
Programme driven music radio
Conor Hayes, Pádraig Cunningham, Patrick Clerkin, Marco Grimaldi

Department of Computer Science
Trinity College Dublin

{conor.hayes,padraig.cunningham@cs.tcd.ie}

Abstract. This paper describes the operation of and research
behind a networked application for the delivery of personalised
streams of music at Trinity College Dublin. Smart Radio is a web
based client-server application that uses streaming audio
technology and recommendation techniques to allow users build,
manage and share music programmes. While it is generally
acknowledged that music distribution over the web will
dramatically change how the music industry operates, there are few
prototypes available to demonstrate how this could work in a
regulated way. The Smart Radio approach is to have people
manage their music resources by putting together personalised
music programmes. These programmes can then be recommended
to other listeners using a combination of collaborative and content-
based recommendation strategies. We describe how we use a novel
two-stage approach to find recommendations that are pertinent to a
listener’s current listening preferences, something which
collaborative techniques are insensitive to. We describe additional
constraints required to provide a service personalised to each
listener. The Smart Radio system currently runs within the
Computer Science Intranet with permission from the National
Music Rights Organisation It is a prototype system for an "always
on" high bandwidth Internet connection such as ADSL.

1 INTRODUCTION
The ease with which high quality digitally compressed music can
be distributed on the Internet has caused waves in the music
industry. Whereas the sale of music has been a highly regulated
activity, the Internet has posed many problems and new
opportunities. Since mp3 music items can be downloaded quickly
by large numbers of people, the piracy and copyright infringements
suffered are much greater than in days when the industry would
warn that “home taping is killing music”. However, the music
industry has generally been slow to capitalise on the benefits of this
new distribution channel. Much of this has to do with the lack of
agreement on standards for digital authentication, distribution
methods and payment models that would be attractive to
consumers. Some consensus has emerged recently with several
companies now offering streaming services for a monthly
subscription.1
The advent of on-line music services poses similar problems of
information overload often described for textual material.
However, the filtering of music resources has its own peculiarities.
This paper describes a personalised web-based music service called
Smart Radio, which has been in operation in the computer science
department at Trinity College Dublin for the past two years. The
service was set up to examine how a personalised service of radio
programming could be achieved over the web. Section 2 describes
the system operation and architecture. We introduce the idea of a

programme, a user-compiled collection of music tracks that we use
as the basic unit of recommendation. Section 3 introduces the
general methodologies used for personalisation, namely Automated
Collaborative Filtering (ACF) and Case-Based Recommending.
Section 4 elaborates the deficiencies of using ACF as the sole
recommendation strategy, and introduces the idea of a context, a
strategy we use to further refine recommendations made by the
ACF engine. In section 5, we discuss other constraints required to
successfully recommend programmes. Finally, in section 6, we
identify weaknesses in the current set-up and describe current work
on improving the content-based recommendation strategy.

2 SYSTEM OPERATION AND
ARCHITECTURE

2.1 Programmes
Smart Radio is a web based client-server application that allows its
users to listen to their favourite music and receive new music while
connected to the Internet. Users login through their browser, after
which they can build new programmes from scratch, play past
favourite programmes, or choose programmes recommended by
their neighbours.
Our design goal was to provide a personalised service of streaming
music using a recommendation system to suggest suitable
compilations of music to listeners. These programmes are put
together by individual users and are then recommended to other
similarly minded members. By using a programme of music as our
unit of recommendation the work involved in putting together a
new compilation of music is distributed to other listeners.
Another benefit is that a collection of music may contain the
difficult to quantify feature of “mood” which depends on the
collection of music items being played together. This feature is
apparent where users amend their ratings for individual items as
they appear in different programmes. Rather than making
anonymous suggestions, Smart Radio allows the listener to identify
the author behind each recommended programme. This facility
encourages community participation by allowing users know who
their most consistent neighbours are. In this way, our
recommendation system promotes rather than replaces social
processes [1].

2.2 Streaming technology
We chose to stream audio files to our listeners’ desktops rather
than allow them download the individual files for a number of
reasons. If the basic unit of recommendation were an mp3 file, the
time involved in downloading several of these to a hard drive and
then setting up a play-list would be quite considerable. With the
streaming model used by Smart Radio, a user can login, choose a
recommended programme or a favourite programme, and have a
music programme stream to the desktop almost immediately. Apart
from the benefits of immediate delivery, we considered streaming

1 www.pressplay.com
www.musicnet.com
www.higherwaves.com

technology to be a useful solution to the piracy issue. The streamed
audio files are not saved to the user’s hard drive and thus cannot be
posted on the Internet for illicit distribution. Another benefit of a
service where there are no downloadable files is that the user has a
roaming profile and his music programmes and recommendations
are available wherever he logs on. Though disk space has become
cheaper, there is considerable management involved in holding a
large digital library on a local machine.

 2.3 Operation and Feedback
Figure 2. Smart Radio architecture

3 ACF AND CASE BASE USER PROFILING
Perhaps the obvious way to implement a system for recommending
assets to a customer is to work with representations of the assets
and the user’s interests and use these to match assets to users. This
is commonly referred to as content-based or case-based
recommendation and two sample cases for recommending music
are shown in Table 1. This representation contains some evidence
that this user might like this track. While this approach has the
advantage of simplicity, it has the drawback of needing to mark up
assets and users in the appropriate representation and also the
problem of coming up with the appropriate representation in the
first place. This representation problem is particularly acute in
music recommendation where descriptors such as ‘genre’ are
inclined to be over-burdened.

Figure 1. A programme in Smart Radio. The icons to the right indicate the
user’s rating of the tracks in the programme.

Listeners may search the music database by artist name, song title
or genre. They can add a music item to the current programme with
one click of a mouse. Indexing music items by genre is not very
satisfactory since the genre feature is not finely grained enough to
capture the nuances within music types. Section 6 describes
research we are currently undertaking to capture more
representative features for better indexing. Once a programme
contains ten music items it can be played immediately and is
automatically saved to the user’s profile for future retrieval.

Table 1. A representation of a music track and a profile of a user that
might be used in content-based recommendation.

TB-2
Title Unbreak My Heart
Year 1996
Genre Pop, Soul
Artist Toni Braxton
Album Secrets

Figure 1 illustrates a programme in which the user conorc has rated
all ten items. If conorc chooses this programme again he will be
shown his ratings for the individual items within the programme
and he may recast his vote. This facility is important because music
taste does shift, and user profiles will have to move to reflect this.

JB-7
Name Joe Bloggs
Preferred Era 1990 +
Genre Soul, RnB, Pop
Fav-Artists Lauryn Hill, Macy Gray

George Michael
Fav-songs M117, M144, M56, M89
Fav-albums A232, A200, A401, A212

In order to provide data for our recommendation engine we collect
explicit and implicit feedback from our listeners.
Users can provide explicit ratings on individual track items or
individual programmes on a scale of 1– 5, where 5 is the top score.
It is important to infer feedback, particularly for the less interactive
or casual user [2]. This involves monitoring the use-data for each
user and allocating positive ratings to frequently played items.
Unlike the user conorc, the casual user may choose to interact
minimally with the system intervening only when the music
provided is not to his taste.

The ACF (Automatic Collaborative Filtering) approach to
recommendation finesses this representation problem by basing
recommendations on users’ ratings of assets only and uses no
descriptions of assets or users’ interests. An example of such a
representation is shown in Table 2 which shows that User 1 has
given a rating of 0.8 (4 out of 5) to Track 1, no rating to Track 2
and so forth. The basic idea behind ACF involves identifying users
with shared interests and making recommendations based on this.
In the example in Table 2, Track 2 might be recommended to User
1 based on the similar ratings for Tracks 2, 3 & 4 by Users 1 and 2.
(The details on how recommendations are generated are given in [3,4])

2.4 Architecture
Smart Radio is a client-server system. The server components
consist of a web server with java servlet extensions and a
recommendation engine, which consists of an ACF engine, a CBR
engine and a module that evaluates user preferences (see Fig. 2).
 The client side consists of a browser with a plug-in component for
playing streaming audio files. A streaming audio server runs in
parallel with the web server. This server receives requests from the
clients and streams audio pieces to the specified address. The
Smart Radio web pages are able to play the incoming stream by
means of the streaming audio plug-in embedded in a HTML frame
which remains constantly in place irrespective of what other pages
the user requests from the Smart Radio server.

Equation 1 gives the overall score, s, for any programme where w
refers to the novelty factor and n is the number of tracks in the list.

Table 2. The type of representation used in ACF where a user’s profile is
simply a list of ratings for tracks.

1)
n

)upw(kw)(1 iii∑ ∑∑ ++−
=s

 Track 1 Track 2 Track 3 Track 4 …
User 1 0.8 0.2 0.8
User 2 0.6 0.8 0.2 0.4
User 3 0.4 0.8 0.2

 Using this Equation the score for this programme where the
listener has specified a low novelty factor of 0.25 is 0.27. Given sufficient data, the ACF approach can produce excellent

recommendations. However it is not without its shortcomings, the
main ones being the problem of handling new assets and users and
the absence of any temporal model of users interests. This last
issue is a particular problem in recommending music where a
user’s listening interests may vary over time. The way this is
handled in Smart Radio is described in the next section.

(0.75(0.8+0.6+0.8) +
0.25(0.6+0.8+0.6+0.6+1.0+0.8+0.4))/10 = 0.285

The score for the programme where there is a relatively high
novelty factor of 0.75 is 0.43.

(0.25(0.8+0.6+0.8) +
0.75(0.6+0.8+0.6+0.6+1.0+0.8+0.4))/10 = 0.4153.1 ACF in Smart Radio: recommending

programmes
The Programmes are then ranked according to these scores. The
following section describes a refinement to this first stage retrieval
that seeks to promote programmes that are most pertinent to the
listener’s current listening behaviour.

Each listener in Smart Radio has a listening history consisting of a
number of programmes with their component tracks. The listener
may have explicitly rated individual tracks in each programme.
Programmes may also have been repeatedly played or contain
overlapping tracks from which we can implicitly infer positive
feedback for component tracks. From this we build the type of
table illustrated by Table 2. Correlations are made between
listeners based on the component tracks in their programme history
rather than on the programmes themselves. Two listeners may be
highly correlated based on the overall component tracks they have
listened to, even though they may not have listened to the same
programmes. In typical ACF fashion a neighbourhood is then
established for each user, and programmes rated highly by these
neighbours are retrieved.

3.2 Recommendations
Recommendations are calculated periodically and in response to
listener feedback. The recommendation engine maintains a
correlation matrix in memory that is updated every half hour for
the users that have been on-line since the last update. This is a
triangular matrix since the ACF correlation function is
commutative. Using the correlation scores in the matrix and the
listening context (a feature explained in section 4.) the system
updates the database with the most current recommendations.

Making a prediction on a programme involves making a prediction
for each of the component tracks where we don’t have any explicit
or implicit feedback. The overall prediction for a programme is a
weighted sum of the prediction for each the component tracks
divided by the number of tracks in the list. The weighting refers to
a user–defined constraint that we call the novelty factor. A
criticism often levelled at version 1 of Smart Radio was that it
didn’t take into account user preferences for receiving new music.

However, in response to a substantial amount of new information
(feedback) being introduced into the system by a listener, the
recommendation engine updates the matrix row associated with the
listener and his listening context. We use a rule of thumb to trigger
these recommendation threads: if a listener explicitly changes his
profile by 20% we immediately recalculate his correlations and
listening context. This strategy tends to support new users who
would not have a lot of data in the system in the first place.

Listeners may specify on a scale of 1 to 5 the degree of novelty
they want in their recommended lists where 1 signals the user’s
preference for programmes with a large amount of already known
music. This caters for listeners who do not want programmes that
contain very much music they do not already recognise.

4 CONTEXTS
ACF is a successful methodology for managing the long-term
resource requirements of the online user. The user’s interaction
with an ACF based system is usually of a sustained nature
involving a dialogue that may last from a few minutes to a few
years in the case of a successful retail portal like Amazon.com. [4].
The basic methodology involves lazily making recommendations
using the full user history. The sequence of items played most
recently does not influence the recommendation strategy of the
basic ACF algorithm. However not all the data informing a user’s
recommendations may be pertinent to the current listening
preferences. For instance, a listener may listen to rock’n’roll, jazz
and dance music but may wish the system to learn his current
listening preference by recommending suitable jazz oriented
programmes when he is listening to jazz. We see two possible
ways of addressing this. Firstly, we might use only a portion of the
user’s profile and then make ACF recommendations using this
reduced profile. Isolating the subset of items that are pertinent to
the current listening context may be quite difficult, particularly in a
domain where there is not much content description. Secondly,
there is no guarantee that our listener will receive Jazz

Table 3 illustrates a programme where we have made predictions
for five of the component tracks. The status field refers to whether
a score is known for a particular track (k), has to be predicted (p) or
is unknown (u). In the case of u, the score allocated is the average
rating for the track.

Table 3. Illustrates a programme in which we have previously rated items
(k), predicted items (p) and an item for which we were unable to make a
prediction (u).

Track Id Status k/p score
127 k 0.8
23 p 0.6
45 k 0.6
78 p 0.8

206 p 0.6
1266 p 0.6
587 p 1.0
13 p 0.8

234 k 0.8
1500 u 0.4

recommendations if his nearest neighbours also have an eclectic
taste in music.
The approach currently employed by Smart Radio involved the
development of a local context analyser. This module was
developed to cater for personalisation requirements that are context
specific. This module maintains a simple user profile that
summarises the listener’s most recent listening patterns. This is, in
effect, a sliding window on the user’s listening history where the
window is the last n programmes. This relies upon having some
representation of the assets being recommended. In the case of the
music items in Smart Radio, we make use of features freely
available in the ID3 tag of the mp3 file. Most mp3 ripping software
includes this information in the last few bytes of the mp3 file
itself2. While these features are not highly predictive on their own
they give us a good indication of the user’s current preferences.
Our approach is to use the full user profile for ACF
recommendations but to then refine these recommendations based
on similarity to the current listening context. This two-fold strategy
is a type of MAC/FAC retrieval well known amongst CBR
researchers [5]. Our case base consists of the total number of
programmes in the system. The ACF module is responsible for the
first stage retrieval (MAC) while refinement to this retrieval is
carried out by similarity-based retrieval (FAC). Implementation
wise, the second stage of this retrieval is carried out using a
spreading-activation net where each programme is treated as a case
in the case memory (the activation net). In the first stage, the ACF
module primes a subset of the case memory. In the second stage,
the user-profile is presented as a target case. Activation spreads
only through the primed subset of the case memory. Those
programmes that have highest activation after this process are
presented as recommendations to the listener.

Figure 3. The darker shaded cases in the third stage indicate cases which
best match the listener’s current listening context.

The profile provides a means of scoring recommended
programmes according to their similarity to the sliding profile. The
recommendations are then sorted based on these scorings.
This ensures that programmes created and endorsed by the
listener’s nearest neighbours but which also best match the user’s
current listening preferences are pushed to the top of the heap. The
sliding profile does not filter out neighbours’ programmes that do
not match the current context since it is understood that the listener
may well wish to break out of the current vein of music.

4.1 Negative profiles
The context builder also allows negative user profiles to be built.
These are profiles are constructed based on negative feedback
issued by listeners. Unlike the sliding window profiles these
profiles are built using the full listening history of the user. Their
employment is user-policy based in that the user has access to the
negative profile and may choose to have it used or not. In the case

where it is put into effect, the negative profile acts as a filter
removing programmes that have high similarity to the negative
profile. This stage is carried out directly after the ACF retrieval and
prior to the positive profile refinement stage. The user can
determine the number of negatively rated artists or items a
programme may have before it is deemed unacceptable. In the next
section we introduce additional policy based features that allow our
listeners personalise their listening experience.

4.2 Similarity measures
The weak representation of our music assets obviously poses some
problems. In table 1 we have illustrated a typical user profile and a
case-like representation of a music item. Defining similarity
measures for some of the features shown requires a certain amount
of expert knowledge. In the case of the genre feature we have
defined a similarity measure relating certain genre types such as
blues, jazz and r’n’b. For other genre types we just haven’t enough
insight into the problem to specify a similarity measure – in which
case the similarity value is either one or zero. Work has been
carried out on data-mining Smart Radio user data to find higher
level concepts that would describe our music assets and provide us
with similarity measures based on our listener’s usage patterns
[6,7]. These concepts would constitute a new type of genre
information that should reflect our listeners’ view of the music
assets in the system. This work is described in section 6.
Maintaining a case base of programmes in memory has a
secondary benefit. It allows the user to retrieve a programme
similar to the current one. However, with the rather weak features
currently available to us, the success of this approach is limited.
Section 6 will discuss, how improved features will benefit the
system.

5 ADDITIONAL CONSTRAINTS
In this section we draw a distinction between a personalisation
service and a recommender service. We introduce some user-
guided constraints that allow each listener to affect how the
recommendation engine provides new programmes.
We view Smart Radio as a personalisation service that allows
people to manage their listening habits. As such it seeks to model
our users’ listening patterns and anticipate their audio
requirements. Typically recommender services will provide only
new items with the assumption that once a recommended item has
been ‘consumed’, it should not be recommended again.
However, the personalisation service offered by Smart Radio
recognises that music can be played over and over again. It is a
normal feature of the programme format of music radio that
popular artists and songs are played quite frequently.
In section 3.1 we described the novelty constraint that allows users
to state their preference for the amount of new music they receive
in recommended programme. Some users prefer not to receive a lot
of new music in a listening session. In order to prevent the same
tracks turning up in successive programmes we allow the user to
specify a minimum period before an individual track can be played
again. Real radio stations are guided by broadcasting regulations in
this respect. In our situation, the user can set the minimum period.
This is implemented by assigning user-music item pairs an
excitation level. Excitation is high immediately after an item is
played, but decays with time so that a music item can be played
again when sufficiently low. The decay function is based on the
user preference for the minimum period for replaying a piece of
music. Programmes therefore are assigned an overall excitation
level based on component tracks. This score is considered when

2 http://www.id3.org/

making a final set of recommendations. Obviously, in this case
programmes with low excitation levels are preferred.

6 FURTHER WORK
The poor representations currently available of our music assets
mean that our similarity-based strategy is the weak link in the two-
fold retrieval outlined in section 4. The problem has been
addressed from two angles. The first seeks to elaborate our content
descriptions using knowledge mined from our listeners use data.
Our goal is to produce an ontology that codifies the relationships
between music items based on our listeners’ listening data. The
usual way of creating an ontology is for domain experts to establish
the fundamental concepts, objects, relations, etc, which exist for a
given community. This presupposes that these ontological elements
can be uncovered a priori. However, in domains such as that of
Smart Radio, it is not at all clear that any a priori analysis by a
team of experts could yield the sort of concepts important to
recommendation tasks. While songs may be categorised according
to artist, and while to a much lesser extent, genres and sub-genres
may be employed, this approach is inadequate, since it does not
account for the fact that many people like songs that are widely
divergent according to the artist and genre criteria.
In pursuit of this, we have used Fisher’s COBWEB algorithm [7]
to produce a hierarchical classification scheme for songs in the
system [8]. Each music item is represented as an object with
features corresponding to each of the users in the system and with
values corresponding to the rating assigned to the song by that
user. By using such algorithms as COBWEB to cluster songs
based on user ratings, we are endeavouring to discover structures
more truly reflective of the similarities and dissimilarities between
songs. We need only evaluate the resulting conceptual structures in
terms of their impact on recommendations, and we need not worry
that users may be unable to articulate the perceived similarities and
dissimilarities that are hypothesised between songs. Furthermore,
we do not expect that the discovered conceptual hierarchy will map
onto any existing and already familiar network of human concepts.
Rather, we expect to discover structures that human analysis has
not detected. A further advantage conferred by the automatic
generation of ontologies using COBWEB is that such concept
formation algorithms are incremental, in the sense that
observations are not processed en masse. There is a stream of
objects, which is processed over time. In the case of Smart Radio,
this means that the conceptual hierarchy can automatically evolve
over time as new songs are added to the database, and as new users
join the system. The capacity to evolve over time is essential to a
constantly expanding on-line community resource. The type of
concept hierarchy we describe would allow us to calculate a
similarity between songs. Similar songs will fall under the same
concept and degrees of similarity will be captured in the
relationships between concepts.
The second way in which we are seeking to improve the
representation of our assets involves automatic feature extraction
from audio files. We propose to use rhythmical features and
features from frequency analysis that will allow us to identify
instrumentation. It has been shown in [9] that nine parameters
characterise the strength of the beat and that rhythmical features
may be used with good results for music classification purposes.
Since instruments are characterised by a typical range of
frequencies, by analysing the frequencies being played it may
possible to distinguish between simple polyphonic music such as
blues and rock and more complex music compositions in the fields
of jazz and classical music. Having music assets characterised in
terms of rhythm and instrumentation would improve our similarity

retrieval strategy greatly. We would, for instance, using the rhythm
feature alone be able to differentiate fast programmes from slow
programmes of music. This would obviously be helpful in finding a
programme suited to the listener's current context. We would also
be able to search for a programme that best matches the rhythm
profile of the target programme.

7 CONCLUSION
Smart Radio is client-server application that provides its users with
personalised service of streaming music in the form of programmes
built by other listeners. A MAC/FAC retrieval strategy is employed
to recommend new programmes to the listener. This works by
having an ACF module retrieve programmes suited to the target
listener followed by similarity-based refinement which sorts these
programmes according to the listeners’ current listening context.
We introduce the idea of a negative profile, which is a summary of
the music items disliked by the user. The user determines the
deployment of this profile. Likewise, we introduce two user-
defined restrictions: the novelty factor and excitation level. The
novelty factor allows listeners to specify their preference for
receiving new music. This is implemented as a weight on each
component track when making a prediction for a particular
programme during first stage retrieval. The excitation level is a
means of promoting programmes that contain tracks that have not
been played recently. We discuss how the poor representations of
our music items mean that our similarity-based retrieval is the
weak link in our system. This strategy may be augmented by
information derived from knowledge discovery techniques. We
finally introduce work we are carrying out on automatic feature
extraction from audio files to improve our content-based
recommendation.

REFERENCES
[1] Hill, W., L., Rosenstein, M., and Furmas, G. (1995) Recommending

and Evaluating Choices in a Virtual Community of Use. In
proceedings of the conference on human factors in computing
Systems (CHI95), 194-201, Denver, CO, ACM Press

[2] Loeb, Shoshana (1992) Architecting Personalized Delivery of
Multimedia Information. CACM/December 1992/Vol.35. No12

[3] Hayes, C., Cunningham, P. (2001) SmartRadio – community based
music radio; Knowledge Based Systems, special issue ES2000,
Volume 14, Issue3-4, June 2001, Elsevier

[4] Hayes, C., Cunningham, P., Smyth, B., (2001) A Case-Based
Reasoning View of Automated Collaborative Filtering, in
Proceedings of 4th International Conference on Case-Based Reasoning
eds D. W. Aha, I. Watson, LNAI 2080, pp234-248, Springer Verlag.

[5] Gentner, D., and Forbus, K. D. 1991. MAC/FAC: A model of
similarity based access and mapping. In Proceedings of the Thirteenth
Annual Conference of the Cognitive Science Society. Erlbaum

[6] Clerkin, P., Hayes, C., Cunningham, P (2001) Automated Case
Generation for Recommender Systems Using Knowledge discovery
techniques. (2001) Proceedings of Workshop on Case Based
Reasoning in Electronic Commerce at the Fourth International
Conference on Case-Based Reasoning 2001, Vancouver BC, Canada.

[7] Fisher, D. H. (1987). Knowledge acquisition via incremental
conceptual clustering. Machine Learning, 2, 139-172.

[8] Clerkin, P., Cunningham P., Hayes C. (2001) Ontology Discovery for
the Semantic Web Using Hierarchical Clustering in proceedings of
Semanctic Web Mining Workshop at ECML/PKDD-2001,
September 3, 2001, Freiburg, Germany

[9] G. Tzanetakis, G. Essl, P. Cook, “Automatic Music Genre
Classification of Audio Signals”, In Proceedings of the International
Symposium on Music Information Retrieval (ISMIR), Bloomington,
Indiana, 2000

