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Abstract. In recent years, it is increasingly recognised that ac-to take into account only recent observations and neglect all other
tion planning in real-world domains requires an accurate treatmennformation, while at other times it is necessary to consider long se-
of uncertainty. Partially-observable Markov decision processes anduences of past actions and observations to guarantee the best choice
related decision-theoretic models have been found to provide pow]. Second, if there exist regularities across a large number of sita-
erful frameworks for studying this type of planning. Within these tions (“always choose actionwhen you make observatigs’’) this
frameworks, plans are often expressed as trees or graphs. Howevaeiill also remain obscured in a policy tree. And third, they often do
for various reasons it is often more convenient to express plans awt allow for easy communication with domain experts.

collections of decision rules. For instance, domain experts are often In domains like clinical medicine, where human experts possess
able to formulate a number of reliable decision rules that could servepecialized knowledge to solve decision problems, it is generally the
as a starting point in finding an optimal plan. This paper investigatesase that many reliable decision rules can be formulated by these ex-
the representation of decision-theoretic plans as sets of symbolic dgerts. An example rule could be “For this type of patient, try medical
cision rules. It is shown under which conditions such plans are intertherapy, and if no improvements are seen within 3 months, submit

nally consistent, coherent, and complete. the patient to surgery.” However, these rules often cover only part
of the problem domain, consisting of the frequent and easy prob-
lem cases, and not the hard and rare cases. One would like to solve
1 INTRODUCTION

decision-theoretic planning problems by supplementing a given set
Over the last decade, planning research in Al has showed increasf such decision rules provided by domain experts, to obtain a plan
ing attention for action planning under uncertainty using decision-that covers the entire problem domain. With the incorporated expert
theoretic principles, odecision-theoretic planninépr short [1, 2]. knowledge, it should be possible to solve problems of larger size than
Partially-observable Markov decision processes (POMDPs) are geris currently possible.
erally regarded as the most powerful formal framework for this type In this paper, we investigate the representation of decision-
of planning, although other formalisms have been suggested as wdlteoretic plans as sets of symbolic decision rules. The formal frame-
(e.g. [3]). A notable field of application for decision-theoretic plan- work will be multivariate POMDPs; after introducing our notations
ning is clinical medicine[8, 10]: action planning under uncertainty (Section 2), we define a symbolic language of planning expessions
with imperfect information is an important task for the doctor who and define this type of plan representation (Section 3). Then, it is
is treating a patient over a prolonged period of time. This situationshown which types of internal inconsistency and incoherence may
occurs for instance in intensive care units where patients are monpccur in such plans (Section 4), and under which conditions our rep-
tored from hour to hour, but also in the management of chronicallyresentation formulates a complete plan (Section 5). In the discussion
ill patients who regularly visit their doctor. (Section 6), we evaluate the representation using the results that have

Given the specification of a decision-theoretic planning problempeen obtained, and give a brief comparison with related work.

the computational problem is to findpan that maximises the ex-
pected value of a predefined utility function. Such a plan prescribes,
for any possible sequence of past actions and observations, the 0p- PRELIMINARIES
timal decision (action choice); the prescribed choices are thus con-
tingent upon Whgt is known from the past. Popular ways to expres$ 1 Multivariate POMDPs
such plans argolicy treesandplan graphg5, 6]. In these trees and
graphs, the nodes are labelled with prescribed actions and the arcs . -
represent possible observations. The plan is executed by foIIowingEt X = {x1,...,xm} be a set of random variables that jointly
the arcs that correspond to the actual observations and choosing tHESCTI0€ that state of a stochastic dynamic system. WeuseX,
actions along the path. Regardless of the plan representation useiereX = {z1....,zm} is a set of values, to denote that= z;,
however, the task of computing an optimal decision-theoretic plan i¢ = 1+- - -»™- The setX'is called avalue setof X the set of all
highly complex. value sets oKX is written Q2x. In a POMDP model oveK, the dy-

Plan representations such as trees and graphs have a number G¥MiC System described B is controlled by a planning agent. To

drawbacks. First, they do not show how much information is actu-thls end, he may choose, at specific time points, actions from a pre-

ally needed to make optimal decisions. Sometimes, it is suf‘ficienfienn_ed set. These gctlons |ndu_ce changes to Fhe sys_temsstate, a_nd

provide the agent with observations. At each time point, a reward is
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Definition 1 (POMDP model) A partially-observable Markov deci- We conclude this section with some further terminology and no-
sion process modelverX is a 5-tupleM = (T, A, p, o, r), where tation on planning expressions. For a given time segrfient;], we
will use S[t1, t2] andD[t1, t2] instead ofS([t1, t2]) andD([t1, t2])

e T'={0,1,..., N} is asetof time points, as a shorthand notation for sets of state and decision variables. A
e Als aset of availablections configuration ofS[t1,t.] is called astate sequencever the time

e p:Qx X AxQx — [0,1] is atransition probability function segment, and represents a specific series of states of the system over
e 0: A — 2% is anobservation functionand time. A configuration ofD[t1, ¢-] is called anaction sequengeand

e 7:Qx x A— Risareward function represents specific behaviour of the planning agent over time. Finally,

. o ) . a configuration of5[t1, t2] U DJt1, t2], i.e. a conjunction of state and
The variables of the s& jointly describe the dynamic system that 4.iion sequences, is calleghanning history

is controlled by the planning agent; the time pointginienote mo-
ments where the agent is expected to select an action. The acti
effects are modelled as follows. When value Xate Qx charac-
terises the system’s state at time point 7', selection of action We now formalise the notion aflecision processs a probability

a € A will result in a transition to value seX» € Qx at time point  distribution on all possible planning histories.

t+ 1 with probabilityp(X1, a, X2). Furthermore, the planning agent _ . .

is able to observe the values of variables from theo$e} C X at Definition 3 (Decision process)Let X be a set of random vari-
time pointt.2 And finally, he receives the reward X1, a). No deci- ~ aples and lett/ = (T, A,p,o,7) be a POMDP model oveK.

sion is made at the final time point= N; this moment is included A decision process” for M is a joint probability distribution on

for evaluation of the final state only. The planning agent's objective® (1) U D(T), where for all time points € T', ¢ < N, all system

is to maximise the expected sum of rewards over all time points. AStatesX1, X2 € x, and all actionsz € A we have

this requires anticipati(?n on the futgre consequences of his.actions, PS{t+1)=X2| St)=X1 Ad(t)=a) = p(X1,a,X2)

he must formulate decision-theoretic planSuch a plan prescribes,

for any possible sequence of past actions and observations, the actiffenever’(S(t) = X1 A d(t) =a) > 0.

choice that satisfies the maximisation criterion. The task of comput- A decision proces# describes the intertwined reaction over time
ing an optimal plan (usually referred to sslvingthe POMDP), is  of the dynamic system to the behaviour of the planning agent and

%'3  Decision processes

computationally prohobitive wheflx, T', or A is large [7]. vice versa: it covers the state changes induced by the actions cho-
sen and the agent’s responses to his perceptions of those changes.
2.2 Time and change As such, a decision proce$3 comprises both a description of the

POMDP and a decision-making strategy: it implements the meta-
We now define a symbolic language from the elements of a POMDRevel perspective from an external observer. We will make extensive
model to describe the behaviour of system and planning agent ovefse of the fact that all probabilistic expressions pertaining to decision
time. We will refer to a subsét’ C T of subsequent points ifi as a processes take arguments from the langubgel).
time segmenive will uselt1, ¢2] as a shorthand notation for the time  Now, let Py, denote all decision processes for a given POMDP
segmeni{t € T | t1 <t < ta}. model M. The elements oy, differ with respect to the agent’s
decision-making behaviour. In other words, each of these processes
Definition 2 (Planning expression) Let X be a set of random vari-  implicitly describes a decision-theoretic plan for modé] let p(P)
ables and let\/ = (T', A,p, 0,r) be a POMDP model oveX. The  denote this plan. The planning problem associated with a given
set®(M) of planning expressionfor M is the Boolean algebra  pPOMDP model can now be described as follows. L&) be

spanned by the s&(7") U D(T'), where the utility (sum of rewards) associated with planning histérye
. C . Theexpected utilityf decision proces® € Py, there-
e S(T) = {si(t) | xi € X,t € T} is a set oftemporal state foféTéaﬁélTs) P utipt decisionp € P
variableswheres; (t) € S(T') takes values frorf2y;, and
e D(T) ={d(t) | t € T} is aset ofdecision variablesvhere each EplU] = Z P(R)U(h) 1)
variabled(t) € D(T) takes values from the action sét heH(T)

State variables describe the values of random variables from the sgf_'d the planning agent's taSkdlf find a plain= p(P~) that maxi-

X at different time points. For instance, the expressioft) — « mizes this value. We will us®4;" to denote the subset of decision
denotes that random variai)te has valuer :':1t time pointt. Decision processes where all action choices depend deterministically on past

variables describe the behaviour of the planning agent at differen?cl['ons and observations.
time points. For instance, the expressiéft) = a denotes that the
planning agent chooses actiorat time pointt. 3 CONTINGENCY PLANNING

For any subseV C S(T') U D(T), we refer.to a gonjunction of 31 Decision rules and plans
value assignments to the elementdoés aconfigurationof V. For
instance, the conjunction (t1) = z1 A s2(t2) = z2 Ad(ts) = ais We now turn to expressions that explicitly guide the action choices
a configuration of the sefis (¢1), s2(t2), d(t3)}. The set of all con- of the planning agent. An expression that prescribes such a choice
figurations ofV/ is denoted byC'y; note thatC'y a subset ofb(M). for a single specific situation will be calleddecision rule a set of
decision rules will be called eontingency planWe first introduce
2 In the standard formulation of POMDPs, observations are always madehe notion ofchoice contextwhich is the type of expression that may

on the same variable, but its distribution depends on states and actions. i ) P
our model formulation, the actions also determine which variables are ob* rve as a decision rule’s antecedent. Recall that a decision may be

served. For instance, physical signs are observed by physical examinatioR@sed on all decisions and system states in the past and the contem-
blood gases are observed by laboratory tests, etc. poraneous system state.




Definition 4 (Choice context) Lett € T be a decision moment. Any Definition 7 (Implementation) Decision process’ is said toim-
configuration of a subset &[0, ¢] U D[0,¢ — 1] is called achoice  plementdecision rulep — d(t) = a whenP(y — d(t)=a) = 1;
contextfor moment. the implementation istrictif in addition P(¢) > 0. The process®
is said to implement contingency plarif it implements all decision

Whene F s(t1) = y, we say that state variablgt,) is covered | asinar.

by ¢, and similarly if o - d(t2) = a, we say thatp coversa deci-
sion at time pointt2. Note that by definitionf; <t andte <t if  The next proposition serves to sharpen the intuitions for the concept
 is a choice context for moment It is possible that a choice con-  of implementation a bit further.
text does not cover any state variables and it is also possible that a
choice context does not cover any decisions. The (unioast gen-  Proposition 8 Let P be a decision process. The following state-
eral choice context is the empty conjunctioni; each configuration —ments are equivalent:
of S[0,t] U D[0,t — 1] is amost specificontext for time point.

A choice context for time pointdoes not commit to a decision for
that time point; such commitments are expressetdkitision rules

1. P implements the decision rule — d(t) =a;
2. P(pAd(t)=a) = P(p); and
3. P(p A—d(t)=a) =0.
Definition 5 (Decision rule) A decision rulefor time pointt € T'is
an expression of the form Proof. See [9]. O

Each of the rules in a plan can be seen as a constraint on the possi-
ble behaviours of the planning agent, or equally, on the decision pro-
wherey is a choice context fot. We refer top as theantecedenof cesses that implement it. As such, a plan may exhibit several forms
the rule and to the expressialit) = a as itsconsequent of overspecificatiomndunderspecificationn the next two sections,
we further investigate these topics.

¢ — d(t)=a, @)

The above decision rule prescribes to choose aetiatitime pointt

given the information conveyed by choice contextt is said to be
applicablein all choice contexts for time pointt satisfyingy F ¢. 4 PLAN CONSISTENCY AND COHERENCE

The number of variables that is referred togris the complexityof Implementation of decision rule — d(t) = a in decision process
the rule. P is a trivial matter whenP(p) = 0, because the® (o A ) = 0
Another property of decision rules concerns their potential to befor any proposition) € (M), and any decision rule havingas its
actually executed by a planning agent: this is only possible if the truttantecedent is thus implemented By The notion of strict implemen-
of the antecedent of a rule is verifiably by the agent at the time of theation is therefore more interesting; we then have fh@p) > 0 and
decision. This means that if the antecedent covers state variablep,(d(t)=a | ¢) = 1. Unfortunately, not all contingency plans per-
then these variables must have been observed by the agent. In thigt strict implementation, because the flexible nature of contingency
paper, we will pay no further attention to this issue, and refer theplans allows for two forms of internal contradiction in plans. In this
reader to [9, Chapter 5] for more details. section we describe these two fornronsistencandincoherence
Two decision rulegpr — d(t)=a1 andy2 — d(t)=a2 are said  For the proofs of both propositions in this section we refer to [9].
to bepotentially conflictingvhen their choice contexts are compati-  Both forms of internal plan contradiction can be traced back to
ble (i.e.po1 A p2 # 1), butthey do prescribe different action choices ryles making the ‘wrong’ assumptions about the planning agent’s be-

(i.e. a1 # a2). Potentially conflicting rules induce a contradiction haviour. We call such assumptions about planning behapi@sup-
once we start reasoning with evidence that renders both rules agppositions

plicable: ify is a choice context satisfying - 1 A @2, then
Definition 9 (Presupposition) The expressiop; Aca, ), Wherep;
YA (p1 —d(t)=a) A (p2 —dt)=az) F L. (3) s 4 choice context for time poirti, is called apresuppositiorof
We now define a set of decision rules for mutually exclusive situ-decision ruleps — ca(i,) whenty < ts andgs = @1 A cage,y)-

ations to be &ontingency planor planfor short. . . . - . .
gency planorp Intuitively, presuppositions of a given decision rule describe planning

Definition 6 (Plan) A contingency plars a setr of decision rules,  behaviour that must have been present for the rule to be applicable.
where for each paipr — d(t1) = a1, 2 — d(t2) = a2 € w of When the rule’s antecedent does not contain action choices, then the
rules we have either # t2 or o1 A2 = L. rule does not make any presuppositions. Note, however, that a pre-
. ) . . . supposition of the formp; A cq(:,) does not express that decision

A contingency planr prescribes action choices for a collection of cacs,) is necessarilymade in contexip: . It says that decisiony,, ,

choice contexts in a given planning domain. We require that all ruleg,55 heen made in that context, and the rule making the presupposition
for a given time point have mutually incompatible antecedents; a pla%plicitly asserts that such sossible

can therefore not contain potentially conflicting rules or generalisa-

tions of its own rules. We note that the size of a ptamay (and often  Definition 10 (Exclusion) Letr be a contingency plan. We say that
will) exceed the number of decision mometit§, as many decision planning historyh is excludedoy = when there exists a decision rule
rules for a single time point can co-exist without being conflicting: § € 7 such thati A§ = L. The set of all planning histories excluded
these rules then prescribe action choices for different choice contextby plan is denoted by ;.

Exclusion of planning history. stems from the fact that it matches
with the antecedenp of some decision rule — d(t) =a € m,
We will now relate the planning behaviour that is explicitly described while contradicting the action choie&t) =a. Then,h Ad = L, and
by decision rules to the behaviour that is implicitly present in deci-it is easily seen that we could never obtain histbtyy following the
sion processes. plan: the history: is excluded.

3.2 Plans and decision processes



Proposition 11 Letw be a contingency plan and It be a decision e ¢ — d(t)=a € 7 for some actiorm € A,
process thatimplements Then,P(h) = 0 for all excluded histories e ¢ € cover(m,t) and - ¢, or
heH;. ® ¥1,...,0m € cover(m,t)andy = @1 V-V @,

More generally, we also say that propositiore ®(M) isexcluded ~Wheny € cover(r,t), we usem(¢)) C A to denote the set of

by planm when eachh € H(T), h + ¢, is excluded byr. It follows actions thgt may be_ prescrlbe_d by planin that context, i.e.,

that alsoP(¢) = 0 when decision proces? implements plarr. a € m () if and only if there exists a rule — d(t)=a € 7 such
We can identify two cases where decision rules make the ‘wrongthat¥ A ¢ # L.

presuppositions. The first case is where a presupposition is direct

contradicted by other rules in the plan through exclusions; we the

say that the plan i;consistent

l'}I‘he first and second clause jointly describe the former case identified
r‘]:1bove, while the third clause describes the latter case.
Given thaty € cover(w,t), the planz is said to beunequiv-

Definition 12 (Plan consistency)A contingency plam is said to be ocal for c_ontextw wh(_an [me()] = 1; otherW|se,|m(_¢)| > 1.’ and
the plan is callecequivocalfor that context. Notwithstanding the

inconsistenif one of its rules makes a presupposition that is excluded ) . . . -
by the plan itself. Otherwise, the plandensistent ambivalence in that case, if ¢ m:() then= will certainly not

prescribe the action choie&t) =a in contexty or any of its spe-
Proposition 13 An inconsistent plan does not permit strict imple- cialisations; we say this action choice is notaptionin contexts
mentation. at time pointt. Also note that we may have that = a; for all
i,7 = 1,...,m, renderingr unequivocal for contexp.
Note that we cannot restore consistency by adding rules to an incon- We now say that a contingency plandsmpletewhen it covers
sistent plan: any extension of an inconsistent plan is also inconsistertll possible initial states at time point= 0, and covers all choice
In the second case, multiple contradictory presuppositions aréontexts for future time points that are compatible with prescribed

found in the plan. action choices.

Definition 14 (Plan coherence)Let = be a contingency plan. We Definition 17 (Plan completeness)A contingency planr is com-
say that the plan isncoherentif there exist decision rule,, 2 € w pletewhen
that presuppose A d(t) =a1 andc A d(t) = a2, respectively, where

} . . if ¢ is a configuration of5(0), thenc € cover(m,0), and
¢ € Uspo,y is a state sequence ov@y t] anday 7 ax. Otherwise, 5 ¢, 414 = N if  is a configuration of5[0, ] U D[0, ¢ — 1] and
the plan is said to beoherent

¢ € cover(m,t), thenc A d(t) = a € cover(m,t + 1) where

Proposition 15 An incoherent plan does not permit strict implemen- mi(c) = {a}.
tation by a decision process with deterministic planning behaviour. Otherwise, the plan is said to lecomplete

Also the extensions of an incoherent plan are incoherent. Intuitively, the property of plan completeness ensures that we always
know which action to choose if we have followed the plan at the
preceding time points, whatever states the system occupies. Note that
5 PLAN COMPLETENESS the requirement that A d(t) =a € cover(w,t + 1) does not imply

In this section we discuss tl@mpletenesef plans. The notion of  the existence of a rule with that antecedentrirthere will typically
coverageprovides the basis for characterizing this property. The un-be rules that take into account some observation at time peint
derlying idea is that a given choice contextfor time pointt € T while being less specific with respect to preceding time points. These
essentially represents a multitude of more specific contexts — thatlles should however jointly cover the casg d(t) =a.

is, unlessy is a most specific choice context for that time point.
Recall thaty is most specific when it is a configuration of the set 1"€orem 1 Let M/ be a POMDP model, and let be a complete

S[0,t] U D[0, ¢ — 1]; otherwise, more specific contexts are obtainedcontingency plan fonlf. Then, the decision process € Py that
by adding information te. implementsr is unique.

We say that choice context is coveredby a given planr, if one
of the decision rules i applies in context), or if we can always
find an applicable rule in the plan by adding informatio_n/Jtdn the there must exist a propositigne (M) forwhich Py () # Pa ().
former case, we have that— d(¢) =a & « for some actiom € 4, s we can writee as a disjunction of mutually incompatible
yvhereq/; }_ - In the latter case, there exist a collection of mutually decision-making histories ovér, this would imply that there ex-
|ncom_pat|ble (_:h0|ce contexts, ..., om, each covered by and ists a historyh € H(T) for which P, (k) # Pa(h). It is shown by
more informative tham, and such that induction onT that such a history does not exist under the given
conditions. O

Proof. (Sketch) Suppose thdt, P, € Py, are different decision
processes that both implement If P, and P, are different, then

Y= @1V Vo 4
_ ) The decision proces® € Py; implementing a given plam is
It should be noted that the rules associated with. . ., ., may pre-  not only unique, but also has deterministic planning behaviour (so
scribe different actions choices; contexts thus not specific enough  we know thatP € P$t). Conversely, a given decision process with

provide an unambiguous choice, although it is covered by the plan. sych behaviour can be shown to implement a consistent and complete
The notion of coverage is now formally defined as follows. plan.

Definition 16 (Coverage) The coverageof contingency planr at Theorem 2 Let M be a POMDP model. Each decision process
time pointt € T, written cover(, t), is the smallest set of choice P ¢ Pg* implements a consistent and complete contingency plan
contexts for time point such that) € cover(, t) if for M.



Proof. (Sketch) We construct the planthat is implemented by’ as
follows. Initialiser = @. For eacht = 0,1, ..., N, we enumerate
the configurations of the s&{0, ¢] U D[0, ¢ — 1]; letc denote such a
configuration. IfP(c) > 0, then there exists a unique actiarsuch
that

the simulations, they will be the first for which new decision rules are
proposed. This is valuable because they will also show up relatively
often in reality. Second, we avoid putting effort in situations that are
excluded by the model or by the decision rules provided by the ex-
pert: such situations will simply not occur in the simulations. This is
hard to accomplish when a dynamic-programming method is used,
because the planning problem is then solved in a backward fashion.
) . ) ) o A few existing algorithms for decision-theoretic planning explic-
because the planning behaviour in procésss deterministic. We ity search in the space of all partial and complete plans. For instance,
therefore add the decision rule— d(t) =ato. Itis easily verified £ Hansen [4] describes two algorithms for solving POMDPs that
that the plan thus obtained is consistent and complete, and implggpresent the plan as a finite-state controller; the algorithms search
mented byP. for an optimal plan by iteratively improving the controller. Also the
One might be inclined to think that there must exist a bijectionplanning systenDRIPs[3] employs a notion of partial plan. These
betweerPJ°* and the set of all consistent and complete plans for apartial plans are expressed as sequences of operators, each of which
given decision basis. This is not the case as our representation of dean be an abstraction of a number of actions. The system iteratively
cision strategies is not unique: multiple, syntactically different plansreduces the number of abstractions, at each iteration comparing par-
may describe the same strategy; we refer to [9] for details on thigial plans on the basis gflan dominanceelations [11].
matter. In the near future, we intend to finish the design and implement the
It should be noted that the above theorems deal with implementaalgorithm for incremental plan construction that was sketch above.
tion in general, not strict implementation. The possibility to strictly The domain of intensive care medicine will serve as a test bed in our

P(cAd(t)y=a) = P(c), (5)

implement complete plans critically depends on the characteristicifivestigations.

of the POMDP model: only when the model is strictly positive, i.e.
if p(X1,a,X2) > 0 for all value setsX1, X2 € Qx and all actions
a € A, we are sure to find a decision procd2s= P°t that strictly
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