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Abstract. Modern technical infrastructures and appliances provide
a multitude of opportunities for simplifying and streamlining the ev-
eryday life. However, many of the systems available today – such
as the typical feature-loaded audio and video components – are not
always efficiently usable for the average person. But, in an environ-
ment where features abound, the easy access of these features more
and more becomes the key quality criterion for the user.

We present a planner-based approach to helping the user to inter-
act with such complex infrastructures. Specifically, we concentrate
on the application domain of networked infotainment systems and
home control. Also, we describe the architectural concept, which
makes it possible to integrate classical Artificial Intelligence tech-
nology – such as planning and scheduling – into the domain of net-
worked consumer appliances within the scope of a multimodal assis-
tance system.

The work we present is part of the EMBASSI-project, a joint
project with 19 partners from industry and academia that aims at es-
tablishing an interoperable system infrastructure for multimodal and
multimedia assistance systems.

1 Overview

Planners are software components that allow the automatic creation
of strategies for reaching a given goal based on a given set of possible
actions. There is a substantial body on planning tools available in the
literature [2, 12, 3]. Also, there are numerous applications – from
logistics [11] to robotics [5] and spacecraft control [3].

However, in the area of consumer applications, plan-based ap-
proaches are not yet very prominent.

Which, on the other hand, is rather curious: it is a well known fact
that todays consumer electronics – specifically in the infotainment
sector – provide more functionality than the average user is willing
to master.

Providing such a system component with planning capability –
this is, relieving the user of coming up with a control strategy by
himself (which would require him to know all possible operations
of his infrastructure) – might allow to make more of the available
functionalityaccessiblefor the user.

In this paper, we present such a planner-based approach to help-
ing the user to interact with complex technical infrastructures of the
everyday life.

It is important to note that we do not claim to present any funda-
mentally new approaches to planning itself. The point of our paper
is rather to outline how existing planning technology can be utilized
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for interacting with networked consumer appliances, and how it can
be embedded into dynamic multimodal component infrastructures.

2 The application domain

A human being’s daily activities – professional or private – are based
on a broad range of interactions with numerous external objects: con-
trolling the TV at home, driving a car, buying a ticket from a vending
machine, visiting an exhibition, discussing project plans with col-
leagues, setting up a multimedia presentation in the conference room,
editing documents, delegating travel planning to a secretary, and so
on. These objects make up the user’s personal environment.

As computers are becoming more and more ubiquitous, moving
from the desktop into the infrastructure of our everyday life, they
begin to influence the way we interact with this environment – the
(physical) entities that we operate upon in order to achieve our daily
goals. The most important aspect of future human-computer interac-
tion therefore is the way, computers support us in efficiently man-
aging our personal environment. This might be called theecological
level2 of user-interface design.

At the ecological level, we look at future developments from the
perspective of helping a user in achieving his individual goals and
purposes by providing computer-based assistance. The vision is to
have the computer acting as amediatorbetween the user and his
personal environment.

In addition, in order to minimize the cognitive (and sensomotor-
ical) gap between human/computer interaction on the one side and
human/environment interaction on the other side,natural (anthropo-
morphic) interactionshould be supported through multimodal user
interfaces, which integratee.g., classical GUI, speech interaction and
gesture-based interaction

The prime objective of the EMBASSI project is to provide such a
goal-based, natural interaction with the typical technical infrastruc-
tures of our everyday life. EMBASSI [6] is a focus project supported
by the German Ministry of Education and Research (Bundesminis-
terium für Bildung und Forschung, BMBF) within the strategic re-
search area Man-Technology-Interaction. With 19 partners from in-
dustry and academia and a time scope of four years, EMBASSI in-
tends to provide an integrated approach to the development of assis-
tants for our everyday technologies.

The primary application area for EMBASSI are technical infras-
tructures of the non-professional everyday life – in particular, appli-
cation scenarios are being developed in the home, automotive, and
public terminals environments.

2 “Ecology is the scientific study of interactions of organisms with one an-
other and with the physical and chemical environment.” So this notion quite
well captures the essence of the above discussion.
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Figure 1. The ecological interface

EMBASSI is conceptually based on two important paradigm shifts:

• Transition from essentially unimodal, menu-based dialogue struc-
tures (with a fixed interaction vocabulary provided by the system)
to polymodal, conversational dialogue structures (with an unre-
stricted interaction vocabulary provided by the user).

• Transition from a function-oriented interaction with devices to a
goal-oriented interaction with systems.

While these paradigm shifts are being discussed in the research com-
munity for some time now, it is a substantial challenge to make these
results accessible to the user of,e.g., home entertainment infrastruc-
tures. This is the goal of EMBASSI.

The paper is further structured as follows: Section 3 gives an
overview of the challenges of supporting goal-based interaction with
dynamic systems. In Section 4, we outline the architectural frame-
work of an overall system infrastructure, into which planning and
scheduling has to be intgrated. In Section 5, we look at the resulting
requirements for a planning component and outline our current ap-
proach. Finally, in Section 6 we give an outlook over the next steps
for integrating planning into home environments.

3 Goal-based interaction with dynamic systems

When looking at networked consumer appliances, it may not be im-
mediately obvious why a control concept based on planning tech-
nologies should be considered. However, there are two important as-
pects that justify an investigation of this approach:

3.1 Function-based vs. goal-based interaction

When interacting with technical infrastructures of the non-
professional private life – the notion “devices” will be used from
now on – we are educated to think of interaction in terms of the in-
dividual “functions” these devices provide: functions such as “on”,
“off”, “play”, “record”, etc.. Different devices have different func-
tions, similar functions in different devices behave differently, and
staying on top of all features is not altogether easy. When interact-
ing with devices, we select, parameterize, and then execute functions
these devices provide. When these functions are executed, they cause
an effect: a broadcast is recorded on videotape, the light is turned
brighter, and so on.

Of course, it is the effect we are interested in when using a device,
not the functions we need to select in order to get the desired effect.

This is the basic idea of goal-based interaction. Rather than requir-
ing the user to invent a sequence of actions that will produce a desired
effect (“goal”) based on the given devices and their capabilities, we

allow the user to specify just the goal (“I want to see ‘Chinatown’
now!”) and have the system fill in the sequence of actions leading
to this goal (Find the media source containing media event “China-
town”. Turn on the TV set. Turn on the media player –e.g., a VCR.
Position the media source to the start of the media event. Make sure
the air condition is set to a comfortable temperature. Find out the am-
bient noise level and set the volume to a suitable level. Set ambient
light to a suitable brightness. Set the TV input channel to VCR. Start
the rendering of the media event.).

Once we abstract from the individual devices and their functions,
we arrive at a system-oriented view, where the user perceives the
completeset of (networked) devices as a single system of interop-
erating components that helps him in reaching his specific goals.
Once we abstract from (device) actions and have the system commu-
nicate with the user in terms of (user) goals, we also have effectively
changed the domain of discourse from the system’s view of the world
to the user’s view of the world.

In order to support this kind of interaction, we need a system that
is able to reason about the effects a device operation has with respect
to the environment state as perceived by the user.

3.2 Dynamic configuration

Dynamic configuration, the ad hoc extension of an EMBASSI system
by new devices and components, is another important architectural
goal of EMBASSI.

Imagine, a new device –e.g., a light source – is plugged into an
EMBASSI system and the user wants to see Chinatown again. How
should the system handle the new device when trying to set the am-
bient light level to a comfortable state? Of course, the system com-
ponents that are responsible for producing solution strategies for the
“Chinatown” goal need to know that the new device provides func-
tions that change the environment variable “ambient light”!

This means, in order to solve the problem of dynamic system ex-
tension by new devices, without simply fixing the set of allowable
functions and environment variables, we need to find a way for mak-
ing the state-changing semantics of device functions explicitly vis-
ible to the system. As in the previous section, we must enable the
system to reason about the effects available actions will have on the
environment.

Note that a similar consideration holds when looking at the inter-
pretation of user utterances and user goals. Imagine adding a device
to the home entertainment infrastructure that supports a whole new
set of user goals – such as adding printer, which makes it possible to
create hardcopies of video stills. Here, the concept of a “hardcopy”
is completely new to the system, and the dialogue managers need to
be told what kinds of user sentences do refer to this concept and what
kinds of goals they do represent. Here too we need a mechanism for
reasoning about goals.

4 The EMBASSI architecture

After defining the central conceptual components of the EMBASSI-
framework, the next step is to define a reference architecture that
allows animplementationof such a system.

A central requirement for an EMBASSI architecture is that it should
support technical infrastructures that are built from individual com-
ponents in an ad hoc fashion by the end user. This situation is for
instance common in the area of home entertainment infrastructures,
where users liberally mix components from different vendors. Also,



it is not possible to assume a central controller – any component must
be able to operate stand-alone.

Therefore, such an architecture should meet the following objec-
tives:

• Ensure independence of components,
• Allow dynamic extensibility by new components,
• Avoid central components (single point of failures, bottlenecks),
• Support a distributed implementation,
• Allow flexible re-use of components,
• Enable exchangeability of components.

Furthermore, the architecture should clearly identify the essential
conceptual protocol ontologies that are relevant within the system.

4.1 General concepts

The generic architecture that we have developed within EMBASSI

(Figure 2) is a pipeline approach to the problem of mapping user
utterances to environment changes. Each “level” in the architecture
represents one function within this pipeline, while the level interfaces
have been introduced at “meaningful” places, separating different on-
tologies. These “ontologies” (the sets of objects that are discussed at
a level) become visible at the level interfaces. The level interfaces
make up the EMBASSI protocol suite.

Each level consists of a number of processes (“components”)
that co-operatively implement the level’s function. Processes can
be added or removed dynamically: suitable co-ordination mecha-
nisms at each level are responsible for managing the interactions
between the processes at this level. There is deliberatelyno central
co-ordination component.

The use of this rather fine-grained level-model in conjunction with
the feature of dynamically adding or removing processes at each
level allows us to create systems that can be incrementally built and
extended in anad hocfashion, using modular components. Specif-
ically, it allows us to build interoperable systems, where different
components are provided by different vendors and where compo-
nents are added and removed over time by the end-user.

Also, this allows us to collect components in a “technology
toolkit”, from which specific assistant systems can be built by simply
“plugging” these components together.

An important aspect of the generic EMBASSI architecture is the
context manager component. It is responsible for managing the sys-
tem’s view of the world – information about the user, resource pro-
files, the environment, and also the availability and state of the indi-
vidual EMBASSI components. Attached to the context manager, we
have sensors to obtain biometrics and environmental information.

4.2 The MMI levels

An EMBASSI system has to accept multimodal utterances which it
needs to translate into goals before it can begin to think about chang-
ing the environment. According to the architecture in Figure 2, this
translation process can be broken down into three distinct steps:

1. First we translate physical interactions into atomic interaction
events (lexical level).
The transformation of physical user interactions into unimodal
atomic events is done by theI components (I = Input).

2. The stream of atomic interaction events is then sent via theEvent
interface to theF components (F = Filter). These components
are responsible for inter- and intra-modal aggregation of atomic
events into amodalsentences(syntactical level).

3. The stream of sentences arrives at theD components (D = Di-
alogue manager).D components are responsible for translating
sentences into goals denoted by these sentences (semantical level).
Also,D is responsible for managing inter-sentence relations (dia-
logue memory) and dialogue dynamics (such as turn-taking).

The process is reversed when producing output:D sends amodal out-
put “sentences” to theR components (R = Renderer) which in turn
map these sentences to multiple atomic output events for the avail-
able output channels, theO components.

4.3 The assistance levels

The assistance levels operate on goals which are identified by the
MMI levels. The process of mapping goals to changes of the envi-
ronment consists of the following steps:

1. A components (A = Assistant) take goals (which specify state
changes of the environment) and try to develop strategies for
fulfilling these goals (strategy level). These strategies are called
plans.
There is no predefined way to produce a plan. SomeA compo-
nents may use hardwired plans, others could use decision trees or
even complete inference systems. We will look at a planner based
approach in more detail in the following section.

2. The plans are sent to theX components (X = eXecution control),
which are responsible for the (distributed) scheduling and execu-
tion of the plans. (This means, the EMBASSI-architecture advo-
cates a two step planning policy, as describede.g. in [10], where
strategy planning (A-level) and execution scheduling (X-level) are
distinct processes.)
The scheduling-components ensure the correct sequential process-
ing of the individual steps in a plan. Also, they are responsible for
managing the parallel execution of multiple plans and for the man-
agement of execution resources needed by the plan.

3. Finally, individual action requests are sent to the (abstract) devices
(device control level), theG components (G = Gerät – German for
“device”). TheG components execute the action request by em-
ploying the physical device they control, thus changing the state
of the environment and causing an effect as intended by the user.

5 An in-depth look at planning

After looking at the overall structure of the EMBASSI-architecture,
we will now look at the requirements that have to be considered when
trying to integrate automatic planning functionality into such an en-
vironment.

5.1 The planning problem

The planning component (a component at theA-level) receives the
goal identified by the MMI-level. It has the job to find a strategy that
changes the environment from its current state to the goal state. This
can be understood as a classical planning problem:

• The goal is given as a set of positive and negative literals in the
propositional calculus.

• The initial state of the world (resp. the state of the system and
the environment-condition which is known to the system) is also
expressed as a set of literals. As defined in the architecture, the
Context Manager supplies these initial state values – all devices
(G components) post their actual state to the Context Manager.
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Figure 2. Generic EMBASSI architecture

• The actions provided by the available devices (“operators”) have
to be characterized using a suitable definition language. As out-
lined in Section 3, it describes the action’s relation to the environ-
ment: it contains a set of preconditions that must be true before
the action can be executed and a set of changes, or effects, that the
action will have on the world. Both the preconditions and effects
can be positive or negative literals. The modelling of the device
functions as planning operators is most important: it is the base
for providing goal-based interaction with a dynamic infrastucture.

The critical aspect here is the expressive power of the model used
for describing device operators, which needs to be strong enough to
capture at least the operational semantics of todays consumer appli-
ances.

5.2 The planning domain model

Providing a suitably expressive operator definition language is not a
completely trivial requirement when looking at the host of features
included in modern infotainment systems. But with expressiveness
comes computational intractability – the more expressive a language
is, the more computation is required to reason about sentences in that
language. On the other hand, the solution capability of the planning
system determines the space of the possible functionality of the de-
vice components. For example, the choice of discrete operators ob-
viously excludes devices that provide continuous functions.

So finding the right balance between expressiveness and compu-
tational tractability is very important for our application domain.
Specifically, we have to consider the following aspects:

• Computational resources in a consumer environment are inher-
ently limited, but the system needs to provide a snappy response
to the user.

• Operator sets for devices must be compact in order to keep the
number of operators that have to be managed by the system small
and in order to simplify the creation of (compatible) operator sets
by device vendors.

Our experience from the modelling of our domain has shown that we
need a planning environment that supports conditional effects and
disjunction in the preconditions – this allows a compact representa-
tion of device operator sets.

Furthermore it is mandatory to have universal quantification in the
preconditions and the effects. This for instance allows to define op-
erators that apply to an arbitrary number of objects – which is ex-
tremely important in an environment that is dynamically extensible.
(As example, consider the operatorlights-out given in Figure 3,
which turns off all light sources.)

Also, it is an advantage, if the planning system supports domain
axioms, because they provide a convenient way to decouple opera-
tors from the environment: Instead of describing the environmental
preconditions and effects of an operator in the operator’s definition
itself, we only describe the operator in terms of the device’s internal
state. Environmental aspects are attached by providing suitable do-
main axioms (as done,e.g., by the axiomshutter-dark in Fig-
ure 3, which derives the effects of a venetian blind on the room light-
ing from the blind’s internal state). This approach simplifies an in-
cremental definition and extension of the environment state – which
relieves us from the complex task of coming up with a complete en-
vironment model before defining the first operator . . . This advantage
has to be contrasted with the fact that some of the fastest planning
systems available today –e.g.FF[7] – unfortunately do not support
domain axioms.

ADL [8] and PDDL [1] are examples for languages providing the
properties listed here, where PDDL seems to become the standard.



(define (axiom shutter-dark)
:context (and (shutter ?x)

(or (time_night)
(not (open ?x))))

:implies (dark ?x))
(define (operator lights-out)

:precondition (forall (lightable-object ?x)
(dark ?x))

:effect (darkness))

Figure 3. Sample for an operator with universal quantification and an
axiom with disjunctive precondition

Finally, the planning system should generate partially ordered
plans (rather than totally ordered plans), so that independent actions
can be executed in parallel. Moreover, it is thus possible that the
scheduler can apply refined strategies – such as least cost schedul-
ing – for determining the concrete execution sequence.

Based on these considerations, we have chosen the UCPOP plan-
ner [12] for the first running prototype of our planning assistant (the
system is still under development). UCPOP uses a formalism that
handles a subset of ADL and is the predecessor of PDDL. Although
it is an older system, it offers all the possibilities that our present ap-
plication domain requires, and it has been available in a stable version
for our system infrastructure at the time we had to fix our platform
choice.

5.3 Joint environment ontologies

As we mentioned before, the description of the component functions
and capabilities as operators for the planning domain is essential. In
order to support theinteroperabilityof devices provided by different
vendors, we need a shared understanding of the common environ-
ment domain they operate upon – a uniform ontology (besides, of
course, agreeing on a common operator description language). Stan-
dardized environment ontology concepts such as “brightness”, “tem-
perature”, . . . make it possible to develop the components’ operator
definitions independently from each other. Different vendors have to
adhere to these ontology concepts as an explicit specification of the
environment aspects for their specific planning subdomains. If dif-
ferent components use common concepts for the same features,e.g.
“brightness” for the capability of a lamp and of a venetian blind (by
daylight), a cooperation is feasible.

The vendor of a component characterizes its products in accor-
dance with the specification of the ontology and the potentialities of
the chosen problem-specification language. The planning operators
will reasonably abstract from the device’s concrete internal state and
use a simplified state model that is tailored towards attaching the op-
erators’ environmental effects.

6 Summary

With this paper, we have presented a system infrastructure support-
ing goal based interaction with dynamic environments, which is be-
ing developed as part of the EMBASSI project. The goal of the project
is the development of a framework for an intuitive, multimodal, goal
based interaction with technical infrastructures of everyday life. We
have presented our backbone architecture of EMBASSI, our current
concepts for supporting goal-based interaction within this architec-
ture, and the resulting requirements for the integration of a planning
system into the EMBASSI-infrastructure.

EMBASSI system prototypes have been built for the application
areas of consumer electronics & home control, car infotainment,
and point-of-sales / point-of-information terminal access. A dynamic
planning system is currently integrated into the home application sce-
nario; the complete system has been on display at different confer-
ences and fairs.

Current work on the planning component focuses on the following
aspects:

• Development of a well-structured planning ontology for the home
scenario, based on the experiences made in the first project phase.
(This includes the operator definitions as well as the structure of
the environment state.)

• Extension of the planning component by functions for plan repair,
execution monitoring and conditional planning.

• Investigation of domain design support tools such as TIM (Type
Inference Module) [4] or DKEL (Domain Knowledge Exchange
Language) [9] for supporting the definition of structured planning
domains.
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