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Abstract. This paper describes the operation of and research 
behind a networked application for the delivery of personalised 
streams of music at Trinity College Dublin.  Smart Radio is a web 
based client-server application that uses streaming audio 
technology and recommendation techniques to allow users build, 
manage and share music programmes. While it is generally 
acknowledged that music distribution over the web will 
dramatically change how the music industry operates, there are few 
prototypes available to demonstrate how this could work in a 
regulated way. The Smart Radio approach is to have people 
manage their music resources by putting together personalised 
music programmes. These programmes can then be recommended 
to other listeners using a combination of collaborative and content-
based recommendation strategies. We describe how we use a novel 
two-stage approach to find recommendations that are pertinent to a 
listener’s current listening preferences, something which 
collaborative techniques are insensitive to.  We describe additional 
constraints required to provide a service personalised to each 
listener. The Smart Radio system currently runs within the 
Computer Science Intranet with permission from the National 
Music Rights Organisation It is a prototype system for an "always 
on" high bandwidth Internet connection such as ADSL. 

1 INTRODUCTION 
The ease with which high quality digitally compressed music can 
be distributed on the Internet has caused waves in the music 
industry. Whereas the sale of music has been a highly regulated 
activity, the Internet has posed many problems and new 
opportunities. Since mp3 music items can be downloaded quickly 
by large numbers of people, the piracy and copyright infringements 
suffered are much greater than in days when the industry would 
warn that “home taping is killing music”. However, the music 
industry has generally been slow to capitalise on the benefits of this 
new distribution channel. Much of this has to do with the lack of 
agreement on standards for digital authentication, distribution 
methods and payment models that would be attractive to 
consumers. Some consensus has emerged recently with several 
companies now offering streaming services for a monthly 
subscription.1  
The advent of on-line music services poses similar problems of 
information overload often described for textual material. 
However, the filtering of music resources has its own peculiarities. 
This paper describes a personalised web-based music service called 
Smart Radio, which has been in operation in the computer science 
department at Trinity College Dublin for the past two years. The 
service was set up to examine how a personalised service of radio 
programming could be achieved over the web. Section 2 describes 
the system operation and architecture. We introduce the idea of a 

programme, a user-compiled collection of music tracks that we use 
as the basic unit of recommendation. Section 3 introduces the 
general methodologies used for personalisation, namely Automated 
Collaborative Filtering (ACF) and Case-Based Recommending. 
Section 4 elaborates the deficiencies of using ACF as the sole 
recommendation strategy, and introduces the idea of a context, a 
strategy we use to further refine recommendations made by the 
ACF engine. In section 5, we discuss other constraints required to 
successfully recommend programmes. Finally, in section 6, we 
identify weaknesses in the current set-up and describe current work 
on improving the content-based recommendation strategy. 

2 SYSTEM OPERATION AND 
ARCHITECTURE 

2.1 Programmes 
Smart Radio is a web based client-server application that allows its 
users to listen to their favourite music and receive new music while 
connected to the Internet. Users login through their browser, after 
which they can build new programmes from scratch, play past 
favourite programmes, or choose programmes recommended by 
their neighbours. 
Our design goal was to provide a personalised service of streaming 
music using a recommendation system to suggest suitable 
compilations of music to listeners. These programmes are put 
together by individual users and are then recommended to other 
similarly minded members. By using a programme of music as our 
unit of recommendation the work involved in putting together a 
new compilation of music is distributed to other listeners. 
Another benefit is that a collection of music may contain the 
difficult to quantify feature of “mood” which depends on the 
collection of music items being played together. This feature is 
apparent where users amend their ratings for individual items as 
they appear in different programmes. Rather than making 
anonymous suggestions, Smart Radio allows the listener to identify 
the author behind each recommended programme. This facility 
encourages community participation by allowing users know who 
their most consistent neighbours are. In this way, our 
recommendation system promotes rather than replaces social 
processes [1]. 

2.2 Streaming technology 
We chose to stream audio files to our listeners’ desktops rather 
than allow them download the individual files for a number of 
reasons. If the basic unit of recommendation were an mp3 file, the 
time involved in downloading several of these to a hard drive and 
then setting up a play-list would be quite considerable. With the 
streaming model used by Smart Radio, a user can login, choose a 
recommended programme or a favourite programme, and have a 
music programme stream to the desktop almost immediately. Apart 
from the benefits of immediate delivery, we considered streaming 
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technology to be a useful solution to the piracy issue. The streamed 
audio files are not saved to the user’s hard drive and thus cannot be 
posted on the Internet for illicit distribution. Another benefit of a 
service where there are no downloadable files is that the user has a 
roaming profile and his music programmes and recommendations 
are available wherever he logs on. Though disk space has become 
cheaper, there is considerable management involved in holding a 
large digital library on a local machine. 

 

 2.3 Operation and Feedback  
Figure 2. Smart Radio architecture 

 

3 ACF AND CASE BASE USER PROFILING 
Perhaps the obvious way to implement a system for recommending 
assets to a customer is to work with representations of the assets 
and the user’s interests and use these to match assets to users. This 
is commonly referred to as content-based or case-based 
recommendation and two sample cases for recommending music 
are shown in Table 1. This representation contains some evidence 
that this user might like this track. While this approach has the 
advantage of simplicity, it has the drawback of needing to mark up 
assets and users in the appropriate representation and also the 
problem of coming up with the appropriate representation in the 
first place. This representation problem is particularly acute in 
music recommendation where descriptors such as ‘genre’ are 
inclined to be over-burdened.  

Figure 1. A programme in Smart Radio. The icons to the right indicate the 
user’s rating of the tracks in the programme. 

Listeners may search the music database by artist name, song title 
or genre. They can add a music item to the current programme with 
one click of a mouse. Indexing music items by genre is not very 
satisfactory since the genre feature is not finely grained enough to 
capture the nuances within music types. Section 6 describes 
research we are currently undertaking to capture more 
representative features for better indexing.  Once a programme 
contains ten music items it can be played immediately and is 
automatically saved to the user’s profile for future retrieval.  

 
Table 1.  A representation of a music track and a profile of a user that 
might be used in content-based recommendation.  
 

TB-2  
Title Unbreak My Heart 
Year 1996 
Genre Pop, Soul 
Artist Toni Braxton 
Album Secrets 

Figure 1 illustrates a programme in which the user conorc has rated 
all ten items. If conorc chooses this programme again he will be 
shown his ratings for the individual items within the programme 
and he may recast his vote. This facility is important because music 
taste does shift, and user profiles will have to move to reflect this. 

 
JB-7  
Name Joe Bloggs 
Preferred Era 1990 + 
Genre Soul, RnB, Pop 
Fav-Artists Lauryn Hill, Macy Gray 

George Michael 
Fav-songs M117, M144, M56, M89 
Fav-albums A232, A200, A401, A212 

In order to provide data for our recommendation engine we collect 
explicit and implicit feedback from our listeners. 
Users can provide explicit ratings on individual track items or 
individual programmes on a scale of 1– 5, where 5 is the top score. 
It is important to infer feedback, particularly for the less interactive 
or casual user [2]. This involves monitoring the use-data for each 
user and allocating positive ratings to frequently played items.  
Unlike the user conorc, the casual user may choose to interact 
minimally with the system intervening only when the music 
provided is not to his taste.  

The ACF (Automatic Collaborative Filtering) approach to 
recommendation finesses this representation problem by basing 
recommendations on users’ ratings of assets only and uses no 
descriptions of assets or users’ interests. An example of such a 
representation is shown in Table 2 which shows that User 1 has 
given a rating of 0.8 (4 out of 5) to Track 1, no rating to Track 2 
and so forth. The basic idea behind ACF involves identifying users 
with shared interests and making recommendations based on this. 
In the example in Table 2, Track 2 might be recommended to User 
1 based on the similar ratings for Tracks 2, 3 & 4 by Users 1 and 2.  
(The details on how recommendations are generated are given in [3,4])

2.4 Architecture 
Smart Radio is a client-server system. The server components 
consist of a web server with java servlet extensions and a 
recommendation engine, which consists of an ACF engine, a CBR 
engine and a module that evaluates user preferences (see Fig. 2). 
  The client side consists of a browser with a plug-in component for 
playing streaming audio files. A streaming audio server runs in 
parallel with the web server. This server receives requests from the 
clients and streams audio pieces to the specified address.  The 
Smart Radio web pages are able to play the incoming stream by 
means of the streaming audio plug-in embedded in a HTML frame 
which remains constantly in place irrespective of what other pages 
the user requests from the Smart Radio server. 

 



Equation 1 gives the overall score, s, for any programme where w 
refers to the novelty factor and n is the number of tracks in the list. 

Table 2. The type of representation used in ACF where a user’s profile is 
simply a list of ratings for tracks.   
 

1) 
n
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 Track 1 Track 2 Track 3 Track 4 … 
User 1 0.8  0.2 0.8  
User 2 0.6 0.8 0.2 0.4  
User 3 0.4 0.8  0.2  

 Using this Equation the score for this programme where the 
listener has specified a low novelty factor of 0.25 is 0.27.  Given sufficient data, the ACF approach can produce excellent 

recommendations. However it is not without its shortcomings, the 
main ones being the problem of handling new assets and users and 
the absence of any temporal model of users interests. This last 
issue is a particular problem in recommending music where a 
user’s listening interests may vary over time. The way this is 
handled in Smart Radio is described in the next section. 

 
(0.75(0.8+0.6+0.8) +
0.25(0.6+0.8+0.6+0.6+1.0+0.8+0.4))/10 = 0.285
 
The score for the programme where there is a relatively high 
novelty factor of 0.75 is 0.43. 
 
(0.25(0.8+0.6+0.8) +
0.75(0.6+0.8+0.6+0.6+1.0+0.8+0.4))/10 = 0.4153.1 ACF in Smart Radio: recommending 

programmes  
The Programmes are then ranked according to these scores. The 
following section describes a refinement to this first stage retrieval 
that seeks to promote programmes that are most pertinent to the 
listener’s current listening behaviour. 

Each listener in Smart Radio has a listening history consisting of a 
number of programmes with their component tracks. The listener 
may have explicitly rated individual tracks in each programme. 
Programmes may also have been repeatedly played or contain 
overlapping tracks from which we can implicitly infer positive 
feedback for component tracks. From this we build the type of 
table illustrated by Table 2. Correlations are made between 
listeners based on the component tracks in their programme history 
rather than on the programmes themselves. Two listeners may be 
highly correlated based on the overall component tracks they have 
listened to, even though they may not have listened to the same 
programmes. In typical ACF fashion a neighbourhood is then 
established for each user, and programmes rated highly by these 
neighbours are retrieved.   

3.2 Recommendations 
Recommendations are calculated periodically and in response to 
listener feedback. The recommendation engine maintains a 
correlation matrix in memory that is updated every half hour for 
the users that have been on-line since the last update. This is a 
triangular matrix since the ACF correlation function is 
commutative. Using the correlation scores in the matrix and the 
listening context (a feature explained in section 4.) the system 
updates the database with the most current recommendations. 

Making a prediction on a programme involves making a prediction 
for each of the component tracks where we don’t have any explicit 
or implicit feedback. The overall prediction for a programme is a 
weighted sum of the prediction for each the component tracks 
divided by the number of tracks in the list. The weighting refers to 
a user–defined constraint that we call the novelty factor. A 
criticism often levelled at version 1 of Smart Radio was that it 
didn’t take into account user preferences for receiving new music. 

However, in response to a substantial amount of new information 
(feedback) being introduced into the system by a listener, the 
recommendation engine updates the matrix row associated with the 
listener and his listening context. We use a rule of thumb to trigger 
these recommendation threads: if a listener explicitly changes his 
profile by 20% we immediately recalculate his correlations and 
listening context. This strategy tends to support new users who 
would not have a lot of data in the system in the first place. 

Listeners may specify on a scale of 1 to 5 the degree of novelty 
they want in their recommended lists where 1 signals the user’s 
preference for programmes with a large amount of already known 
music.  This caters for listeners who do not want programmes that 
contain very much music they do not already recognise. 

4 CONTEXTS 
ACF is a successful methodology for managing the long-term 
resource requirements of the online user. The user’s interaction 
with an ACF based system is usually of a sustained nature 
involving a dialogue that may last from a few minutes to a few 
years in the case of a successful retail portal like Amazon.com. [4]. 
The basic methodology involves lazily making recommendations 
using the full user history. The sequence of items played most 
recently does not influence the recommendation strategy of the 
basic ACF algorithm. However not all the data informing a user’s 
recommendations may be pertinent to the current listening 
preferences. For instance, a listener may listen to rock’n’roll, jazz 
and dance music but may wish the system to learn his current 
listening preference by recommending suitable jazz oriented 
programmes when he is listening to jazz. We see two possible 
ways of addressing this. Firstly, we might use only a portion of the 
user’s profile and then make ACF recommendations using this 
reduced profile. Isolating the subset of items that are pertinent to 
the current listening context may be quite difficult, particularly in a 
domain where there is not much content description. Secondly, 
there is no guarantee that our listener will receive Jazz 

Table 3 illustrates a programme where we have made predictions 
for five of the component tracks. The status field refers to whether 
a score is known for a particular track (k), has to be predicted (p) or 
is unknown (u). In the case of u, the score allocated is the average 
rating for the track.  
 
Table 3.  Illustrates a programme in which we have previously rated items 
(k), predicted items (p) and an item for which we were unable to make a 
prediction (u). 

Track Id Status k/p score 
127 k 0.8 
23 p 0.6 
45 k 0.6 
78 p 0.8 

206 p 0.6 
1266 p 0.6 
587 p 1.0 
13 p 0.8 

234 k 0.8 
1500 u 0.4 

 



recommendations if his nearest neighbours also have an eclectic 
taste in music. 
The approach currently employed by Smart Radio involved the 
development of a local context analyser. This module was 
developed to cater for personalisation requirements that are context 
specific. This module maintains a simple user profile that 
summarises the listener’s most recent listening patterns. This is, in 
effect, a sliding window on the user’s listening history where the 
window is the last n programmes. This relies upon having some 
representation of the assets being recommended. In the case of the 
music items in Smart Radio, we make use of features freely 
available in the ID3 tag of the mp3 file. Most mp3 ripping software 
includes this information in the last few bytes of the mp3 file 
itself2.  While these features are not highly predictive on their own 
they give us a good indication of the user’s current preferences. 
Our approach is to use the full user profile for ACF 
recommendations but to then refine these recommendations based 
on similarity to the current listening context. This two-fold strategy 
is a type of MAC/FAC retrieval well known amongst CBR 
researchers [5]. Our case base consists of the total number of 
programmes in the system. The ACF module is responsible for the 
first stage retrieval (MAC) while refinement to this retrieval is 
carried out by similarity-based retrieval (FAC). Implementation 
wise, the second stage of this retrieval is carried out using a 
spreading-activation net where each programme is treated as a case 
in the case memory (the activation net). In the first stage, the ACF 
module primes a subset of the case memory. In the second stage, 
the user-profile is presented as a target case. Activation spreads 
only through the primed subset of the case memory. Those 
programmes that have highest activation after this process are 
presented as recommendations to the listener.  

 

Figure 3. The darker shaded cases in the third stage indicate cases which 
best match the listener’s current listening context.  

The profile provides a means of scoring recommended 
programmes according to their similarity to the sliding profile. The 
recommendations are then sorted based on these scorings. 
This ensures that programmes created and endorsed by the 
listener’s nearest neighbours but which also best match the user’s 
current listening preferences are pushed to the top of the heap.  The 
sliding profile does not filter out neighbours’ programmes that do 
not match the current context since it is understood that the listener 
may well wish to break out of the current vein of music. 

4.1 Negative profiles 
The context builder also allows negative user profiles to be built. 
These are profiles are constructed based on negative feedback 
issued by listeners. Unlike the sliding window profiles these 
profiles are built using the full listening history of the user. Their 
employment is user-policy based in that the user has access to the 
negative profile and may choose to have it used or not. In the case 

where it is put into effect, the negative profile acts as a filter 
removing programmes that have high similarity to the negative 
profile. This stage is carried out directly after the ACF retrieval and 
prior to the positive profile refinement stage. The user can 
determine the number of negatively rated artists or items a 
programme may have before it is deemed unacceptable. In the next 
section we introduce additional policy based features that allow our 
listeners personalise their listening experience. 

4.2 Similarity measures 
The weak representation of our music assets obviously poses some 
problems. In table 1 we have illustrated a typical user profile and a 
case-like representation of a music item. Defining similarity 
measures for some of the features shown requires a certain amount 
of expert knowledge.  In the case of the genre feature we have 
defined a similarity measure relating certain genre types such as 
blues, jazz and  r’n’b. For other genre types we just haven’t enough 
insight into the problem to specify a similarity measure – in which 
case the similarity value is either one or zero. Work has been 
carried out on data-mining Smart Radio user data to find higher 
level concepts that would describe our music assets and provide us 
with similarity measures based on our listener’s usage patterns 
[6,7]. These concepts would constitute a new type of genre 
information that should reflect our listeners’ view of the music 
assets in the system. This work is described in section 6. 
Maintaining a case base of programmes in memory has a 
secondary benefit. It allows the user to retrieve a programme 
similar to the current one. However, with the rather weak features 
currently available to us, the success of this approach is limited. 
Section 6 will discuss, how improved features will benefit the 
system.   

5 ADDITIONAL CONSTRAINTS 
In this section we draw a distinction between a personalisation 
service and a recommender service. We introduce some user-
guided constraints that allow each listener to affect how the 
recommendation engine provides new programmes. 
We view Smart Radio as a personalisation service that allows 
people to manage their listening habits. As such it seeks to model 
our users’ listening patterns and anticipate their audio 
requirements. Typically recommender services will provide only 
new items with the assumption that once a recommended item has 
been ‘consumed’, it should not be recommended again. 
However, the personalisation service offered by Smart Radio 
recognises that music can be played over and over again. It is a 
normal feature of the programme format of music radio that 
popular artists and songs are played quite frequently.  
In section 3.1 we described the novelty constraint that allows users 
to state their preference for the amount of new music they receive 
in recommended programme. Some users prefer not to receive a lot 
of new music in a listening session. In order to prevent the same 
tracks turning up in successive programmes we allow the user to 
specify a minimum period before an individual track can be played 
again. Real radio stations are guided by broadcasting regulations in 
this respect. In our situation, the user can set the minimum period. 
This is implemented by assigning user-music item pairs an 
excitation level. Excitation is high immediately after an item is 
played, but decays with time so that a music item can be played 
again when sufficiently low. The decay function is based on the 
user preference for the minimum period for replaying a piece of 
music. Programmes therefore are assigned an overall excitation 
level based on component tracks. This score is considered when                                                  
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making a final set of recommendations. Obviously, in this case 
programmes with low excitation levels are preferred.  

6 FURTHER WORK 
The poor representations currently available of our music assets 
mean that our similarity-based strategy is the weak link in the two-
fold retrieval outlined in section 4. The problem has been 
addressed from two angles. The first seeks to elaborate our content 
descriptions using knowledge mined from our listeners use data. 
Our goal is to produce an ontology that codifies the relationships 
between music items based on our listeners’ listening data. The 
usual way of creating an ontology is for domain experts to establish 
the fundamental concepts, objects, relations, etc, which exist for a 
given community. This presupposes that these ontological elements 
can be uncovered a priori. However, in domains such as that of 
Smart Radio, it is not at all clear that any a priori analysis by a 
team of experts could yield the sort of concepts important to 
recommendation tasks. While songs may be categorised according 
to artist, and while to a much lesser extent, genres and sub-genres 
may be employed, this approach is inadequate, since it does not 
account for the fact that many people like songs that are widely 
divergent according to the artist and genre criteria.  
In pursuit of this, we have used Fisher’s COBWEB algorithm [7] 
to produce a hierarchical classification scheme for songs in the 
system [8]. Each music item is represented as an object with 
features corresponding to each of the users in the system and with 
values corresponding to the rating assigned to the song by that 
user.  By using such algorithms as COBWEB to cluster songs 
based on user ratings, we are endeavouring to discover structures 
more truly reflective of the similarities and dissimilarities between 
songs. We need only evaluate the resulting conceptual structures in 
terms of their impact on recommendations, and we need not worry 
that users may be unable to articulate the perceived similarities and 
dissimilarities that are hypothesised between songs. Furthermore, 
we do not expect that the discovered conceptual hierarchy will map 
onto any existing and already familiar network of human concepts. 
Rather, we expect to discover structures that human analysis has 
not detected. A further advantage conferred by the automatic 
generation of ontologies using COBWEB is that such concept 
formation algorithms are incremental, in the sense that 
observations are not processed en masse. There is a stream of 
objects, which is processed over time. In the case of Smart Radio, 
this means that the conceptual hierarchy can automatically evolve 
over time as new songs are added to the database, and as new users 
join the system. The capacity to evolve over time is essential to a 
constantly expanding on-line community resource. The type of 
concept hierarchy we describe would allow us to calculate a 
similarity between songs. Similar songs will fall under the same 
concept and degrees of similarity will be captured in the 
relationships between concepts. 
The second way in which we are seeking to improve the 
representation of our assets involves automatic feature extraction 
from audio files. We propose to use rhythmical features and 
features from frequency analysis that will allow us to identify 
instrumentation. It has been shown in [9] that nine parameters 
characterise the strength of the beat and that rhythmical features 
may be used with good results for music classification purposes.  
Since instruments are characterised by a typical range of 
frequencies, by analysing the frequencies being played it may 
possible to distinguish between simple polyphonic music such as 
blues and rock and more complex music compositions in the fields 
of jazz and classical music. Having music assets characterised in 
terms of rhythm and instrumentation would improve our similarity 

retrieval strategy greatly. We would, for instance, using the rhythm 
feature alone be able to differentiate fast programmes from slow 
programmes of music. This would obviously be helpful in finding a 
programme suited to the listener's current context. We would also 
be able to search for a programme that best matches the rhythm 
profile of the target programme. 

7 CONCLUSION 
Smart Radio is client-server application that provides its users with 
personalised service of streaming music in the form of programmes 
built by other listeners. A MAC/FAC retrieval strategy is employed 
to recommend new programmes to the listener. This works by 
having an ACF module retrieve programmes suited to the target 
listener followed by similarity-based refinement which sorts these 
programmes according to the listeners’ current listening context. 
We introduce the idea of a negative profile, which is a summary of 
the music items disliked by the user. The user determines the 
deployment of this profile. Likewise, we introduce two user-
defined restrictions: the novelty factor and excitation level. The 
novelty factor allows listeners to specify their preference for 
receiving new music. This is implemented as a weight on each 
component track when making a prediction for a particular 
programme during first stage retrieval. The excitation level is a 
means of promoting programmes that contain tracks that have not 
been played recently.  We discuss how the poor representations of 
our music items mean that our similarity-based retrieval is the 
weak link in our system. This strategy may be augmented by 
information derived from knowledge discovery techniques. We 
finally introduce work we are carrying out on automatic feature 
extraction from audio files to improve our content-based 
recommendation. 
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