a set of time points,
• A is a set of availableactions,
• p : ΩX ×A× ΩX → [0, 1] is a transition probability function,
• o : A → 2X is anobservation function, and
• r : ΩX ×A → R is a reward function.

The variables of the setX jointly describe the dynamic system that
is controlled by the planning agent; the time points inT denote mo-
ments where the agent is expected to select an action. The action
effects are modelled as follows. When value setX1 ∈ ΩX charac-
terises the system’s state at time pointt ∈ T , selection of action
a ∈ A will result in a transition to value setX2 ∈ ΩX at time point
t+1 with probabilityp(X1, a, X2). Furthermore, the planning agent
is able to observe the values of variables from the seto(a) ⊆ X at
time pointt.2 And finally, he receives the rewardr(X1, a). No deci-
sion is made at the final time pointt = N ; this moment is included
for evaluation of the final state only. The planning agent’s objective
is to maximise the expected sum of rewards over all time points. As
this requires anticipation on the future consequences of his actions,
he must formulate adecision-theoretic plan. Such a plan prescribes,
for any possible sequence of past actions and observations, the action
choice that satisfies the maximisation criterion. The task of comput-
ing an optimal plan (usually referred to assolving the POMDP), is
computationally prohobitive whenΩX, T , or A is large [7].

2.2 Time and change

We now define a symbolic language from the elements of a POMDP
model to describe the behaviour of system and planning agent over
time. We will refer to a subsetT ′ ⊆ T of subsequent points inT as a
time segment; we will use[t1, t2] as a shorthand notation for the time
segment{t ∈ T | t1 ≤ t ≤ t2}.

Definition 2 (Planning expression) LetX be a set of random vari-
ables and letM = (T, A, p, o, r) be a POMDP model overX. The
set Φ(M) of planning expressionsfor M is the Boolean algebra
spanned by the setS(T ) ∪D(T ), where

• S(T ) = {si(t) | xi ∈ X, t ∈ T} is a set of temporal state
variables, wheresi(t) ∈ S(T ) takes values fromΩxi , and

• D(T ) = {d(t) | t ∈ T} is a set ofdecision variables, where each
variabled(t) ∈ D(T ) takes values from the action setA.

State variables describe the values of random variables from the set
X at different time points. For instance, the expressionsi(t) = x
denotes that random variablexi has valuex at time pointt. Decision
variables describe the behaviour of the planning agent at different
time points. For instance, the expressiond(t) = a denotes that the
planning agent chooses actiona at time pointt.

For any subsetV ⊆ S(T ) ∪ D(T ), we refer to a conjunction of
value assignments to the elements ofV as aconfigurationof V . For
instance, the conjunctions1(t1) = x1 ∧ s2(t2) = x2 ∧ d(t3) = a is
a configuration of the set{s1(t1), s2(t2), d(t3)}. The set of all con-
figurations ofV is denoted byCV ; note thatCV a subset ofΦ(M).

2 In the standard formulation of POMDPs, observations are always made
on the same variable, but its distribution depends on states and actions. In
our model formulation, the actions also determine which variables are ob-
served. For instance, physical signs are observed by physical examination,
blood gases are observed by laboratory tests, etc.

We conclude this section with some further terminology and no-
tation on planning expressions. For a given time segment[t1, t2], we
will use S[t1, t2] andD[t1, t2] instead ofS([t1, t2]) andD([t1, t2])
as a shorthand notation for sets of state and decision variables. A
configuration ofS[t1, t2] is called astate sequenceover the time
segment, and represents a specific series of states of the system over
time. A configuration ofD[t1, t2] is called anaction sequence, and
represents specific behaviour of the planning agent over time. Finally,
a configuration ofS[t1, t2] ∪D[t1, t2], i.e. a conjunction of state and
action sequences, is called aplanning history.

2.3 Decision processes

We now formalise the notion ofdecision processas a probability
distribution on all possible planning histories.

Definition 3 (Decision process)Let X be a set of random vari-
ables and letM = (T, A, p, o, r) be a POMDP model overX.
A decision processP for M is a joint probability distribution on
S(T ) ∪D(T ), where for all time pointst ∈ T , t < N , all system
statesX1, X2 ∈ ΩX, and all actionsa ∈ A we have

P (S(t+1)=X2 | S(t)=X1 ∧ d(t)=a) = p(X1, a, X2)

wheneverP (S(t)=X1 ∧ d(t)=a) > 0.

A decision processP describes the intertwined reaction over time
of the dynamic system to the behaviour of the planning agent and
vice versa: it covers the state changes induced by the actions cho-
sen and the agent’s responses to his perceptions of those changes.
As such, a decision processP comprises both a description of the
POMDP and a decision-making strategy: it implements the meta-
level perspective from an external observer. We will make extensive
use of the fact that all probabilistic expressions pertaining to decision
processes take arguments from the languageΦ(M).

Now, let PM denote all decision processes for a given POMDP
model M . The elements ofPM differ with respect to the agent’s
decision-making behaviour. In other words, each of these processes
implicitly describes a decision-theoretic plan for modelM ; let ρ(P )
denote this plan. The planning problem associated with a given
POMDP model can now be described as follows. LetU(h) be
the utility (sum of rewards) associated with planning historyh ∈
CS(T )∪D(T ). Theexpected utilityof decision processP ∈ PM there-
fore equals

EP [U ] =
X

h∈H(T )

P (h)U(h) (1)

and the planning agent’s task is find a planρ∗ = ρ(P ∗) that maxi-
mizes this value. We will usePdet

M to denote the subset of decision
processes where all action choices depend deterministically on past
actions and observations.

3 CONTINGENCY PLANNING

3.1 Decision rules and plans

We now turn to expressions that explicitly guide the action choices
of the planning agent. An expression that prescribes such a choice
for a single specific situation will be called adecision rule; a set of
decision rules will be called acontingency plan. We first introduce
the notion ofchoice context, which is the type of expression that may
serve as a decision rule’s antecedent. Recall that a decision may be
based on all decisions and system states in the past and the contem-
poraneous system state.



Definition 4 (Choice context) Lett ∈ T be a decision moment. Any
configuration of a subset ofS[0, t] ∪D[0, t− 1] is called achoice
contextfor momentt.

Whenϕ ` s(t1) = y, we say that state variables(t1) is covered
by ϕ, and similarly ifϕ ` d(t2) = a, we say thatϕ coversa deci-
sion at time pointt2. Note that by definition,t1 ≤ t and t2 < t if
ϕ is a choice context for momentt. It is possible that a choice con-
text does not cover any state variables and it is also possible that a
choice context does not cover any decisions. The (unique)most gen-
eral choice context is the empty conjunction,>; each configuration
of S[0, t] ∪D[0, t− 1] is amost specificcontext for time pointt.

A choice context for time pointt does not commit to a decision for
that time point; such commitments are expressed indecision rules.

Definition 5 (Decision rule) A decision rulefor time pointt ∈ T is
an expression of the form

ϕ → d(t)=a, (2)

whereϕ is a choice context fort. We refer toϕ as theantecedentof
the rule and to the expressiond(t) = a as itsconsequent.

The above decision rule prescribes to choose actiona at time pointt
given the information conveyed by choice contextϕ. It is said to be
applicablein all choice contextsψ for time pointt satisfyingψ ` ϕ.
The number of variables that is referred to inϕ is thecomplexityof
the rule.

Another property of decision rules concerns their potential to be
actually executed by a planning agent: this is only possible if the truth
of the antecedent of a rule is verifiably by the agent at the time of the
decision. This means that if the antecedent covers state variables,
then these variables must have been observed by the agent. In this
paper, we will pay no further attention to this issue, and refer the
reader to [9, Chapter 5] for more details.

Two decision rulesϕ1 → d(t)=a1 andϕ2 → d(t)=a2 are said
to bepotentially conflictingwhen their choice contexts are compati-
ble (i.e.ϕ1 ∧ ϕ2 6≡ ⊥), but they do prescribe different action choices
(i.e. a1 6= a2). Potentially conflicting rules induce a contradiction
once we start reasoning with evidence that renders both rules ap-
plicable: ifψ is a choice context satisfyingψ ` ϕ1 ∧ ϕ2, then

ψ ∧ (ϕ1 → d(t)=a1) ∧ (ϕ2 → d(t)=a2) ` ⊥. (3)

We now define a set of decision rules for mutually exclusive situ-
ations to be acontingency plan, or plan for short.

Definition 6 (Plan) A contingency planis a setπ of decision rules,
where for each pairϕ1 → d(t1) = a1, ϕ2 → d(t2) = a2 ∈ π of
rules we have eithert1 6= t2 or ϕ1 ∧ ϕ2 ≡ ⊥.

A contingency planπ prescribes action choices for a collection of
choice contexts in a given planning domain. We require that all rules
for a given time point have mutually incompatible antecedents; a plan
can therefore not contain potentially conflicting rules or generalisa-
tions of its own rules. We note that the size of a planπ may (and often
will) exceed the number of decision moments|T |, as many decision
rules for a single time point can co-exist without being conflicting:
these rules then prescribe action choices for different choice contexts.

3.2 Plans and decision processes

We will now relate the planning behaviour that is explicitly described
by decision rules to the behaviour that is implicitly present in deci-
sion processes.

Definition 7 (Implementation) Decision processP is said to im-
plementdecision ruleϕ → d(t) = a whenP (ϕ → d(t)=a) = 1;
the implementation isstrict if in addition P (ϕ) > 0. The processP
is said to implement contingency planπ if it implements all decision
rules inπ.

The next proposition serves to sharpen the intuitions for the concept
of implementation a bit further.

Proposition 8 Let P be a decision process. The following state-
ments are equivalent:

1. P implements the decision ruleϕ → d(t)=a;
2. P (ϕ ∧ d(t)=a) = P (ϕ); and
3. P (ϕ ∧ ¬d(t)=a) = 0.

Proof.See [9]. �
Each of the rules in a plan can be seen as a constraint on the possi-

ble behaviours of the planning agent, or equally, on the decision pro-
cesses that implement it. As such, a plan may exhibit several forms
of overspecificationandunderspecification. In the next two sections,
we further investigate these topics.

4 PLAN CONSISTENCY AND COHERENCE

Implementation of decision ruleϕ → d(t) = a in decision process
P is a trivial matter whenP (ϕ) = 0, because thenP (ϕ ∧ ψ) = 0
for any propositionψ ∈ Φ(M), and any decision rule havingϕ as its
antecedent is thus implemented byP . The notion of strict implemen-
tation is therefore more interesting; we then have thatP (ϕ) > 0 and
P (d(t)=a | ϕ) = 1. Unfortunately, not all contingency plans per-
mit strict implementation, because the flexible nature of contingency
plans allows for two forms of internal contradiction in plans. In this
section we describe these two forms:inconsistencyandincoherence.
For the proofs of both propositions in this section we refer to [9].

Both forms of internal plan contradiction can be traced back to
rules making the ‘wrong’ assumptions about the planning agent’s be-
haviour. We call such assumptions about planning behaviourpresup-
positions.

Definition 9 (Presupposition) The expressionϕ1∧cd(t1), whereϕ1

is a choice context for time pointt1, is called apresuppositionof
decision ruleϕ2 → cd(t2) whent1 < t2 andϕ2 ` ϕ1 ∧ cd(t1).

Intuitively, presuppositions of a given decision rule describe planning
behaviour that must have been present for the rule to be applicable.
When the rule’s antecedent does not contain action choices, then the
rule does not make any presuppositions. Note, however, that a pre-
supposition of the formϕ1 ∧ cd(t1) does not express that decision
cd(t1) is necessarilymade in contextϕ1. It says that decisioncd(t1)

has been made in that context, and the rule making the presupposition
implicitly asserts that such ispossible.

Definition 10 (Exclusion) Letπ be a contingency plan. We say that
planning historyh is excludedbyπ when there exists a decision rule
δ ∈ π such thath∧δ ≡ ⊥. The set of all planning histories excluded
by planπ is denoted byH−

π .

Exclusion of planning historyh stems from the fact that it matches
with the antecedentϕ of some decision ruleϕ → d(t) = a ∈ π,
while contradicting the action choiced(t)=a. Then,h∧ δ ≡ ⊥, and
it is easily seen that we could never obtain historyh by following the
plan: the historyh is excluded.



Proposition 11 Letπ be a contingency plan and letP be a decision
process that implementsπ. Then,P (h) = 0 for all excluded histories
h ∈ H−

π .

More generally, we also say that propositionϕ ∈ Φ(M) is excluded
by planπ when eachh ∈ H(T ), h ` ϕ, is excluded byπ. It follows
that alsoP (ϕ) = 0 when decision processP implements planπ.

We can identify two cases where decision rules make the ‘wrong’
presuppositions. The first case is where a presupposition is directly
contradicted by other rules in the plan through exclusions; we then
say that the plan isinconsistent.

Definition 12 (Plan consistency)A contingency planπ is said to be
inconsistentif one of its rules makes a presupposition that is excluded
by the plan itself. Otherwise, the plan isconsistent.

Proposition 13 An inconsistent plan does not permit strict imple-
mentation.

Note that we cannot restore consistency by adding rules to an incon-
sistent plan: any extension of an inconsistent plan is also inconsistent.

In the second case, multiple contradictory presuppositions are
found in the plan.

Definition 14 (Plan coherence)Let π be a contingency plan. We
say that the plan isincoherentif there exist decision rulesδ1, δ2 ∈ π
that presupposec ∧ d(t)=a1 andc ∧ d(t)=a2, respectively, where
c ∈ CS[0,t] is a state sequence over[0, t] anda1 6= a2. Otherwise,
the plan is said to becoherent.

Proposition 15 An incoherent plan does not permit strict implemen-
tation by a decision process with deterministic planning behaviour.

Also the extensions of an incoherent plan are incoherent.

5 PLAN COMPLETENESS

In this section we discuss thecompletenessof plans. The notion of
coverageprovides the basis for characterizing this property. The un-
derlying idea is that a given choice contextϕ for time pointt ∈ T
essentially represents a multitude of more specific contexts – that
is, unlessϕ is a most specific choice context for that time point.
Recall thatϕ is most specific when it is a configuration of the set
S[0, t] ∪D[0, t− 1]; otherwise, more specific contexts are obtained
by adding information toϕ.

We say that choice contextψ is coveredby a given planπ, if one
of the decision rules inπ applies in contextψ, or if we can always
find an applicable rule in the plan by adding information toψ. In the
former case, we have thatϕ → d(t)=a ∈ π for some actiona ∈ A,
whereψ ` ϕ. In the latter case, there exist a collection of mutually
incompatible choice contextsϕ1, . . . , ϕm, each covered byπ and
more informative thanψ, and such that

ψ ≡ ϕ1 ∨ · · · ∨ ϕm. (4)

It should be noted that the rules associated withϕ1, . . . , ϕm may pre-
scribe different actions choices; contextψ is thus not specific enough
provide an unambiguous choice, although it is covered by the plan.

The notion of coverage is now formally defined as follows.

Definition 16 (Coverage) The coverageof contingency planπ at
time pointt ∈ T , written cover(π, t), is the smallest set of choice
contexts for time pointt such thatψ ∈ cover(π, t) if

• ψ → d(t)=a ∈ π for some actiona ∈ A,
• ϕ ∈ cover(π, t) andψ ` ϕ, or
• ϕ1, . . . , ϕm ∈ cover(π, t) andψ ≡ ϕ1 ∨ · · · ∨ ϕm.

Whenψ ∈ cover(π, t), we useπt(ψ) ⊆ A to denote the set of
actions that may be prescribed by planπ in that context, i.e.,
a ∈ πt(ψ) if and only if there exists a ruleϕ → d(t)=a ∈ π such
thatψ ∧ ϕ 6≡ ⊥.

The first and second clause jointly describe the former case identified
above, while the third clause describes the latter case.

Given thatψ ∈ cover(π, t), the planπ is said to beunequiv-
ocal for contextψ when |πt(ψ)| = 1; otherwise,|πt(ψ)| > 1, and
the plan is calledequivocalfor that context. Notwithstanding the
ambivalence in that case, ifa 6∈ πt(ψ) then π will certainly not
prescribe the action choiced(t)=a in contextψ or any of its spe-
cialisations; we say this action choice is not anoption in contextψ
at time pointt. Also note that we may have thatai = aj for all
i, j = 1, . . . , m, renderingπ unequivocal for contextψ.

We now say that a contingency plan iscompletewhen it covers
all possible initial states at time pointt = 0, and covers all choice
contexts for future time points that are compatible with prescribed
action choices.

Definition 17 (Plan completeness)A contingency planπ is com-
pletewhen

1. if c is a configuration ofS(0), thenc ∈ cover(π, 0), and
2. for all t < N , if c is a configuration ofS[0, t] ∪D[0, t− 1] and

c ∈ cover(π, t), then c ∧ d(t) = a ∈ cover(π, t + 1) where
πt(c) = {a}.

Otherwise, the plan is said to beincomplete.

Intuitively, the property of plan completeness ensures that we always
know which action to choose if we have followed the plan at the
preceding time points, whatever states the system occupies. Note that
the requirement thatc ∧ d(t)=a ∈ cover(π, t + 1) does not imply
the existence of a rule with that antecedent inπ: there will typically
be rules that take into account some observation at time pointt + 1
while being less specific with respect to preceding time points. These
rules should however jointly cover the casec ∧ d(t)=a.

Theorem 1 Let M be a POMDP model, and letπ be a complete
contingency plan forM . Then, the decision processP ∈ PM that
implementsπ is unique.

Proof. (Sketch) Suppose thatP1, P2 ∈ PM are different decision
processes that both implementπ. If P1 andP2 are different, then
there must exist a propositionϕ ∈ Φ(M) for whichP1(ϕ) 6= P2(ϕ).
As we can writeϕ as a disjunction of mutually incompatible
decision-making histories overT , this would imply that there ex-
ists a historyh ∈ H(T ) for which P1(h) 6= P2(h). It is shown by
induction onT that such a history does not exist under the given
conditions. �

The decision processP ∈ PM implementing a given planπ is
not only unique, but also has deterministic planning behaviour (so
we know thatP ∈ Pdet

M ). Conversely, a given decision process with
such behaviour can be shown to implement a consistent and complete
plan.

Theorem 2 Let M be a POMDP model. Each decision process
P ∈ P det

M implements a consistent and complete contingency plan
for M .



Proof. (Sketch) We construct the planπ that is implemented byP as
follows. Initialiseπ = ?. For eacht = 0, 1, . . . , N , we enumerate
the configurations of the setS[0, t] ∪D[0, t− 1]; let c denote such a
configuration. IfP (c) > 0, then there exists a unique actiona such
that

P (c ∧ d(t)=a) = P (c), (5)

because the planning behaviour in processP is deterministic. We
therefore add the decision rulec → d(t)=a to π. It is easily verified
that the plan thus obtained is consistent and complete, and imple-
mented byP . �

One might be inclined to think that there must exist a bijection
betweenP det

M and the set of all consistent and complete plans for a
given decision basis. This is not the case as our representation of de-
cision strategies is not unique: multiple, syntactically different plans
may describe the same strategy; we refer to [9] for details on this
matter.

It should be noted that the above theorems deal with implementa-
tion in general, not strict implementation. The possibility to strictly
implement complete plans critically depends on the characteristics
of the POMDP model: only when the model is strictly positive, i.e.
if p(X1, a, X2) > 0 for all value setsX1, X2 ∈ ΩX and all actions
a ∈ A, we are sure to find a decision processP ∈ P det

M that strictly
implements a complete planπ. Therefore, Theorems 1 and 2 only
apply to strict implementation when the control model in question is
strictly positive.

6 DISCUSSION

Decision-theoretic planning is a widely accepted and mathemati-
cally sound approach to solving planning problems under uncer-
tainty. However, few attempts have been made to integrate this type
of planning with the way human experts solve decision problems.
Our work attempts to fill this deficiency. We have provided the for-
mal foundations for systems that solve decision-theoretic planning
problems by assembling sets of symbolic decision rules.

The following application of our work is foreseen. First, after a
given problem domain has been formalised as a POMDP model, a
human expert (or panel of experts) is asked to formulate a set of de-
cision rules that is believed to be reliable. This set of decision rules
is then checked for potential conflicts, and, if necessary, the expert is
asked to refine the rules untill no two rules are applicable in the same
situation. Second, the resulting set of rules (which is a partial contin-
gency plan for the planning problem) is checked for consistency and
coherence. In general, both inconsisteny and incoherence can be also
resolved by refining a number of rules in the plan; the expert can be
asked to provide the necessary refinements. The third and final step
is to make the plan complete, by adding rules for choice contexts that
were previously not covered by the plan.

We are currently designing an algorithm for performing the third
step. The algorithm performs Monte Carlo simulations of the deci-
sion process; in each simulation, decision rules from the plan are fol-
lowed whenever they are applicable. For choice contextsnotcovered
by the plan, an estimate of the best decision is made after sufficient
simulations have been performed. The resulting decision rule is then
added to the plan, possibly after consulting the domain expert.

The use of Monte Carlo simulations has two major advantages
here. First, it directs the attention towards choice contexts that are
relatively probable to occur, but are neglected in the plan provided
by the expert. Because these contexts will show up relatively often in

the simulations, they will be the first for which new decision rules are
proposed. This is valuable because they will also show up relatively
often in reality. Second, we avoid putting effort in situations that are
excluded by the model or by the decision rules provided by the ex-
pert: such situations will simply not occur in the simulations. This is
hard to accomplish when a dynamic-programming method is used,
because the planning problem is then solved in a backward fashion.

A few existing algorithms for decision-theoretic planning explic-
itly search in the space of all partial and complete plans. For instance,
E. Hansen [4] describes two algorithms for solving POMDPs that
represent the plan as a finite-state controller; the algorithms search
for an optimal plan by iteratively improving the controller. Also the
planning systemDRIPS [3] employs a notion of partial plan. These
partial plans are expressed as sequences of operators, each of which
can be an abstraction of a number of actions. The system iteratively
reduces the number of abstractions, at each iteration comparing par-
tial plans on the basis ofplan dominancerelations [11].

In the near future, we intend to finish the design and implement the
algorithm for incremental plan construction that was sketch above.
The domain of intensive care medicine will serve as a test bed in our
investigations.
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