
IDD: Integrating Diagnosis in the Design of automotive
systems

Claudia Picardi1, Rosanna Bray2, Fulvio Cascio3, Luca Console4, Philippe Dague5,
Oskar Dressler6, David Millet7, Berndt Rehfus8, Peter Struss9, Christian Vallée10

Abstract. In this paper we overview the achievements of the IDD
European project, which aims at defining a new framework for the
design of automotive systems. In particular, starting from the weak-
nesses of the current design process, especially as regards issues re-
lated to diagnosis (diagnosability analysis, generation of the FMEA
- Failure Mode Effect Analysis, generation of on-board diagnostic
software), the project aims at defining a new process in which these
issues are integrated within the design of a system and of its con-
trol strategies. The project also aims at defining and implementing
a software toolkit supporting the new process. The toolkit integrates
applications for design and simulation (e.g., Matlab Simulink) and
model-based reasoning systems for diagnosis-related tasks.

1 INTRODUCTION

The importance of diagnosis in onboard automotive systems is con-
stantly growing together with the complexity of the systems them-
selves. The average dimension of the diagnostic software inside a
modern electronic control unit (ECU) is now more than 50% of the
whole code. However, if one analyses the design process of any sig-
nificant mechatronic automotive component, it is very common to
see that diagnostic issues are usually taken into account only at the
end of the process and are not integrated with the rest of it. In partic-
ular, during the critical phases of the design process, when the actual
architecture of the system is conceptualized, the control strategies are
defined and models or prototypes of the system are simulated, diag-
nostic issues are not taken into account. Not only does this mean that
the diagnostic software is not developed together with the control
software, but, more critically, that issues such as the diagnosability
of the system being designed or the analysis of the FMEA (Failure
Mode Effects Analysis, which is very useful to discover safety criti-
cal faults or failures) are only partially considered in this phase. Usu-
ally, these activities are performed by separate teams and most of the
times after the design decisions have been made. In many cases the

1 Dipartimento di Informatica, Università di Torino (Italy); email: pi-
cardi@di.unito.it

2 Centro Ricerche Fiat (Italy); email: rosariaanna.bray@crf.it
3 Centro Ricerche Fiat (Italy); email: fulvio.cascio@crf.it
4 Dipartimento di Informatica, Università di Torino (Italy); email:

luca.console@di.unito.it
5 LIPN, Université Paris Nord XIII (France); email: dague@lipn.univ-

paris13.fr
6 OCC’M Software GmbH (Germany); email: dressler@occm.de
7 PSA - Peugeot Citroen (France); email: david.millet@mpsa.com
8 Daimler Chrysler (Germany); email: bernd.rehfus@daimlerchrysler.com
9 Technische Univ. München and OCC’M Software GmbH (Germany);

email: struss@in.tum.de
10 Adersa (France); email: Christian.Vallee@adersa.com

diagnostic team has to face serious problems since the pieces of in-
formation that are needed for diagnosing a system (i.e., the sensors
in the system) are very different from those that are needed to con-
trol a system. However, as the design has been almost completed,
there is no opportunity to ask for modifications (e.g., addition or re-
placement of sensors) so that compromises have to be made in the
development of the diagnostic software. Let us consider the case of
on-board diagnostic software, i.e., software that has to decide about
recovery actions whenever there is an evidence of a fault in the sys-
tem under examination. If the system is not diagnosable, that is, there
are cases in which it is not possible to single out the fault (which in
practice means that many faults are possible), the recovery action to
be taken is the strongest one, that is the one which guarantees safety
in the worst possible case. This is clearly a non-optimal but neces-
sary choice and has a negative impact on aspects such as the avail-
ability of the vehicle and the satisfaction of the driver (customer).
This problem has been previously experienced in the VMBD project,
when applying Model-based Diagnosis to the “Common rail injec-
tion system” (see [1]). In that application few sensors were available
on-board, thus in many cases it was impossible to discriminate be-
tween very critical faults (e.g., a blocked injector; in this case the
engine has to be stopped immediately to avoid serious damages) and
less critical ones (a slipping belt; in this case it is sufficient to warn
the user, possibly limiting performance and suggesting a check at the
closest workshop). Being unable to discriminate, the diagnostic soft-
ware could only perform the strongest action (stopping the engine)
to avoid the worst case problems. This is clearly a bad situation, es-
pecially for the driver but also for the car manufacturer for whom the
driver is a customer to be satisfied.
The European V Framework project “Integrated Design process for
onboard Diagnosis” (IDD) pursues the goal to formalise and stan-
dardise the diagnostic design process, and to enable the introduction
of diagnosis early in the chain. This methodological goal has to be
combined with another important objective: giving the designers a set
of tools that can help them in evaluating the effects of each choice on
the system being designed.

In particular, we claim that the Model-based approach to diagnosis
(see [5]) is suitable for this integration, both from the methodological
and the practical point of view. In fact, the basic modeling principles
adopted in the process of designing a system and its control software
have some similarities with those adopted in model-based diagnosis.
In the project we exploit these similarities to define a new design
process and to develop supporting tools.

The discussion of this process and tools is the main goal of this
paper: in Sect. 2 we sketch the current design process, discussing
the marginal role played by diagnosis related activities; Sect. 3 pro-



poses a new design process which integrates these activities; Sect. 4
discusses modeling issues while Sect. 5 introduces the prototype ar-
chitecture we are developing for supporting the new process; Sect. 6
overviews the guiding applications on which we are working; Sect.
7 concludes the paper mentioning some open problems for future re-
search.

2 THE CURRENT DESIGN PROCESS

A major effort in the first phase of IDD has been devoted to the analy-
sis of the current design process. We analysed the design departments
of the industrial partners, considering different types of systems, in-
terviewing several people working in these departments and taking
into account documents (guidelines) that describe the process orga-
nization. The goals of this analysis can be summarized as follows:

� First of all we aimed at having a general view of the process as a
whole, singling out the different phases that lead from the concep-
tualization of a new system to its implementation and testing.

� Second, we aimed at clarifying when different types of decisions
are taken; in particular, how requirements are specified, when and
how the layout of the system is decided, when and how the system
control is defined; in which phases the designers use models for
simulating the system being designed; how and when the results
of the simulation produce modifications to design choices, ...

� Third, we aimed at singling out precisely when diagnosis related
issues are taken into account. By diagnosis related issues we mean,
for example: When and how are diagnosability issues considered?
Do sensor selection and placement take diagnosability into ac-
count? When and how is FMEA performed? When and how is the
diagnostic software developed? Is this development related with
the development of the control software?

� Finally, we aimed at detecting which tools and models are used in
the different phases of the process

As a result of the analysis, it turned out that the processes adopted
by the industrial partners were very similar; so similar that we could
define a sort of “reference current process” to be used in the project
for singling out problems and weaknesses of the current process and
for defining requirements for the new process.

The results of the analysis can be synthesized as follows.

� The process is divided in four phases: “strategic”, “technology”,
“integration” and “production”; our main focus is on the second,
whose structure is depicted in figure 1. There are three main steps:
Step A defines the specification of the system being designed; step
B involves selecting and laying out components; step C concerns
the definition of a control strategy and the simulation of both the
system and the control strategy (possibly on a prototype). These
steps can be repeated following one of the three loops that appear
in figure 1. The inner loop involves the redesign of control strate-
gies; the middle loop involves also the redesign of components
and their layout; the outer loop involves a revision of the whole
technology phase.

� As to diagnosis-related issues, it turned out that in most cases the
generation of FMEA and On-Board Diagnostics are performed by
different departments and interact in a very loose way with the
steps of the design process. Moreover, FMEA and the develop-
ment of the diagnostic software are sequential activities and the
latter is performed at the end of the overall process.

� Various modeling tools are used throughout the process, mainly
tools for building (and simulating) control models and engineer-

ing models of the system being designed. The tool which is most
commonly used in this activity is Matlab/Simulink.

The analysis of the “reference process” evidenced some weaknesses,
especially as regards the role of diagnosis related issues. These prob-
lems can be summarized by the following three items:

� FMEA and diagnostic development are sequential activities and
they are mainly performed using experience and without model-
based supporting tools.

� Usually the development of FMEA and diagnostics is carried out
in parallel with control design (step C of the technology phase);
however the two activities do not interact and if additional require-
ments or constraints emerge from one of the two tasks they are
taken into account in the other one only when (and if!) whole step
C is revised (that is, when an inner loop is performed), while they
could be dealt with immediately due to parallelism.

� Since FMEA and diagnostics development is carried out af-
ter component design/layout (step B of the technology phase);
diagnostic-related issues have an impact on system design only
if a middle or outer loop is performed. This does not often hap-
pen, and usually diagnostic issues alone are not deemed to be a
sufficient reason for choosing this (expensive) option.

This analysis led us to the definition of a new design process, in
which the various activities are more tightly integrated.

3 TOWARDS A NEW DESIGN PROCESS

Based on this analysis of the reference process and the outlined im-
provements, we propose a framework for a new process which is
tightly connected with a new architecture for the tools to be used.

The proposal is centered around the idea that the designers (that is,
the different experts involved in the design process) should perform a
series of activities in an interleaved way (instead of performing them
in a sequence). These activities are:

� design of the physical system;
� design and simulation of control algorithms;
� generation of the FMEA;
� development of on-board diagnostic (OBD) software.

In other words, the activities in step B, those in step C and those
performed in parallel with step C (FMEA, OBD) should be carried
on in parallel, and with a strong feedback from one to the other.

step A 

step B 

step C 

outer 
loop 

inner 
loop

middle 
loop 

Figure 1. The technology phase



Component 
Selection and 

Layout 

Component 
Library qualitative 

 

Models 
 

quantitative 

Diagnosability 
Analysis 

FMEA 
generation 

OBD 
development

Control Design / Simulation 
(Hardware and Software) 

Comparative 
Analysis 

Figure 2. Different activities within the new process

Moreover, new activities should be introduced, that help in opti-
mizing system design with respect to diagnostic software; these ac-
tivities are:

� diagnosability analysis, i.e. investigation of which faults are de-
tectable and discriminable from each other;

� comparative analysis on the current design (physical system and
control), i.e., analysis of the consequences of applying changes to
the design (e.g., changing the layout or some components) both
from the control and diagnosability point of view.

The redefinition of the design process can be made possible by
providing designers with a set of tools that (i) automate some of the
tasks, in particular the new ones, thus softening the transition to the
new design process; (ii) simplify the integration of different tasks,
by offering a uniform interface and re-using as much information as
possible among different tools; (iii) support designers in exploiting
the output of the different tasks for the improvement of the design.

Figure 2 sketches a conceptual organization for the internal loops
of the new process. A central role in this new process is played by the
models of the system being designed, which are the core of the whole
process and must support both the types of analysis needed by control
design and simulation (bottom part of the figure) and those needed by
model-based diagnosis/FMEA generation and diagnosability analy-
sis, On board Diagnostic (OBD) software generation.

Indeed, as we shall discuss in more detail in the next section, mod-
eling plays a central role both in design and in diagnosis and some
of the modeling principles are similar, although the models are very
different.

4 MODELS FOR CONTROL AND DIAGNOSIS

We noticed in the previous section that models play a central role in
the definition of the new design process. In this section we analyse
the types of models that are currently being used in the two main ac-
tivities we want to integrate: (i) design of the system, design of its
control software and simulation (we shall refer to them as “design
models”); (ii) diagnosis related activities (we shall refer to them as
“diagnosis models”). The models that are generally used have some
similarities but also some very important differences; these similari-
ties and differences generate at the same time some opportunities and
some problems.

Let us start with the similarities. First of all, both design and diag-
nosis models are based on a “component centered” philosophy and

are compositional. This means that the building blocks are the mod-
els of components, which are stored in a database called model li-
brary. What counts as a component depends on the goal of the pro-
cess: in some cases one might be interested in lower level compo-
nents (e.g., a wire or a pipe); in other cases in higher level com-
ponents (e.g., a pump or an ECU). In both cases modeling can be
performed in a hierarchical way, that is one may have models of high
level components which can be decomposed by singling out sub-
components which can in turn be modeled.

Each component is characterized by a set of interfaces, which can
be used for connecting components (each interface is characterized
by a physical type, e.g., hydraulic vs. electric). For example, a pump
may have an hydraulic interface which may be connected to a corre-
sponding hydraulic interface of a pipe.

Each component has an associated model, which is formed by a
set of mathematical relations. In particular, the model relates a set of
interface variables (associated with the interfaces, e.g., a flow vari-
able associated with an hydraulic interface), plus possibly a set of
variables that are internal to the component (some of these variables
define a notion of “state” for the component, whose model has often
a dynamic nature).

What makes design and diagnosis models completely different is
the nature of the variables and of the mathematic relations constitut-
ing the models.

While design models are usually quantitative (which means that
the variables range over real numbers), diagnosis models are usually
qualitative. By qualitative model we mean a model in which vari-
ables range over a discrete set of qualitative values (for example, we
may consider only thr three values “positive”, “negative” or “zero”).
Consequently, models can be regarded as a set of relations (or con-
straints) among variables. For example, a very simple model of a pipe
could say that the derivative of the pressure inside a pipe is positive
whenever the input flow is greater than the output flow.

Why does diagnosis adopt qualitative models rather than quanti-
tative ones? There are several reasons that support the use of these
simpler models, showing that they are sufficient for performing di-
agnosis. Let us briefly recall the basic principles of Model-based di-
agnosis [5]. The idea is that one can use a model to make predictions
about the behavior of a system, then diagnoses can be computed by
comparing these predictions with the actual observations. In this way
one can isolate the faulty components (in case only the correct behav-
ior has been modeled) or can identify the faults of the components (in
case some information about the faulty behavior has been modeled).
In most cases qualitative relations are sufficient to perform fault iso-
lation or identification. Moreover, these models are easier to simulate
(and often more efficient). Besides, while it is not very complex to
produce qualitative fault models, in most cases it would be impossi-
ble to build quantitative fault models.

Finally, observations are usually known with some error, which
would make quantitative modeling and simulation less useful than
qualitative one. On the other hand, qualitative models are not suf-
ficient for design and especially for control design and simulation,
which require very precise models.

This means that in order to support the different tasks constituting
the new design process, two types of models are needed: quantitative
ones and qualitative ones. There is a long tradition in engineering
and control theory for the development of the former types of mod-
els, while various methodologies and languages have been proposed
in the last decades in the AI community for developing the latter
type. In particular, these different methodologies rely on different
modeling assumptions [3, 7] i.e., on different abstractions, and thus



each one of them is suitable for some applications and problems. Re-
cent research on automotive applications showed that simple models,
based on signs and possibly involving qualitative deviations can be
sufficient for achieving interesting diagnostic capabilities [6, 1, 2]).

These two types of models can be clearly developed manually,
thus building two separate libraries: one with quantitative models
and one with qualitative models. Although this approach can be rea-
sonable for demonstrating the advantages of the new design process,
we believe that in the long run it is not feasible to require two sep-
arate modeling activities. In particular, we believe that none would
develop qualitative models. Consider that the new process and the
corresponding tools would be mainly used by designers and engi-
neers, for whom it would be difficult to develop these models and
who have no actual interest in these models or more generally in di-
agnostic issues; if we want to convince them to adopt the new process
we have to guarantee that this will not cause extra work or costs.

For such a reason we are devoting many efforts to the problem of
the automatic derivation (or, at least to provide a lot of support in the
generation) of qualitative models from quantitative ones. This is not
an easy task since the kinds of quantitative models used by designers
and control people have very different formats; in many cases they
are not even defined intensionally (i.e., as a set of equations) but are
defined extensionally (via tables) or by software code (programs in
C language). This means that the only approach that can work in
all cases is to perform numerical analysis of the models, trying to
determine their qualitative properties (e.g., monotonicity - on a given
range -, local maxima or minima, sign of the function).

Currently we are experimenting some alternative methodologies
to perform such a derivation and indeed in some simple cases we can
obtain qualitative models suitable for the diagnostic task. Still a lot
of research has to be carried on to produce a solution that works in
general, for any type of quantitative models. We also believe that this
will lead to the definition of some guidelines for quantitative model-
ing, i.e., to a sort of discipline in order to prevent the construction of
models that would create problems (e.g., there is no constraint that
imposes that quantitative models are only component centered and
it would be possible, for example, to introduce integration compo-
nents, that is state variables and state constraints, external to compo-
nents; this would clearly be critical for generating component cen-
tered qualitative models). The definition of these guidelines is one of
the goals of the project.

The automatic derivation of qualitative models is a fundamental
opportunity for model-based reasoning and diagnosis and is, in our
view, the key for a wider diffusion of these technologies (see also the
discussion in [2]).

A final remark to conclude this section. Another standardization
goal of IDD is that of defining some interchange format for repre-
senting models and model libraries. In order to achieve these goals
we defined an XML format in which we represent information ex-
tracted from quantitative models.

5 TOOLS FOR SUPPORTING THE NEW
PROCESS

In order to support the new design process discussed in Section 3,
we developed a set of software modules which implement the func-
tionalities introduced in the previous sections. We conceived these
modules not as a new application program, but rather as plug-ins to
be added to the tools currently used in the design process. In the pro-
totype we are implementing, in particular, the modules are defined
as plug-ins that can be activated from the Matlab/Simulink environ-

ment. That is, starting from the core of Matlab/Simulink, which can
be used for quantitative modeling and simulation, and which is com-
monly used to model systems and their control and to simulate their
behavior, we defined the following modules:

� A tool for the automatic generation of qualitative models; in par-
ticular, the tool is composed of two modules:

– A module that extracts the structural description of a device,
i.e. the list of components (with information about the compo-
nent type of each instance, that is two pipes are recognized as
two instances of the same component type) and of their con-
nections.

– A module that derives, for each component type in the library,
a qualitative behavior model starting from the quantitative one.
As noticed in the previous section, we only have a partial solu-
tion for this task and we are working to extend it.

� A tool for performing diagnosability analysis.
� A tool for supporting the FMEA generation.
� A tool for supporting the generation of on-board diagnostic strate-

gies and software.
� A tool for comparing alternative design options.

The last four tools are based on a common Model-based diagnostic
system (core MBD system), which in the prototype is based on the
Occ’m Raz’r system [4].

More specifically, the four tools rely on the basic functionalities of
the MBD core in the following way:

� The tool for diagnosability analysis allows the user to specify an
operational context and a set of sensors and to perform tasks such
as:

– determining if two (sets of) faults can be discriminated;

– determining if a fault (or set of) can be detected;

– determining which additional sensors would allow the system
to detect a fault or discriminate between two (sets of) faults.

These tasks can be performed by running the diagnostic core sev-
eral times and singling out if there are cases where the faults can-
not be detected or discriminated.

� The tool for supporting the FMEA generation allows the user to
perform qualitative simulations for determining the consequences
of faults. These consequences are in fact part of the FMEA tables
to be filled in and, presently, are determined by experts, which rely
on experience. Thus the tool can provide a significant support,
reducing the time needed for producing the FMEA of a system
and making FMEA generation more reliable and guaranteeing the
quality of the process.

� Currently available on-board hardware resources do not guarantee
that an MBD diagnostic system can be implemented on a car ECU.
The European project VMBD proposed an approach in which the
on-board diagnostic code is generated automatically starting from
the system model and using a machine learning approach. In par-
ticular, the approach is based on the generation of decision (fault)-
tree after running several cases with the MBD diagnostic engine
and then inducing the tree from these cases [1]. The tool for sup-
porting the generation of on-board diagnostic strategies is based
on the same idea and thus relies on the MBD core and on a deci-
sion tree learning algorithm.

� The tool for comparing alternative design options and for perform-
ing a sort of ”what if” analysis during the design process is defined
on top of the previous ones. This means, in particular, that one



can compare the results of diagnosability analysis or compare the
consequences of a fault on two different design options (e.g., after
changing some components or replacing some sensors) or even in
two completely different design schemas (i.e., schemas containing
different sets of components or with different component layouts).
This tool, therefore, is a sort of interface for using the previous
ones on two design schemas.

The modules have very simple graphical interfaces that can be acti-
vated from the Matlab/Simulink environment and make almost com-
pletely transparent to the designer the presence of a MBD diagnostic
system. We believe that this is important for improving the accept-
ability of the tools and for bringing designers to use them during the
process to evaluate different design decisions.

6 GUIDING APPLICATIONS AND
PRELIMINARY EVALUATIONS

IDD is using a number of guiding applications with the goal to
demonstrate how the diagnostic tasks described can be performed
by using the new process and the new tools architecture. Further-
more, we aim at demonstrating how additional advantages of the
new method can be achieved, e.g. optimization of sensor placement
or deeper diagnostic performance. Thereby, the guiding applications
serve, on the one hand, as case studies for the application of the new
techniques and, on the other hand, as test cases and demonstrators of
the results of the project.

The guiding applications chosen cover on the one hand different
mechatronic systems with central ECU-functions, and on the other
hand the general application of diagnostic tasks to multiplexed ar-
chitecture systems.

The choices have been made with respect to significant complex-
ity, relevance to diagnostics, representativeness of the typical design
process and evidence of advantages of the new design process and
diagnosability analysis.

More specifically, the applications we chose are the following:

� Air and fuel delivery system and the Common Rail Injection Sys-
tem (by Centro Ricerche Fiat and Magneti Marelli).

� Cooling system (by Daimler Chrysler).
� Air climate system (by PSA and Adersa).
� Multiplexed architecture (by Renault).

For each guiding application, we started from a quantitative model
(Matlab model for the first three applications, functional model for
the last); we then showed how qualitative models can be used to
perform diagnosis, diagnosability analysis and comparison of differ-
ent design alternatives. We made these experiments with hand-made
models of some of the systems above while we are currently working
at the automatic derivation of the qualitative models from the quan-
titative ones.

The initial results of the analysis showed that the new process has
interesting potentials for improving the design, especially as regards
all issues related to diagnosis. In particular, it can overcome some of
the problems discussed in the introduction and in Section 2, allow-
ing for a quick exchange of information between the various tasks
and allowing the designers to evaluate the effects of different design
choices on diagnosability. In this way one can have systems that are
diagnosable and not only controllable and the overall time for design
could be significantly improved (avoiding loops in the process de-
scribed in Section 2). A more thorough evaluation will be provided
after the complete development of the guiding applications, at the
end of the project in the first months of 2003.

7 CONCLUSIONS

In the paper we presented an overview of the goals and achievements
of the IDD European project. The aim of the project is to introduce
a new process for the design of complex automotive systems. In the
new process different activities can be performed in an interleaved
way: selection of components and of their layout, definition and sim-
ulation of control, diagnosability analysis, FMEA generation, com-
parative analysis of different design choices. This can lead to a sig-
nificant transformation of the design cycle, leading to a reduction in
the design time (fewer cycles, due to the possibility of immediate
exchange of information and to the interleaving between the various
activities) and to the design of systems which are not only easily con-
trollable but also easily diagnosable. Furthermore, other tasks can be
supported, such as the generation of the FMEA and the generation of
on-board diagnostic software. In order to support the new process we
also defined a toolkit which integrates software platforms for design
and simulation (namely Matlab/Simulink) and model- based reason-
ing systems for performing the activities related to diagnosis.

The project showed that MBR can play a fundamental role in the
new design process and that, at the same time, this direction is an
important one for the growth of MBR. However, it also pointed out
new open problems to be faced by research in the next years. The
most important (and interesting) one is the derivation (or construction
with intelligent support) of qualitative models from quantitative ones.
Finding a general solution for this problem is challenging but it is
also very critical because, as pointed out in the paper, the problem
itself is the bottleneck for a wide diffusions of MBR technologies.

ACKNOWLEDGEMENTS

The project was supported by the European Commission, V Frame-
work projects under grant GRD1-1999-11263, partners: Centro
Ricerche Fiat (CRF), DaimlerChrysler, Magneti Marelli, OCC’M
Software, PSA Peugeot Citroen, Renault, Technische Universitat
München, Universitè de Paris Nord (XIII), Università di Torino.

REFERENCES
[1] F. Cascio, L. Console, M. Guagliumi, M. Osella, A. Panati, S. Sottano,

and D. Theseider Dupré, ‘Generating on-board diagnostics of dynamic
automotive systems based on qualitative deviations’, AI Communica-
tions, 12(1), 33–44, (1999).

[2] L. Console and O. Dressler, ‘Model-based diagnosis in the real world:
lessons learned and challenges remaining’, in Proc. 16th IJCAI, pp.
1393–1400, Stockholm, (1999).

[3] R. Davis, ‘Diagnostic reasoning based on structure and behavior’, Artifi-
cial Intelligence, 24(1-3), 347–410, (1984).

[4] Occ’m Software GmbH, ‘Raz’r version 1.6, see http://www.occm.de’,
Technical report, (2001).

[5] Readings in Model-Based Diagnosis, eds., W. Hamscher, L. Console,
and J. de Kleer, Morgan Kaufmann, 1992.

[6] M. Sachenbacher, P. Struss, and R. Weber, ‘Advances in design and im-
plementation of obd functions for diesel injection systems based on a
qualitative approach to diagnosis’, in SAE 2000 World Congress, (2000).

[7] P. Struss, ‘What’s in SD? Towards a theory of modeling for diagnosis’,
In Hamscher et al. [5], 419–449.


